
1

Trace classification and its use for profile-based

trace cache management

Oleg Kosyakovsky

Avi Mendelson

Avinoam Kolodny

Intel – Israel

{Oleg.Kosyakovsky, avi.Mendelson}@intel.com

Technion, EE Department – Israel

kolodny@ee.technion.ac.il

Abstract

This paper proposes a new technique to improve the performance and the power

consumption of trace-cache architectures. The new technique uses profiling and is

based on the observation that traces can be classified into 4 different classes in respect

to their appearance patterns (we name them after different kinds of travelers): rare

traveler is a trace which appears infrequently, and is used very little each time,

seasonal tourist appears infrequently, but shows a lot of activity during a few

appearances, frequent flyer is a trace that gets activated repeatedly throughout the

program, and tends to be re-executed extensively each time it is brought to the trace

cache, and air crew is a trace being used frequently during most of the program

lifetime.

In the current technology, it is not worth to build a trace which does not show

locality of references since it wastes more performance and power than the gain from

using trace-cache. Thus we propose to use the above classification as a guideline for the

processor’s front-end when to build a trace and when to fetch it directly from the

instruction cache. This paper will show that the new mechanism can be very effective for

managing trace caches that suffer from high miss rate, and in particular, small to medium

trace caches.

1 Introduction

Trace cache was conceived to support the increasing demand for wider fetch

bandwidth in modern high-end processors. Typically, programs contain small chunks of

instructions in sequential memory locations, separated by branching instructions. These

2

chunks are called basic blocks, and their average size is 4-5 instructions. Increasing the

effective fetch bandwidth beyond the average size of a basic block is a non-trivial task,

since a single fetch operation reads sequential stream of instructions, and “effective path”

(the trace of the program) may consist of multiple basic blocks scattered in non-

contiguous memory locations. Thus, enlarging the effective fetch bandwidth requires to

place the code in such a way that sequence of instructions that use to be executed in the

same “trace”, will be located in a sequential order in the memory. Trace cache suggests to

do it dynamically, by constructing these traces and keeping them in a separate storage

area called trace cache [13][17][18][19].

Figure 1-1 exemplifies the principles of trace cache operation. At run time, the

fetch unit identifies basic blocks of sequential instructions and tries to pack as many basic

blocks as possible into a trace structure, until one of the termination conditions such as

max number of basic-blocks or max number of instructions is fulfilled. A trace is

identified by its starting instruction address and by the branch conditions along its

execution path. The traces are kept in cache structure that aims to keep only those traces

which are most likely to be executed again in the future.

Figure 1-1 An example of program flow and corresponding trace cache

contents

The performance benefit of the trace cache extends beyond fetching effectiveness: most

trace-caches keep the instructions in decoded form, thus saving decoding energy and

time. This feature is especially useful when the decoding pipeline stage is long, complex

BB1 BB6BB2

BB3

BB4

BB5

T1=BB1,BB2,BB3,BB5 T2= BB2,BB4,BB6,BB2

T3= BB6,BB2,BB4,BB6T4=BB1,BB2,BB4,BB6

Trace cache

3

and power-hungry, like the one for Intel’s IA32 architecture [9][22][23]. Power and

energy consumption are becoming a major concern of processors at all performance

levels, not just at the low-end ones. Modern implementations of CISC architectures pose

a particular challenge in the design of the processor’s front-end (instruction fetch and

decode) whose power consumption may reach as high as 28% of the overall processor

power [10].

It is desirable to keep the instructions in decoded form in order to save power and

improve performance, but the size of decoded instructions can be 3-4 times longer than

that of undecoded ones. For example, when suggesting the use of 32KB cache, one

cannot assume that it will hold up to 8K instructions (4 bytes for instruction), but rather

~2K instructions only. Increasing the cache size may harm both the access time and

power consumption, thus our research is focused not just on large caches as most of other

research did, but also on smaller trace caches, containing relatively few traces.

Previous research [18] indicates that using trace cache with relatively small size

is not effective because of the cost of building/inserting traces into the trace-cache, and

because of trashing of traces within the cache as well.

An attempt to improve the utilization of the trace-cache was proposed in [17]. A

simple filtering mechanism was examined: Trace cache was divided so that part of it was

used as a filter to identify frequently-used traces, while the other part was used to store

them. Although a significant improvement in terms of power consumption was achieved,

the filter part was found to be as big as the actual trace cache part, and the feasibility

study indicates that more improvement could be achieved by means of more sophisticated

techniques.

This paper proposes to use profiling information to reduce the number of times

traces need to be built, and improve the utilization of the traces within the trace cache.

We suggest to apply a profiling technique [11] on the program and store attributes

describing the “behavior” of traces. Such profiling may be done in software or in

hardware, during run time or in a dedicated code-optimization step. In this work we are

examining the use of software-based profiling. Cache management policy that uses the

stored profile information to improve performance and save power is proposed. We

used simulations to perform trace profiling on several benchmark programs and to

4

analyze some characteristics of traces. Then the same simulation environment is utilized

to test feasibility of a profile-based cache management policy.

The rest of the paper is organized as follows: Section 2 provides basic definitions and

observations we made on the behavior of current trace cache technology. Section 3

describes the trace classification we introduced, while section 4 presents the results of

applying trace filtering based on the classification we made in Section 3. We conclude

this paper in Section 5.

2 Basic definitions and observations

We start this section with a short description of traces and trace-cache

organization, then describe our software simulation environment. Next, we derive the

formulas for estimating performance and power. The section concludes with several basic

observations on trace-cache utilization.

2.1 Definitions

A trace is uniquely defined by its starting address and the outcomes of the

branches along its path. A trace contains whole BB (basic blocks), and the only case in

which a BB could principally be broken is when a single BB doesn’t fit in the maximum

size. In this work we limit the size of a trace to be 64 instructions (unlike [18[19] where

16 instruction limit is used) and the maximum number of BB in a trace is chosen to be 3.

Since the restriction of BB number in a trace turned out to be stronger than the restriction

on the number of instructions, average trace size was measured to be 12-13 instructions.

Similar to other work, we apply additional trace termination conditions such as indirect

and backward jumps always terminate a trace.

A trace cache consists of controls and data area. The control of each cache entry

holds a trace tag composed out of its starting address, number of BBs and branch

outcome of each block (encoded as a single bit). By requiring traces to end on boundaries

of basic blocks, each trace is uniquely identified by its tag. We allow different traces to

start at the same location as long as their tag is different. We consider trace caches that

are 1,2,4 or 8-way set-associative. A set is managed using LRU replacement policy. Most

5

of the study in this paper will refer to cache sizes of 16-256 traces. If we consider 12-16

bytes representation of a decoded instruction, this corresponds to trace caches ranging

from 3.5-4K bytes up to 50-60K bytes.

Similar to [17], we use an abstract model of a machine in which instruction

processing occurs in three major sub-systems:

• Trace-building sub-system fetches instructions from conventional instruction

memory, decodes them and groups decoded instructions into traces.

• Trace bypassing subsystem fetches instructions directly from the instruction cache

to the instruction windows, without creating the trace.

• Trace-management sub-system aims to handle the trace-cache and to decide upon

trace-miss whether to build the trace or to use the trace bypassing logic.

The trace-management sub-system plays critical roles in both the performance

and power domains. On one hand, it is expected to provide high throughput and a correct

stream of instructions to the execution sub-system. On the other hand, it is expected to

limit the use of the trace-building subsystem, which typically incurs long delays and

consumes high power. Section 4 suggests the use of profiling information to help the

trace management to be more efficient in terms of execution time and power

consumption.

2.2 The simulation environment

We based our analysis on the SimpleScalar machine and its simulation tool suite

[2]. Two software modules were added to the sim-outorder program: a Trace_Collector

object, and a Trace_Cache object. The Trace_Collector is invoked at the dispatch stage

of the processor, monitoring the instruction stream. If a trace need to be built, the trace

collector collects the instructions till it reaches one of the trace-termination-conditions,

and puts them as a trace into the trace cache. The Trace_Cache we implemented, is

organized as a set associative cache and uses standard LRU policy as its replacement

mechanism.

In our simulator, only addresses of instructions and trace identifiers are actually

stored in Trace_Cache. In this simple simulation arrangement, the fetch engine actually

gets instructions from lower-hierarchy memories, and detailed implementation of the

6

trace cache is bypassed. However, each executed trace is detected, hit-count and miss-

count are updated, and access delays can be set depending on whether there was a hit or a

miss. Additional data are collected during the simulation and recorded in a trace

database, e.g. number of times each trace was built, number of times it was executed,

number of hits/misses for each trace, and some statistics of activity over time. Since the

primary purpose of this work was to characterize the traces a program creates during run

time, we assumed that branch prediction is perfect, and traces are built as part of the

front-end of the machine.

2.3 Performance and Power consumption Evaluation Criteria

The actual performance of a trace based system may depend on various

parameters such as design style, number of stages in the pipeline and other chip design

considerations. In order to avoid the over-complication, we decided to simplify the

estimation of the overall performance and power consumption of the system, by using the

following abstract model:

Assume that the CPI (Cycles Per Instruction) for a system that uses I$ (instruction

cache) is given by CPII$ and the CPI of a system that uses perfect T$ (trace-cache) is

given by the parameter CPIT$ (a perfect T$ has a hit-rate of 100%,). We also assume that

any build of a new trace causes Btime cycles for the machine to stall, and that the number

of builds is given by #B. So, if the program contains N instructions, we can derive the

following equations

 = I$CPI*$___ NIfromexecutecycles (1)

 + = Btime*B#CPI*$___ T$NTfromexecutecycles (2)

and

Btime*
CPI*N

B#

CPI

CPI

$___

$___
__

II

T$ +=

==
Ifromexecutecycles

Tfromexecutecycles
ratiotimeexec

(3)

Equations 1-3 indicate that the capability of improving performance of a given

architecture by adding trace cache depends on the ratio between CPI of the system with

7

T$ and CPI of the system without T$, and on the overhead we add to the system due to

build process.

Using a trace cache allows us to reduce the power consumption of the front-end of

the machine, because the instructions are stored in a decoded form; but we need to pay

for the power it costs to build the traces. Thus, assuming that the average power

consumption of an instruction coming from the I$ is PI$, the average cost of an instruction

fetched from the T$ is PT$ and the power needed for building a trace is given by PB, we

get the following expressions for power consumed by the machine’s front-end:

I$P*$___ NIFromexecutePower = (4)

BPBNTFromexecutePower *#P*$___ T$ += (5)

)
*#

(*
1

$___

$___
_ $

$ N
PB

P
PIFromexecutePower

TFromexecutePower
ratiopower B

T
I

+== (6)

In section 4 we will extend these equations to reflect the modifications we are

proposing for a new technique that allows to fetch instructions either selectively from the

T$ or directly from the I$.

2.4 Trace cache behavior and design-parameter considerations

In order to understand the tradeoffs in designing trace-cache based systems, we

look at how the trace-cache affects the performance and front-end power consumption

when running three applications: CC1, PERL and MK88SIM out of the Spec95

performance benchmark, using equations (3) and (6). Figures 2.1 and 2.2 present the

relative execution time and power consumption of a T$ machine compared with a

machine that uses I$ only.

These results were generated using the parameters shown in Table 2.1.

8

Parameter Value Parameter Value

CPIT$ - (CPI from T$) 1/4 PT$ - (power per instruction

working from T$)

1

CPII$ - (CPI working from

I$)

1/2 PI$ - (power per instruction

working from I$)

1.5

Btime - (cycles per trace

build)

8 cycles PB - (Power to build a trace) 16

N (number of instructions)

#B (number of builds)

Taken from

simulator

Table 2.1 Parameters used in performance and power evaluation

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

16 32 64 128 256

Cache size and associativity

R
el

at
iv

e
ex

ec
u

ti
o

n
ti

m
e

CC1 MK88SIM PERL

Figure 2-1Ratio of Execution Times

9

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

16 32 64 128 256

Cache size and associativity

R
el

at
iv

e
p

o
w

er

CC1 MK88SIM PERL

Figure 2-2: Ratio of Power consumption

Figures 2.1 and 2.2 present relative numbers; i.e., when the ratio is greater than 1,

it means that the T$ based system loses in comparison with an I$ system (takes more time

or wastes more power). As one can observe, some applications such as MK88SIM can

take advantage of small trace caches with high associativity. Other applications, such as

CC1, can take advantage of the trace cache structure only if a relatively large trace-cache

is being used. When looking at the power, the situation is even worse. Here, with a small

trace cache, most applications consume significantly more energy than on an I$ machine.

Since we want to reduce the size of the trace cache while preserving its

advantages, let’s take a closer look at the behavior of the CC1 application. We start

looking at the trace cache hit rate it achieves. Figure 2.3 presents the impact of the trace

cache size and its set-associativity (from 1-way up to 8-way) on the overall trace cache

hit rate. As anticipated, the trace cache becomes more efficient with larger size and

higher associativity. Note that Figure 2.3 presents the size of the trace-cache in terms of

number of traces. Since traces are decoded, and assuming a trace can contain up to 16

instructions, a cache that can contain 256 traces needs to be as large as 50-60K bytes

depending on the size of a decoded instruction.

10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

16 32 64 128 256

Trace cache size (#traces)

H
it

ra
ti

o

Direct 4-ways 8-ways

Figure 2-3: Trace cache hit rate of CC1 application

Looking at figure 2.3 it is clear that the main reason CC1 cannot take advantage

of a small trace cache is that the number of builds would be very high then. A build of a

trace that does not preserve locality costs power, causes replacement of a trace that might

have better locality, and does not help the overall performance of the machine.

1

10

100

1000

10000

100000

1-10 11-100 101-1000 1001-10000 more

Number of references

N
u

m
b

er
o

f
tr

ac
es

16 32 64 128 256

Figure 2-4: Distribution of trace reference count (log scale)

Figure 2.4 presents the distribution of the trace reference counts in logarithmic

scale. Numbers in this chart represent the number of traces with specific range of

reference count while trace resides in the trace-cache. For example, the leftmost set of

bars corresponds to traces being accessed 1-10 times before their replacement from the

11

trace cache. We are using logarithmic scale due to the fact that the number of traces not

showing locality of references highly dominates.

One could see that only very small number of traces are being used over and over.

This is not surprising, since many mechanisms in modern computer architectures are

based on the observation that a very small portion of the code is executed most of the

time. It should not be surprising also to see (Table 2.2) that the majority of executed

instructions in the whole program come from traces that are executed frequently. This

classical Pareto behavior follows the locality of reference principle, underlying the design

of all cache architectures.

Thus, if we could keep in the trace-cache only traces presenting high locality, we

could save the build power, improve the trace-cache utilization and thus improve the

overall power and performance of the trace-cache system, in particular when relatively

small caches are being used.

Trace usages 1-9 10-99 100-999 1000-9999 more

Instructions fetched 146153 1016249 10898118 61657357 180089565

Table 2.2 – number of instructions fetched from each group of traces
(simulated assuming an infinite trace cache)

We have observed that trace distribution numbers are highly sensitive to the cache

size and associativity (data is not shown here to save space). When a small and/or direct

mapped trace cache is used, the lifetime of traces is reduced and more traces are being

used only once before being replaced from the T$. When an infinite T$ is used, the

number of traces which are being used only once is significantly reduced.

3 Classification

In order to improve the utilization of the trace cache, this paper suggests to use

profile based techniques, which requires a new trace classification. This section aims to

describe this new approach.

The analysis of trace appearance patterns in the dynamic instruction execution

stream can be explained with the help of the following metaphor, comparing traces to

12

airline passengers. If traces were passengers, then one could classify them into four types

described below and illustrated in Figure 4.1:

1. rare traveler – A trace which gets activated very few times during its

lifetime within the trace cache (or even during the whole program run).

We observed that most traces actually belong to this class.

2. seasonal tourist –A trace that shows a lot of activity during few time-

intervals, but is inactive in general.

3. frequent flyer – A trace that gets activated repeatedly throughout the

program, and tends to be re-executed extensively each time it appears

in the trace cache.

4. air crew – A trace that gets executed so often, that it may reside in the

trace cache all the time.

Figure 3-1 : Different types of traces

Given this classification, at run-time it is clear that rare traces need not be built or kept

since their overall cost (in terms of time and energy) is higher than fetching the

instructions directly from the instruction cache. It is also clear that air crew traces should

be kept in the trace cache as long as possible, since their reusability is very high.

rare traveler

Seasonal tourist

frequent flyer

Air crew

13

Handling the frequent flyers and the seasonal tourists is less obvious and will be

discussed later on.

We were looking for a classification method that will be depend on the program behavior

rather than on the system (trace cache) parameters. Thus, we choose the following

heuristics: A sampling interval of 10000 trace accesses is arbitrarily defined (any interval

of the order of several times the cache size would be appropriate). Within each sampling

interval, the number of accesses for each trace is counted during simulation. If a trace is

executed more than 10 times in an interval, the interval is considered “active” for this

trace, and a counter active_intervals_num for this trace is incremented. Whenever an

active interval follows an inactive interval, this is considered a “switching” of activity

status, and a counter activity_switches_num for this trace is incremented. At the end of

the profiling run, all traces that have a low active_intervals_num are attributed to be of

type rare (in our experiments we used a low threshold of total_number_of

_intervals/1000; i.e., we consider a trace to be rare if it active less then a fraction of 1000

of the total number of intervals). Traces with a high active_intervals_num are attributed

as type air crew (in our experiments we used a high threshold of total_number_of

_intervals/10). Remaining traces are marked as seasonal if their switching between

inactive and active status is low (we used activity_switches_num < (2/3)*

active_intervals_num). Finally, all the remaining traces are frequent flyers because they

switch fairly often between active and inactive status.

Results of profiling runs on the benchmark programs are shown on Figure 3.2. Even

without fine-tuning the classification thresholds, the results show that rare traces

dominate in all applications. The classification is completely independent on trace-cache

configuration though (only objective program behavior does matter). We have verified

that the classification is also not very sensitive to input data. Therefore, a profiling run

with a one set of input data can generate useful trace-type identification for use later on in

run-time optimization.

14

0%

20%

40%

60%

80%

100%

CC1 PERL MK88SIM

Air-crew

Frequent Flyer

Sesonal

Rare

Figure 3-2: Distribution of different trace types in different applications.

4 Profile based filtering

Given the classification above, we tried several trace-management heuristics to

“filter out” selected traces. In the figures below we will use the following working

modes:

• No filtering:

Working with “regular” trace cache, where all traces are built, stored and executed

from the trace cache; they may be later overwritten using standard LRU algorithm.

This together with the system with no trace cache serves as a baseline for comparison.

• “Smart” (hit-based) filtering:

In this option, traces are not stored in the trace-cache unless they experienced at least

one hit during the profiling run (after being built and saved in the trace cache). This

method differs from the profile based methods described above, since it relates not

only to particular program behavior, but to specific Trace Cache parameters as well.

Some (explainable) “anomalies” could be observed while using this policy. For

example, the larger the Trace Cache, the less traces are filtered out, which is

appropriately reflected in measures we get from simulation.

15

• Combining all kinds of filtering

Here, both rare, seasonal, and traces that had no hits in profiling runs are excluded

from the trace cache in performance simulation runs. The purpose is to filter as much

as possible, with maximal optimization being expected.

4.1 Basic measurements

Figures 4.1 , 4.2 show the effect of the above kinds of filtering on trace cache hit rate and

number of trace builds. Obviously, hit rate grows with cache size and associativity.

Selected traces

0%

20%

40%

60%

80%

100%

1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

16 32 64 128 256
Cache size and accosiatovoty

H
it

ra
ti

o

No filter Smart filter All filters

Figure 4-1 trace cache hit rate using 3 filtering options (CC1)

The hit rate presented on Figure 4.1 refers to the trace cache after the filtering has been

applied. Here, the hit rate is defined as the fraction of hits out of accesses to non-filtered

traces. This measure shows that the impact of the filtering on small trace caches is very

significant, but for these sizes, the smart filter does most of the work. As the capacity of

the cache increases, the smart filter becomes less effective, but the profile based one can

still contributes.

16

0

5000000

10000000

15000000

20000000

1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

16 32 64 128 256

Cache size and associativity

N
u

m
b

er
o

f
b

u
ild

s

No filter Smart filter All filters

Figure 4.2: number of builds for various trace cahce configurations (CC1)

As could be seen on Figure 4.2 build count is the measure affected very positively

by filtering. This is especially pronounced with smaller Trace Cache sizes. One could see

that the same trend we saw in Figure 4.1 continues in Figure 4.2, but the amplitude of

these effects is much more significant.

4.2 Basing profile on diffeent input

All the simulations we described so far, used the same input for both collecting

trace profile data and measuring the impact of filtering. In real life, we should use our

technique while obtaining the profile information with one set of inputs and examine the

performance on another one. Such an experiment is dealt with in this section.

17

0

0.2

0.4

0.6

0.8

1

1 8 1 8 1 8 1 8 1 8

16 32 64 128 256

cache size and associativity

H
it

ra
te

No filter All filters (profile) All filters (run)

Figure 4-3: Hit rate comparison for different inputs

Figure 4-3 shows a run of CC1 with restricted (but still representative)

number of Trace Cache configurations. One could see that the results we are getting are

very similar to each other and so, it justifies our assumption that frequent flyer and air

crew traces remain the same regardless of the input.

4.3 Performance and Power consumption Evaluation of filtered

Trace-cache.

Here we enhance the method described in section 2 to enable evaluating the

impact of the filtered trace-cache architecture on the overall performance and overall

power of the system. We use the definition of CPII$, CPIT$, Btime and #B as in section 2.

However, when a filtered trace cache is used, some of the instructions are fetched from

the T$ and some - from the I$ directly to execution. Therefore, we need to use the

parameter Thit to indicate the fraction of instructions that have been fetched from the T$.

 = I$CPI*$__ NTNOcycles (7)

 + += B#*BtimeCPI*Thit)-(1*N**$__ I$$TCPIThitNTfiltercycles (8)

ratiotimeexec __ = +−+)1(*
CPI

CPI

I$

T$ ThitThit
I$CPI*N

B#
* Btime (9)

18

As we can see the improvement in performance of the filtered trace cache over the

system without the trace cache depends on the probability to hit the trace cache and the

amount of builds we can save in this process.

Calculating the new power consumption in the front-end is similar to the

calculation of the performance. Here

I$P*$__ NTNOPower = (10)

BIT PBPThitNPThitNTfilterPower *#*)1(***$__ $$ +−+= (11)

)
*#

)1(**(*
1

_ $$
$ N

PB
ThitPThitP

P
ratioPower B

IT
I

+−+= (12)

Figures 4.4 and 4.5 show the effect of filtering on performance and power using

these equations. Comparing these numbers with Figure 2-1 and Figure 2-2 shows the

significant contribution of our proposed new technique. For example, looking at the

challenging CC1 application, execution times are reduced by 20% and more, using a

moderate size cache of 128 traces. Power is also similarly reduced.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

16 32 64 128 256
cache size and accosiativity

R
el

at
iv

e
E

xe
cu

ti
o

n
ti

m
e

CC1 MK88SIM PERL

Figure 4-4: Relative execution time of a filtered T$ vs. I$

19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

16 32 64 128 256

Cache size and Associativity

R
el

at
iv

e
P

o
w

er

CC1 MK88SIM PERL

Figure 4.5: Relative power consumption of a filtered T$ vs I$

To summarize the performance and power comparison, one should have noticed that the

simple model we are using does not take into consideration many important design

parameters such as the fact that smaller traces are faster and may consume less power

than larger caches. This is especially true if we count for the leakage power which is

proportional to the area of the cache. So, believe that for many systems, the capability to

reduce the size of the trace cache may bring even more benefit than we have presented

here.

5 Conclusions and remarks

This paper made two important contributions: it improved our understanding on

how traces behave within the trace-cache and proposed a new technique (which is based

on profiling information) to improve the performance and power consumption of trace-

cache architectures. Trace caches are suffering from sub-optimal area utilization.

Different works [8][1] pointed on duplication of basic blocks within the trace-cache

and suggested different techniques how to avoid it. In this work, we focus on a different

phenomenon. We found that the majority of traces never being used again after being

built and saved. We found out that these traces are the major source for trace cache

inefficiencies. Since building and executing from the trace cache is much more expensive

than just executing the same code directly from the instruction cache (we benefit only

20

from the reuse of the trace), we propose the use of profile based mechanism that can

indicate which traces should be built (and put into trace cache), and which traces should

be executed from the instruction cache instead.

This paper shows a new direction for trace-cache optimizations and estimates its

potential for improving the power and performance of trace cache systems that suffer

from high miss pressure. This pressure can result from large footprint of the program in

respect to the physical size of the trace cache being used.

In the future we would like to examine the feasibility to classify the different

traces at run-time, using hardware mechanisms. We hope that the combination of such

hardware with software based profiling techniques can achieve even better results.

References

[1] B. Black, B. Rychlik, and J. Shen, “The Block-based Trace Cache”, in Proceedings of the
26th International Symposium on Computer Architecture, May 1999.

[2] D. C. Burger and T. M. Austin “The SimpleScalar Tool Set, Version 2.0”, Computer
Architecture News, 25 (3), pp. 13-25, June, 1997

[3] D. Diefendorff, “HAL Makes Sparcs Fly”, in Microprocessor Report, Volume 13, No 15,
Nov. 1999.

[4] D. Friendly, S. Patel and Y. Patt, “Alternative Fetch and Issue Policies for the Trace Cache
Fetch Mechanism”, in Proceedings of the 30th International Symposium on
Microarchitecture, December 1997.

[5] D. Friendly, S. Patel and Y. Patt, “Putting the Fill Unit to Work: Dynamic Optimizations for
Trace Cache Microprocessors”, in Proceedings of the 31st International Symposium on
Microarchitecture, Nov. 1998.

[6] Q. Jacobson, “High-Performance Frontends for Trace Processors”, Ph.D. Thesis, Department
of Electrical & Computer Engineering, University of Wisconsin – Madison, Aug. 1999.

[7] Q. Jacobson, E. Rotenberg and J.E. Smith, “Path-Based Next Trace Prediction”, in
Proceedings of the 30th International Symposium on Microarchitecture, Dec. 1997.

[8]S. Jourdan, L. Rappoport, Y. Almog, M. Erez, A. Yoaz, and R. Ronen, “eXtended Block
Cache”, in Proceedings of the 6th International Symposium on High Performance
Computer Architecture, Jan. 2000.

[9] K. Krewell, “Quicktake: Willamette Revealed”, Microprocessor Report, Feb. 2000.

21

[10] S. Manne, D. Grunwald and A. Klauser, “Pipeline gating: Speculation Control for Energy
Reduction”, in Proceedings of the 25th International Symposium on Computer
Architecture, pages 132-141, June 1998.

[11] Merten, M.C.; Trick, A.R.; George, C.N.; Gyllenhaal, J.C.; Hwu, W.W., “A
hardware-driven profiling scheme for identifying program hot spots to support
runtime optimization” in ISCA 1999, Page(s): 136 -148

[12] S.W. Melvin and Y.N. Patt, “Performance Benefits of Large Execution Atomic Units in
Dynamically Scheduled Machines”, in Proc. of the 1989 Intern. Conf. on
Supercomputing, pages 427-432, 1989.

[13] A. Peleg and U. Weiser. “Dynamic Flow Instruction Cache Memory Organized Around
Trace Segments Independent of Virtual Address Line”, U.S. Patent 5,381,533, Jan. 1995.

[14] M. Postiff, G. Tyson and T. Mudge, “Performance Limits of Trace Caches”, in Journal of
Instruction-Level Parallelism No. 1, Oct. 1999.

[15] A. Ramírez, J. L. Larriba-Pey, C. Navarro, J. Torrellas, and M. Valero, “Software trace
cache”, in Proceedings of the 1999 international conference on Supercomputing, pages
119 – 126, 1999.

[16] A. Ramirez, J.L. Larriba-Pey and M. Valero, “Trace Cache Redundancy: Red and Blue
Traces”, in Proceedings of the sixth International Symposium on High-
Performance Computer Architecture 6, pages 325-333, 2000.

[17] Droped for anonymousity “Filtering Techniques to Improve Trace-Cache Efficiency”

[18] E. Rotenberg, “Trace Processors: Exploiting Hierarchy and Speculation”, Ph.D. Thesis,
University of Wisconsin, 1999.

[19] E. Rotenberg, S. Bennett and J.E. Smith, “Trace Cache: a Low Latency Approach to High
Bandwidth Instruction Fetching”, in Proceedings of the 29th International Symposium on
Microarchitecture, Dec. 1996.

[20] M.S. Schlansker and B.R. Rau, “EPIC: Explicitly Parallel Instruction Computing”,
Computer, Vol. 33, No. 2, pages 37-45, Feb. 2000.

[21] J. Sahuquillo and A. Pont, “The Filter Cache: A Run-Ttime Cache Management
Approach”, in Proceedings of the 25th EUROMICRO Conference, volume 1, pages 424 –
431, 1999.

[22] T. Pabst, “Intel's New Pentium 4 Processor” in Tom’s Hardware Guide,
http://www.tomshardware.com/cpu/00q4/001120/index.html

[23] M. Upton, “The Intel Pentium® 4 Processor”, in http://www.intel.com/pentium4, Oct.
2000.

