
Power Saving in CMOS Processors by Optimal Wire Spacing   
 
Abstract – Interconnect power is a significant part of dynamic 

power dissipation in microprocessors. Cross-capacitance 

between adjacent wires is a major contributor to this power 

consumption, and it can be reduced by post-processing of the 

layout for optimal allocation of spaces between wires. 

Necessary and sufficient conditions for the existence of 

optimal space allocation are derived in this paper. At the 

optimum, every wire must be in equilibrium of its line-to-line 

capacitance density on its two sides, weighted by signal 

activity factors. A practical implementation which has been 

used to reduce power in the design of a recent commercial 

high-end microprocessor is presented, exhibiting an average 

reduction of 16.8% per layer in the upper metal layers. 

1. INTRODUCTION 
The dissipation of power has become a major concern in 

processor design because of the drive to deliver lighter mobile 

computers with longer battery life and the growing awareness to 

environmental heating.  Hence, every opportunity to save power is 

exploited, such that a total power saving is accumulated by adding 

small contributions from various design levels and approaches. 

Power reduction was addressed at different design levels [1] [2], 

from architecture and system level through RTL synthesis, signal 

encoding, circuit implementation, all the way down to layout 

implementation, which is the focus of this paper.  We claim that 

interconnect power (the dynamic power dissipated because of 

charging and discharging wire capacitances, which is the 

dominant dynamic power component in processors  [4]), can be 

significantly reduced by optimizing inter-wire spacing in the 

layout. 

Commercial routing tools and manual artwork of mask designers 

tend to produce densely-spaced wires, while leaving empty areas 

("white spaces") in nearby areas, instead of spreading the wires 

evenly. Tools and humans typically do not take advantage of the 

entire area available for layout implementation, because routing is 

usually a sequential process. Therefore, the more area is saved at 

any routing step, the better is the chance to complete all required 

interconnections [3]. However, this approach results in non-

uniform area utilization, leaving “white areas” in the layout 

(Figure 1).   Based on this observation, we propose to eliminate 

the white space by spreading-out wires, thus increasing inter-wire 

spaces in order to reduce line-to-line capacitances and save power. 

Local optimization techniques by wire spacing for power and 

cross-talk minimization were reported in the literature  [14],  [15], 

 [16] but our technique is global and therefore more effective.  

The optimization problem of minimizing the power consumed by 

interconnecting wires on a die by adjusting their spacing is 

formulated and solved in this paper. It is assumed that 

interconnects have already been routed (manually or by some 

CAD tool), so that interconnection topology cannot be changed in 

any metal layer. It is also assumed that wire widths have been set 

to satisfy signal delay and other design goals such as reliability. 

The optimal spacing allocation can thus be made as a post-

processing step performed on the layout. The paper also 

demonstrates an industrial design flow which was used to 

implement this optimization technique on an actual processor 

design.  

The rest of this paper is organized as follows. In the next section 

the circuit and layout models used throughout the discussion are 

presented. A necessary and sufficient condition for every wire so 

total power is minimized is proven in section 3. An iterative 

solution algorithm is described in section 4. Results obtained for a 

recent high-end microprocessor designed in 65 nanometers 

technology are presented in section 5. Delay constraints and 

minimal spacing rules addressed in section 6.  

2. INTERCONNECT MODELING ASSUMPTIONS 
The interconnecting wires in upper metal layers typically run in 

alternating orthogonal directions, e.g. wires residing in even 

layers are vertical and wires in odd layers are horizontal, as shown 

in Figure 2.  The influence of jogs (Figure 2) on power and delay 

is negligible; therefore they are excluded from the optimization 

process. The interconnect power associated with a logic signal is 

proportional to it's total capacitance and to it's average amount of 

switching as compared to clock signal (the signal’s activity 

factor).  Drivers and receivers are assumed as given, and their 

optimization is beyond the scope of this paper.  

Spacing optimization is carried out at each layer independently of 

the other layers as follows: As shown in Figure 2, shifting wires in 

one layer doesn’t affect spacing of (the orthogonal) wires in the 

layers above it and below it. One may think that significant wire 

shift may not always be possible, since a wire movement in layer 

l  might cause overlap of wire segments in an adjacent 

(orthogonal) layer below or above it. However, such cases require 

a large wire shift, which are typically impossible because of high 

layout density and statistically uniform distribution of shifted 

wires over the layout. For example, when our technique was 

implemented on a real industrial layout, the largest wire shift was 

only  1.6 mµ . In addition, the maximum wire shift is limited by 

the power grid network which is kept fixed with no shift. 

Although the length of horizontal wires in layers 1l −  and 1l +  

may slightly change, their variations are assumed negligible for 

any practical consideration.  

The fundamental model we use to derive optimal spacing 

conditions is shown in Figure 3. There, a few wires run in parallel 

and the entire layout segment is shielded on both sides by wires 

connected to ground.  Shielding wires do not make logical 

transitions; hence they do not consume any power. Locations of 

shielding wires are constant and distance between them is A . 

Switching power consumed by a signal wire is associated with its 

self capacitance to ground planes (representing the adjacent metal 

layers) and with line-to-line capacitance to other wires of same 

layer as shown in Figure 3. We say that two wires are "visible" to 

each other if they have a common span and there are not any other 

wires between them along this span. Spacing visibility graph 

( , )G U E is a directed graph whose vertices U correspond to 

wires and the arcs E correspond to spaces between wires visible 

to each other (Figure 3). Only line-to-line capacitance to visible 

wires is accounted. The progression of VLSI process technology 

has made this line-to-line term dominant over others, and its 

importance is expected to grow in future generations  [9],  [10], 

 [11]. The line-to-line capacitance between two adjacent wires is 

proportional to their common span, and inversely proportional to 

the real power of space between them  [13]. We say that 
i jI I≺ if 

iI and
jI  satisfy: 1) the intersection of their vertical span is non 



empty, 2) 
ix and

jx , the abscissas of
iI and

jI , respectively, 

satisfy
i jx x< , and 

iI and
jI  are visible to each other. 

Every signal iσ has some activity factor iα ranging from 0iα =  

if it never switches (e.g., shields or power delivery network), 

to 1iα = , if it switches twice at every cycle (e.g., clocks). Signal 

activity factors can be derived using industrial power simulators 

by checking signal activity factor in different circuit switching 

scenarios and then averaging over all cases  [1]. The power 

contributed by the line-to-line capacitance between 
iσ and 

jσ  

depends on iα , jα and Miller Coupling Factor (MCF) between 

iσ and jσ . According to Miller's theorem the simultaneous 

switching of two signals in identical and opposite directions yields 

MCF of 0 or 2, respectively, or -1 to 3 if worst-case transition 

slopes are assumed [17] . For calculating cumulative average 

power over many transitions, an average MCF of 1 is assumed for 

internal wires. Under this assumption the power contributed by 

the line-to-line capacitance between iσ and jσ  is proportional 

to i jα α+ .  

A left-to-right topological order of the wires is maintained in each 

layer. The layout manipulations described in this paper involve 

only wire spacing optimizations, which preserve the order of the 

wires as given in the initial interconnect topology. 

We assume that the widths 
0 1 , 1, ,..., n nw w w w +

of the wires are 

predefined and thus are not subject to change in the optimization.  

This assumption agrees with VLSI design practice, where wire 

widths are set very early in the design flow according to signal 

propagation delay goals. Optimal spacing, however, is more 

opportunistic and is addressed late in the design.  There, all 

interconnects are already implemented with their specified space, 

so the unused “white area” can be distributed among wires in 

order to reduce their line-to-line capacitance.  

Let ijl be the common span of iI  and jI in which they are 

visible to each other. If iI  and jI are not visible to each other 

ijl is undefined, but for the mathematical discussion we set it to be 

identically zero. The space j ix x−  between  iI  and jI  is 

defined if and only if 0ijl > . It needs to satisfy the following 

constraint, which accounts for the predefined wire widths and the 

minimum wire spacing dictated by the process technology: 

( ) 2 ,      j i j i min i jx x w w S I I− − + ≥ ≺   (1) 

The line-to-line capacitance ijc associated with iI and jI is 

given by  

( )( )2

ij

ij a

j i j i

l
c

x x w w

κ=
− − +

,  (2)                                                                   

where a is a real constant. For first-order analysis one may 

assume a =1, but a better fit to current technology is obtained 

with the value of  a  slightly greater than one  [13]. The benefit of 

our optimization technique increases as this parameter increases.  

The factor κ depends only on process technology. The total 

switching power ( )crossP x  resulting from line-to-line 

capacitance is therefore proportional to: 

( ) ( )

( )
( )( )

0 1

0 1 2

cross

j i ij

i n i j n

j i ij

a
i n i j n

j i j i

P x c

l

x x w w

α α

α α
κ

≤ ≤ < ≤ +

≤ ≤ < ≤ +

∝ + =

+
=

− − +

∑ ∑

∑ ∑
(3) 

The goal is to find ( )1 ,..., nx x x= that minimizes (3). Recall 

that 0I and 1nI + are fixed, hence we assume that 

0 0x = and 1nx A+ = (total routing area). 

3. NECESSARY AND SUFFICIENT LAYOUT 
CONDITION FOR MINIMAL POWER  
Lemma 1: The minimum of (3) subject to (1) is global. 

Proof: Let us define ( ) 2
ij j i j i
s x x w w= − − + to be the 

spacing between two visible wires.  Substitution ijs into (1) and 

(3) yields the following minimization problem: 

( )
0 1

minimize:    
j i ij

a
i n i j n ij

l

s

α α
κ

≤ ≤ < ≤ +

+
∑ ∑   (4)                                   

subject to:    ,    ij min i js S I I≥ ≺ ,   (5a)                                                        

( ) 2 0,    ij j i j i i js x x w w I I− + + + = ≺ ,   (5b)                     

0 ,    1ix A i n< < ≤ ≤     (5c) 

The objective function (4) is convex and same are the constraints  

(5a) - (5c). Consequently there is one minimum which is global 

 [5].☻ 

Consider now the variable abscissa ix of a wire iI whose width 

is iw 1 i n≤ ≤ . Denote its left and right visible wires by 

,

l

i jI and ,

r

i jI , respectively, where the superscript designates left 

and right sides of iI and the subscript j is varying. We use the 

same indexing notation for the corresponding abscissas, widths, 

lengths of wires overlap and activity factors. 

Let us ignore for the moment the requirement (5a) of minimum 

spacing, and replace it by 0ijs > , which still guarantees the  

partial order preservation in (5b). Although it is not feasible for 

VLSI layout, it simplifies the characterization of the optimal 

spacing yielding minimum power. We’ll return to (5a) and take it 

into account in the real implementation of wire spacing. Formally, 

(5a) is replaced by 

0,    ij i js I I> ≺      (5d) 

Theorem 1 (necessary and sufficient condition for minimal 

interconnect power): A necessary and sufficient condition so that 

the switching power expression in (4) is minimized subject to the 

constraints (5b)-(5d) is that every wire ,1iI i n≤ ≤ satisfies: 



( )
( )

( )
( )

, , , ,

1 1

, , , ,

l l r r

i j i i j i k i i k

a a
l l r rj k

i i j i i j i k i i i k

l l

x x w w x x w w

α α α α
+ +

+ +
=

   − − + − − +   

∑ ∑  (6).                            

Summation on left and right hand sides of (6) is taken on all left 

and right visible wires, respectively.   

Proof: By substitution of  (5b) into (4) it follows that the power 

consumed by wire iI  is proportional to: 

( )
( )( )

( )
( )( )

, , , ,

, , , ,

l l r r

i j i i j i k i i k

a a
l l r rj j

i i j i i j i k i i i k

l l

x x w w x x w w

α α α α+ +
+

− − + − − +
∑ ∑  (7)  

The minimum of (4) is obtained at an internal point of the 

region 0,    ij i js I I> ≺ . Otherwise, there would be 

some 0ijs = . This, however, would set (4) to infinity, hence not 

a minimum. 
Since the minimum is obtained at an internal point, and by lemma 

1 the minimum is global, a necessary and sufficient condition to 

minimize (4) is that its derivative by the abscissa of every wire is 

zero. Differentiation of (7) by ix yields (6)  [5].☻ 

The physical interpretation of Theorem 1 is that it is necessary 

and sufficient for minimum interconnect power that every wire 

will be in equilibrium, where the sum of its left side capacitors  

derivatives weighted by their corresponding activity factors is 

equal to that of the right side. 

Solving (6) for all wires together with the constraints (5b)-(5d)

involves a large number of nonlinear equations and linear 

inequalities. Its solution for a typical VLSI layout can be very 

tedious. In the following we’ll present an iterative algorithm for 

practical problem solution. 

4. ITERATIVE ALGORITHMS FOR POWER 

MINIMIZATION 
An iterative algorithm which minimizes the total switching power 

is proposed. It is based on the equilibrium condition for minimum 

stated in Theorem 1. It has been implemented and successfully 

used for power reduction in the design of a commercial 65 

nanometer high-end microprocessor. Some power reduction 

results are presented in section 5 below. This approach involves 

utilization of vacant area in layout, which has been exploited for 

enhancing manufacturing yield  by tools such as  [8], using an 

iterative algorithm to balance the white space between 

interconnects in VLSI layout as was proposed in  [1]. 

The algorithm works on one wire at a time while maintaining a 

global view of the other wires. It repositions a wire between its 

left and right visible wires, such that local equilibrium is achieved. 

According to Theorem 1, at a non minimum point there exists at 

least one wire which is not in equilibrium. We then shift it to the 

abscissa yielding equilibrium by calculating x  from equation (6). 

Article  [1] proved that such iterations converge to a configuration 

where all wires are in equilibrium. 

It has yet to be seen that the repositioning of a single wire indeed 

reduces the total power. Considering (3), the only affected terms 

are those which involve the shifted wire and its left and right 

visible ones. These terms are expressed in (7) within the proof of 

Theorem 1. This amount of power appears only once in (3) and its 

value after repositioning has been lowered, hence the net power 

change is negative. We can summarize in the following theorem: 

Theorem 2: The iterative algorithm which positions wires one at a 

time in their local equilibrium abscissa converges to a limit which 

is the global minimum of switching power incurred by the wires. 

Proof: The infinite sequence of power values obtained by the 

iterative algorithm is positive and monotonic decreasing, hence  

converging to a limit where all wires are in equilibrium. Theorem 

1 ensures that this limit is indeed the global minimum. ☻  

A few implementation comments follow. In order to ensure fast 

convergence, wires are treated in decreasing order of their 

imbalance of left and right weighted capacitance derivatives.  

Clearly, this order is dynamically changing, since the balancing of 

a single wire is changing the imbalance of the other wires visible 

to it.  

Efficient handling of the dynamically changed imbalance ordering 

is possible by using a heap data structure, where the most 

imbalanced wire is stored at heap’s top  [6]. Wires are popped 

from the top of the heap one at a time, and then repositioned at 

their equilibrium abscissa. Such operation consumes ( )1O time, 

assuming that the number of visible wires of any wire is bounded, 

which is the practical situation in VLSI layout. The balanced wire 

is then reentered into the heap. The imbalance of the adjacent 

wires is then recalculated and their location in the heap is updated 

according to their new imbalance value.  This operation takes 

( )logO n time  [6]. The speed of convergence of such an iterative 

balancing procedure has been studied in  [1]. 

5. EXPERIMENTAL RESULTS 
A pictorial example of real spacing optimization is shown in 

Figure 5, where next to every wire its corresponding activity 

factor is written. As shown in Figure 5(b) the optimization 

algorithm distributes the spacing according to the relative weight 

of wires’ activities. The algorithm described in the previous 

section is exemplified on a number of circuit blocks from a high-

end microprocessor designed in 65nm process technology. Only 

Table I. Optimization results for different design blocks 

 

Block number 
Area, 

mm2 

Transistor 

count 

Net count Nets touched Max wire shift, 

um 
Initial Power, 

% of total 

Power 

improvement, 

% 

Run time ,s 

1 7.87 3.1*106 1.2*105 1.1*105 0.54 58.82 14.2 1.35*103 

2 7.01 3.5*106 7.1*104 5.7*104 0.78 16.89 20.9 0.94*103 

3 6.78 4.4*106 7.1*104 6.1*104 0.83 11.55 21.6 1.06*103 

4 5.14 4.2*106 4.6*104 4.1*104 1.21 6.66 17.8 0.76*103 

5 3.2 1.9 * 106 4.4*104 3.7*104 1.55 6.08 20.5 0.7*103 

Total 30.02 17.1*106 3.5*105 3.1*105 - 100 16.81 - 

 



global interconnect layers (i.e. wires routed on 5, 6, 7 and 8 metal 

layers) were optimized in these blocks. Signal activity factors 

were extracted from relevant program traces using industrial tools 

 [1]. As follows from the results, more than 95% of the nets have 

activity factors less than 0.2. 

Optimization results for all blocks are presented in Table 1. In 

Figure 7 metal breakdown and optimization results for each block 

are shown. As can be seen, full chip cross-capacitance 

interconnect power is reduced by 16.8%. According to  [4] and 

Figure 8, which shows dynamic power breakdown for the high-

end microprocessor, this amount translates to about 1.68% of the 

total dynamic power.  In a real industrial design environment 

where the algorithm was deployed, such a reduction is very 

significant. Although today the leakage power can amount to half 

of the total power, in future technologies it can drop significantly 

because of usage of tri-gate devices, and therefore our technique 

will become even more advantageous.   

The difference in power reduction among the various blocks is 

explained by differences in signal activities, metal density and 

existing wire spaces.  

6. MAINTAINING DELAY CONSTRAINTS WHILE 

MINIMIZING POWER 
The line-to-line capacitance obtained for power minimization may 

not be optimal for delay optimization. Though the improvement in 

total capacitance weighted by activity factors will statistically 

work in favor of reducing capacitance weighted by drivers’ 

resistance, the changes may also result in min and max delay 

violations. Two different approaches to tackle this problem are 

described. The first one is preventive and avoids any delay 

violation. It was the practice used for the design mentioned in this 

paper. The other is a corrective approach which fixes violations 

after they have occurred. 

A flow  which prevents delay violations is illustrated on Figure 4. 

The spacing algorithm is executed first and all parasitics are 

modified accordingly. A timing analysis is then performed in 

order to discover degraded signals that have become critical. The 

spacing algorithm is executed again on the original input data, but 

wires of degraded signals together with their visible wires are held 

fixed. Another timing analysis is performed in order to check 

whether other timing degradation has occurred.  This iteration 

continues until convergence. Usually two iterations suffice.  

A smarter but more difficult to implement approach is to restore 

all original delays by post-resizing drivers in order to fix max and 

min delay violations.  In what follows we will be more pessimistic 

and consider the impact of fixing all delay changes rather than just 

max and min delay violations. 

As a first step we need to express driver size sensitivity to delay 

change. A simplified Elmore delay model  of the driver-receiver 

pair is given by  [18]: ( ) ( )( )1 1D R aLW C bLW cL S S′ ′′= + + + +                                              

where R is driver’s resistance, L is wire length and W is its width, 

C is the capacitive load of the receiver, S ′ and S ′′ are the spaces 

on the two sides of the interconnecting wire, and a, b and c are 

process technology parameters. The sensitivity is then given 

by ( ) ( ) (1 )dR dD R D aL WR= + .                                                      

The sensitivity depends therefore on wire length and width, 

process technology sheet resistance and driver’s resistance. Figure 

9 plots the change in percents that needs to take place by driver 

size in order to restore the delay for one percent of delay change, 

as a function of driver size. We simulated minimum width wires 

of several top-level metal layers with appropriate sheet resistance 

of 65 nanometer process technology. Several lengths L=500 mµ , 

1000 mµ  and 3000 mµ  were measured for driver’s resistance 

varying from 50Ω  to1.5kΩ . Figure 9 shows the results for the 

worst metal layer. As shown in the plot, driver size is more 

sensitive in longer\ interconnect, and strong (low resistance) 

drivers are more sensitive than weak (high resistance) ones. As an 

example, a change of 10% of delay incurred at a signal with a 

driver of 100Ω  and wire length of 1000 mµ  is recovered by a 

change of 20% in driver size. 

The histogram in Figure 6 illustrates the distribution of delay 

change incurred in the top-level interconnects as a result of 

spacing optimization. As can be clearly seen, for about 80% of the 

interconnects the amount of change is negligible and falls in the 

range of simulation accuracy. We have therefore to restore the 

delays of 20% of the top-level interconnects. Recall that this is 

still worst case analysis since the delay change of majority of 

those doesn’t result in max or min delay violation. 

In order to calculate the amount of driver size changes implied by 

delay restoration, the histogram in Figure 6 is combined with the 

driver size sensitivity in Figure 9, thus yielding a distribution of 

driver size change which is not shown due to paper size 

limitations. This data is further used to calculate the amount of 

power growth resulting from resizing (both upsizing and 

downsizing), which eventually yielded 0.1% of the total chip 

power consumption. Recalling that Table 1 yielded 1.68% power 

save, we are left with 1.58% net power saving. 

7. CONCLUSION 
The industrial practice of low-power design requires exploitation 

of every possible contribution to saving in the power budget. In 

this paper we have presented a mathematical analysis of 

interconnect power minimization, and described a method to 

reduce interconnect power, which is the dominant component of 

dynamic power on chip, by reallocation of white space between 

wires according to the proven optimality conditions. The 

technique is employed as a post-processing step on the layout 

while keeping the power grid fixed. It is easy to incorporate into a 

complete design flow. Implementation of this method on a state-

of-the-art processor design in 65nm technology has yielded a 

reduction of about 17% in interconnect power. Although this 

corresponds to only a couple of percentage points in the total 

power, this result is industrially significant. Further relative gains 

are expected from this technique in future technologies. 

8. ACKNOWLEDGEMENTS 

The authors would like to thank to Julian Pogerov, Amit Erez and 

Wael Hendawi for their helpful comments.  

9. REFERENCES 
[1] S. Borkar, “Low power design challenges for the decade,” 

Proceedings of the 2001 conference on Asia South Pacific design 

automation, pp. 293 – 296.   

[2] S. Devadas and S. Malik,  “A survey of optimization techniques 

targeting low power VLSI circuits,” Proceedings of the 32nd 
ACM/IEEE conference on Design automation, 1995, pp. 242 – 247. 

[3] C. Li, M. Xie, C-K Koh, J. Cong and P. H. Madden, “Routability-
Driven Placement and White Space Allocation”, ICCAD 2004, pp. 

394 – 401, November 2004. 

[4] N. Magen, A. Kolodny, U. Weiser and N. Shamir, "Interconnect-
power dissipation in a microprocessor", Int. Workshop on System-

level interconnect prediction, pp. 7-13, Paris, 2004 

[5] D. G. Luenberger, Linear and Nonlinear Programming, Chapter 6.5, 
Addison Wesley, 1984. 

[6] T. H. Cormen, C. H. Leiserson and R. L. Rivest, Introduction to 
Algorithms, MIT Press, 2nd Edition. 2001. 



[7] T. C. Hu,  Integer Programming and Network Flows, Addison 

Wesley, 1969. 

[8] Sagantec, Xtreme – a wire spacing tool for manufacturing yield 
enhancement. 

[9] R. Ho, K. Mai and M. Horowitz, “The future of wires”, Proceedings 
of the IEEE, Vol. 89, no. 4, Apr. 2001. 

[10] D. Sylvester and K. Keutzer, “Getting to the bottom of deep 
submicron”, in Proc. ICCAD, pp. 203-211, 1998. 

[11] 2005 ITRS report, available online http://www.itrs.net/reports.html 

[12] A. Abou-Seido, B. Nowak and C. Chu, “ Fitted Elmore Delay: A 

Simple and Accurate Interconnect Delay Model”,  IEEE ransactions 
on VLSI Systems, vol. 12, no. 7, pp. 691-696, July 2004. 

[13] S. Wong, G.W. Lee, D. J. Ma, “Modeling of Interconnect 

Capacitance, Delay and Crosstalk in VLSI”, IEEE Transactions on 
Semiconductor Manufacturing, Vol.13, No.1, Feb 2000. 

[14] E. Macii, M. Poncino and S. Salerno, "Combining Wire Swapping 
and Spacing for Low-Power Deep-Submicron Buses", Proc.of the 

13th ACM Great Lakes symposium on VLSI, pp. 198-202, 2003 

[15] K. Chaudhary, A. Onozawa and E. Kuh, "A spacing algorithm for 

performance enhancement and cross-talk reduction," Proc. of 

ICCAD-93, pp. 697 - 702. 

[16]  P. Saxena and C. L. Liu, “An algorithm for crosstalk driven wire 

perturbation”, IEEE Trans. on CAD, Vol. 19, No. 6, 2000, pp.691-
702 

[17] P. Chen, D.A. Kirkpatrik and K. Keutzer, “Miller factor for gate-
level coupling delay calculation”, Proc. IEEE/ASM Intl. Conf. on 

CAD, 2000, pp. 68-75  

[18] H. Bakoglu, “Circuits, Interconnects, and Packaging for VLSI”, 
Addison-Wesley,1990 

 

 

 

 

Figure 2:  Typical interconnect patterns: A drivers transmits a signal which 

propagates through interconnecting wires of various layers. Consecutive layers 

route wires in alternating orthogonal directions. Connections from layer to 

layer are made by vias. Some wires may have jogs. 

C01;

S01
   C13; S13

C35; S35

C03; S03

C23; S23

C24; S24

      C04; S04

C45; S45

C02; S02

u0 u5

v6

v0

I0;W0 I1;W1

I2;W2

I3;W3

I4;W4

I5;W5

       C25; S25

C02 C24 C45I0 I2 I4 I5

C01 C13 C35I0 I1 I3 I5

A

 

Figure 3: An example layout model of a metal layer, it's corresponding spacing 

visibility graph (shown in dashed lines), and it's weighted capacitance 

derivative graph (shown in dotted lines), Two cross sections of layout are 

shown in order to demonstrate wire cross-capacitances 

 

Figure 9: Sensitivity of driver change to spacing change for typical values of 

spacing from Smin=0.14 um up to 3Smin=0.42 um 

 

Figure 1 Section of layer 7 layout. Power grid wires are emphasized. White 

spaces can be well seen on the picture  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

layout 

layout 

activity 

factors 

fixed 

signals 

delay 

violations 

commit 

changes 

space 

wires 

delay 

simulation 

update 

parasitics 

add fixed 

signals 

yes 

no 

 

 

Figure 4: Proposed flow for spacing optimization 

 

Figure 6: Distribution of delay changes incurred by power minimization. The 

right tail corresponds to delay increase which may cause max delay violations. 

The left tail corresponds to delay decrease which may cause min delay violations. 

Block 1: 

 

Block 2: 

 

Block 3: 

 

Block 4: 

 

Block 5: 

 

 

Figure 7: Optimization results for different design blocks 

 

 

 

Figure 8:  High-end microprocessor dynamic power breakdown 

 

 

 

Figure 5: A small clip of 5th metal layer is presented. Snapshots of before (top) and 

after optimization (bottom) are shown. Activity factors for each wire are shown. 

Notice that the 5th wire from the right with activity of 0.29 is blocked (by other 

wirers than are not shown on the clip) and therefore isn't placed after 

optimization in the middle in between two wires with activity 0. 

0 

0.54 

0.51 

0 

0.63 

0.73 

0.4 

0 

0.87 

0.8 

0.65 

0 

0 

0.14 

0.29 

0 

0.54 


