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Abstract — Optimal ordering and sizing of wires in a constrained-width interconnect bundle are 

studied in this paper. It is shown that among all possible orderings of signal wires, a monotonic order 

of the signals according to their effective driver resistance yields the smallest weighted average delay. 

Minimizing weighted average delay is a good approximation for MinMax delay optimization. Three 

variants of monotonic ordering are proven to be optimal, depending on the MCF ratio between the 

signals at the sides of the bundle and that of the internal wires.  The monotonic order property holds 

for a very broad range of VLSI circuit settings arising in common design practice. A simple, yet near-

optimal, setting of wire widths within the bundle to yield the best average weighted delay is 

proposed. The theoretical results have been validated by numerical experiments on 65 nanometer 

process technology and industrial design data. In all cases the ordering optimization yielded 

improvement in the range of 10% in wire delay, translated to about 5% improvement in the clock 

cycle of a high-performance microprocessor implemented in that technology. 
 

Index Terms— routing, wire ordering, wire spacing  
 

I. INTRODUCTION 

ROSS-capacitances between wires in interconnect structures have a major effect on circuit timing. The 

importance of this effect grows with technology scaling  [1],  [2]. In this paper, delays in a bundle of 

parallel wires with different drivers and loads are minimized by choosing an optimal ordering of the nets. A 

model for the bundle of wires is shown in Fig. 1(a). It represents a common CMOS layout configuration, 

where interconnect wires run in parallel between two power supply or shielding rails, such that the total 

width of the structure A is a fixed constraint.  An abstraction of actual layout is made by assuming that all 

drivers and all receivers are located at the ends of the structure of length L. Real layouts can be decomposed 

into several such structures using effective drivers and receivers, since long segments of parallel wires are 

very common in industrial practice, mostly when high metal layers are concerned.  The wire delays in the 

model of Fig. 1(a) are typically dominated by cross-capacitances between adjacent wires, since the ratio 

between wire thickness and wire width tends to grow with non uniform technology scaling  [28]. Therefore, 

delays can be optimized by allocation of inter-wire spaces. In addition, wire widths can be set to optimize 

wire resistances. Furthermore, reordering of the wires can improve the timing, because critical wires can be 

put next to each other and share the largest spaces, which have the smallest cross-capacitances.  

 

Reordering of the bundle wires is a new degree of freedom in timing optimization, which has not been 

explored in the past. The main result of this paper is that the signal ordering is highly beneficial and can 
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typically be solved independently of the wire sizing. Moreover, the optimal order can be derived directly 

from the parameter setting of the given problem, by positioning the wires according to the effective 

resistances of their drivers.  

 

Wire order within the bundle yielding minimal delays must be monotonic in the strength of the driver. The 

type of the monotonic order depends on Miller coupling factors (MCF) occurring at the side signals of the 

bundle. Only three types of monotonic order can yield the minimal delay, regardless of the specific driver 

strengths. These are illustrated in Figs. 1(b, c, d).  Fig. 1(b) illustrates the case of uniform MCF (e.g. when 

the sidewalls of the bundle are not power supplies but rather arbitrary logical signals); the corresponding 

optimal order is called “symmetric hill”, where the signals with the weakest drivers are located at the center 

of the bundle, and their corresponding spaces are the largest. Fig. 1(c) illustrates the case where MCF at the 

sidewalls is half of the MCF between internal wires in the bundle (e.g. when sidewalls are connected to 

a)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
b)                                                                          c)                                                                 d) 

 

 

 

Fig. 1. (a) Signal drivers (modeled as voltage sources with series resistances), interconnect bundle wires of length L, and receivers 

(modeled as load capacitances). Timing optimization is performed by reordering the signal wires and by allocating wire widths and 

spaces, for a given constrained channel width A. (b, c, d) present the optimal order of signals and the corresponding wire-to-wire 

space allocation for various ratios of MCF between extreme and internal signals. 
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power supplies such that their MCF is 1, while internal MCF of 2 is assumed). The corresponding optimal 

order is ascending, where the weakest driver resides on one side of the bundle and the strongest driver 

resides at the other side. Fig. 1(d) corresponds to a case where the MCF at the sidewall is assumed to be 

zero (e.g. when active shielding  [29] is employed at the sidewalls), corresponding to a “symmetric valley”.  

 

Net-ordering for delay optimization has not been addressed in previous works. For a fixed order of wires, 

the problem of allocating widths and spaces to maximize performance in tuning of bus structures was 

proposed in  [3] and solved in  [25]. The wire sizing problem has been addressed in  [4] and  [5] for a single 

net. Sizing and spacing multiple nets with consideration of coupling capacitance has been addressed in  [6] 

for general interconnect layouts by converting cross capacitance to effective fringe capacitance. Coupling 

capacitance has been addressed explicitly in the context of physical design for minimizing crosstalk noise, 

 [7], [8] or dynamic power  [9]. Some authors treated wire sizing for throughput optimization in buses using 

uniform wire widths and spaces  [21],  [26],  [27]. Several variants of net-reordering have been applied for 

improving layout efficiency  [13], and for noise reduction  [8],  [14]  [15] [16]  [17]. Swapping of wires for 

power reduction was applied in  [18]. Vittal et al.  [14]  have suggested without proof to reduce crosstalk 

noise by sorting wires in order of driver strength, which is closely related to our result in delay 

minimization.  
 

II. PROBLEM FORMULATION 

Consider a bundle of n  signal nets 0 1,..., nσ σ − between two side-walls (wires at fixed locations) as shown 

in Fig. 1. 
iS  and 

1iS + , respectively, denote spaces to neighbors of wire 
iW . The length of each wire is L. 

Each wire is driven by a driver with output resistance iR  and loaded by receiver with capacitance iC . The 

sum of wire widths and spaces between the side walls is given in the following constraint (2.1), which 

represents the total width A  of the available area for laying out the bundle of wires. 

( )
1

0 0

,
n n

i i

j j

g W S W S A
−

= =

= + =∑ ∑                                    (2.1) 

 

Signal delays are expressed by an Elmore model using simple approximations for wire capacitances and 

wire resistance. The delay of signal 
iσ  is given in  [25] by 

( ) ( )
1

1 1
, i

i i i i i

i i i i

b eC d
W S a R kW g C hR

W W S S +

   +
∆ = + + + + + + +   

   
                    (2.2) 

The coefficients , , , , , ,a b d e k g h  are technology dependent parameters. This model includes effects of wire 

resistance (inversely proportional to wire width iW ) and effects of wire capacitance terms (area capacitance 

is proportional to iW , cross-capacitances to neighboring wires are inversely proportional to spaces 

iS and 1iS + ). Note that only nearest-neighbor wires are included, because the adjacent upper and lower metal 

layers are assumed to be dense, and serve as effective shields for capacitive coupling to other wires in the 

bundle. Although the Elmore model is a first-order approximation and it does not account for input 

waveform slope [31], it is widely applicable in interconnect optimization due to its high-fidelity property 

[<K.D. Boese, A.B. Kahng, B.A. McCoy and Robins TCAD 14 1995>]. The absolute accuracy of the 

model can also be improved, by using parameter fitting as described in [30]. The model is used in this work 

because of its simplicity in mathematical analysis, while the delay improvements are verified by SPICE 

simulations. Miller coupling factor (MCF) can be included in the last term to account for crosstalk effect on 
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delay uncertainty [10]. Typically, MCF=2 is assumed when neighbor wires switch in the opposite direction 

causing increased delays, while MCF=0 is assumed for same-direction switching and reduced delay. We 

assume first that MCF=1 for all of the signals, yielding nominal delay values. 

Let π ∈Π  denote an ordering (permutation) of the signals in the interconnect bundle, taken from the set 

of all !n  possible orders. We are seeking an ordering *π of the bundle signals, which after wire width and 

space allocation yields the minimum objective function representing some delay characteristic. In practice, 

the useful delay objective function is the maximal worst slack among all signals and the optimization 

attempts to minimize this maximum: 

( ) ( ){ }1
1

, , ,max i i

i n

f W S W S Tπ
≤ ≤

= ∆ − ,                                (2.3) 

where 
iT  is required arrival time of the i − th signal. Note that we exchanged the terms of the slack for the 

sake of mathematical convenience. This design scenario calls for MinMax optimization problems. Such 

problems are hard to solve analytically since they are not differentiable. Maximization of average wire 

slack, which is equivalent to minimization of average delay or minimization of the total sum of delays, is 

given in (2.4): 

( ) ( ) ( )
1 1

2

0 0 1

1 1
, , , ,

n n
i

i i i i i

i i i i i i

b eC d
f W S W S a R kW g C hR

W W S S
π π

− −

= = +

   + 
= ∆ = + + + + + + +   

    
∑ ∑          (2.4)

  

This objective function is mathematically convenient because it is differentiable, and it is also a useful 

performance metric in industrial practice  [25].  

Minimization of maximal slack (2.3) can be approached by introducing weights in (2.4). We define the 

following objective: 

( ) ( ) ( )
1 1

3

0 0 1

1 1
, , , , ,

n n
i

i i i i i i i

i i i i i i

b eC d
f W S W S a R kW g C hR

W W S S
π α π α

− −

= = +

   + 
= ∆ = + + + + + + +   

    
∑ ∑        (2.5)

  where iα  is a normalized estimation of signal criticality. The least critical signal (with maximal iT ) will 

have 1α = , all the others will have values larger than 1. In other words, (2.5) represents the total sum of 

wire delays weighted by signal criticality. This objective incorporates good properties of (2.3) and (2.4): on 

the one hand, (2.5) is a differentiable function; on the other hand, weighting delays by signal criticality 

makes it similar to (2.3), which is more useful in practice than (2.4).  

 

Assume for the moment that the order π of the signals in the bundle is given. For minimizing (2.5) 

subject to (2.1) we differentiate 3f and g  by all of their sizing variables: 
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At the minimum there exists some real numberλ  (Lagrange multiplier), satisfying f gλ∇ = ∇ . 

Rearranging and substituting yields the following: 
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  

                          

The above equations and the area constraint (2.1) impose 2 2n +  algebraic equations in 2 2n + unknown 

variables 0 1 0, ,n nW W S Sλ −� � . Solving and substituting into (2.5) produces minimal weighted total sum of 

signal delays for the assumed orderπ .   

The order of wires affects the sum of delays primarily because every driver pair of adjacent signal is 

associated with a shared cross-capacitance between the wires. It makes sense to allocate large spaces to a 

wire driven by a weak driver or a wire with high criticality, in order to reduce the driver’s load. Strong 

drivers and non-critical nets can cope with large cross-capacitances resulting in narrow spaces. 

Consequently, in order to best utilize the total area given for the wire bundle, weak drivers or highly critical 

nets should share the same large space. Similarly, strong drivers or non-critical nets can share a small inter-

wire space. The space sharing idea is illustrated in Fig. 2. There, the bundle is comprised of some signals 

with weak drivers (W) and some with strong drivers (S).  For equal criticality, the ordering in Fig. 2(b) is 

superior to Fig. 2(a), which is apparently the worst. Wire sizing and spacing optimization aiming at 

minimizing the total sum of delays will yield smaller (better) delays for configuration 2(b), in comparison 

with 2(a).  
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Consider now π ∈Π as variable, and find the order for which optimal wire sizing and spacing yields 

minimum total weighted sum of delays, as discussed in the previous section. One needs therefore to solve 

the following problem: 

3

1

0 0

min ( , , );

n n

i i

j j

f W S

W S A

π
π

∈Π

−

= =





+ =

∑ ∑

                                             

In this formulation, both signal ordering and wire sizing are considered simultaneously.  

III. OPTIMALITY OF SYMMETRIC HILL ORDER 

3.1 Wires of uniform width 

For the sake of clarity, assume first that all the wires have the same width W while spaces can vary 

among wires. Hence, wire sizing means finding the optimal W and allocating optimal spaces between wires. 

For any orderπ ∈Π , minimizing the total sum of delays involves only 2n +  variables ( )0, , , nW S S� . The 

following conditions are necessary for optimum: 

 

0, 0
i i

f g
i n

S S
λ

∂ ∂
+ = ≤ ≤
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                                            (3.1) 
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                              (3.2) 
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2 2

0 0 0

1 1 1

2 2

;

;

1, 0

n n n

n n n

i

d h Rf

S WS S

d h Rf

S WS S
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i n

S

α α

α α− − −

 ∂
= − −∂

 ∂
= − −

∂
 ∂

= ≤ ≤
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                                    (3.3) 

Substitution of (3.3) and (3.2) into (3.1) yields   

(a) (b)  

 

Fig. 2  Space sharing in two interconnects channel configurations. a) Interleaved placement of strong and weak drivers, b) 

Sorted placement of signals according to driver strength. 
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From (3.4) we obtain the following expressions for spaces at the optimum:
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                      (3.5) 

 

These optimal spaces depend on resistances of the signal drivers, but are independent of capacitive loads. 

Substitution of (3.5) into (2.1) yields the following expression for λ  

1

1 1 0 0 1 1

1

1 n

i i i i n n

i

d d d d
hR hR hR hR

A nW W W W W
λ α α α α

−

− − − −
=

        = + + + + + + +         −         
∑                 (3.6) 

 

Further substitution into (2.5) produces the following expression for the minimal weighted total sum of 

delays. 

3

I II
f f f= +                                              (3.7) 
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( )
1 1 1 1

0 0 0 0

n n n n
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i i i i i i i i
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W W
α α α α

− − − −
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∑ ∑ ∑ ∑  
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2

2
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1

1 n
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i i i i n n

i

d d d d
f hR hR hR hR

A nW W W W W
α α α α

−

− − − −
=

        = + + + + + + +        −          
∑ . 

The first term If  is invariant for different orders of signals. In the second term IIf , the indices of 

adjacent signals interact with each other in square root terms, thus making IIf dependent on the order of 

signals in the bundle. The physical reason for this is that cross capacitance between adjacent wires is 

determined by the space they share with each other. The question of what is the order π ∈Π  that 

minimizes IIf , is therefore important. As proven below, symmetric hill ordering, which captures the above 

reasoning, yields the minimum of average weighted wire delay.  
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Definition 3.1: effective signal resistance. Let R be the resistance of the driving gate, W be the signal 

wire width and α be the signal criticality. The term ( )d W hRαℜ = +  is called effective signal resistance.  

Definition 3.2: successive roots sum. Let ( )0 1, , n−ℜ ℜ�  be sequences of positive real numbers. The term 

1

0 1 1

1

n

i i n

i

−

− −
=

ℜ + ℜ +ℜ + ℜ∑  is called successive roots sum (SRS).  

Definition 3.3: symmetric hill ordering.  Let 0 1 2 1n n− −ℜ ≤ ℜ ≤ ≤ ℜ ≤ ℜ� be a sequence of n positive real 

numbers increasingly ordered. Let us split it into even and odd interleaved subsequences 0 2ℜ ≤ ℜ �  

and 1 3ℜ ≤ ℜ ≤�. Reverse the order of numbers in the odd subsequence, thus turning it into monotonic 

decreasing sequence. Finally, concatenate the even and the modified (reversed) odd subsequences into one 

sequence. The new sequence thus obtained is said to be ordered in symmetric hill ordering (as it resembles 

climbing and descending a symmetric hill). Fig. 3 illustrates how such order is obtained.  

 

Property 3.1: pair swapping. Let ( )1 2 2 1, , , , ,i i i i k i k i k+ + + − + − +ℜ ℜ ℜ ℜ ℜ ,ℜ… , 3k ≥  be a sequence of real 

positive numbers, such that 1 1i i k+ + −ℜ ≥ ℜ  (called internal pair) and i i k+ℜ ≤ ℜ  (called external pair). Then the 

inversion of subsequence ( )1 2 2 1, , , ,i i i k i k+ + + − + −ℜ ℜ ℜ ℜ… into ( )1 2 2 1, , , ,i k i k i i+ − + − + +ℜ ℜ ℜ ℜ… decreases the SRS 

of the sequence. 

Proof: Since only neighbors of 
1 1, , ,i i i k i k+ + − +ℜ ℜ ℜ ℜ  are changed, it is sufficient to prove 

that 1 1 1 1i i i k i k i i k i i k+ + − + + − + +ℜ +ℜ + ℜ + ℜ ≥ ℜ +ℜ + ℜ + ℜ . Squaring the two sides one needs to show 

that ( ) ( ) ( ) ( )1 1 1 1i i i k i k i i k i i k+ + − + + − + +ℜ +ℜ × ℜ +ℜ ≥ ℜ + ℜ × ℜ + ℜ . Expanding both sides, it is left to show 

that ( ) ( )1 1 0i i k i k i+ + − +ℜ −ℜ × ℜ −ℜ ≥ , which indeed follows from the assumption on the relations of the 

internal and external pairs.                                      ■  

Property 3.2: optimal insertion of maximal value. Let ( )0 1, , n−ℜ ℜ� be a sequence of positive real 

numbers ordered as a symmetric hill. Let { }0 1max , , n−ℜ > ℜ ℜ… . Then the location where inserting ℜ  into 

the sequence minimizes the new SRS, is at the center between the two largest numbers. Hence the new 

sequence is also in symmetric hill order. 

Proof: Let us insertℜ arbitrarily into the sequence between iℜ and 1i+ℜ , thus resulting in the quadruples 

( )1 1, , ,i i i− +ℜ ℜ ℜ ℜ  and ( )1 2, , ,i i i+ +ℜ ℜ ℜ ℜ  in the new sequence of 1n + numbers. If iℜ and 1i+ℜ were not the 

two center numbers of the old sequence (top of the hill), at least one of these quadruples satisfies the 

 

 (a)           (b)            (c)           (d) 

 

Fig. 3.  Construction of symmetric hill ordering: (a) Sort numbers in ascending order; (b) Split sequence into odd and 

even subsequences; (c) Reverse order of numbers in the even subsequence; (d) Concatenate the odd and the modified 

subsequences 
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condition of pair swapping property 3.1. Therefore, the SRS of the new sequence can be reduced by 

appropriate swapping of ℜ with its left or right neighbor. If ℜ is inserted before 1ℜ or after nℜ , a direct 

calculation shows that swapping ℜ  with 1ℜ  (or nℜ ) decreases the resulting SRS. The only position where 

the pair swapping property 3.1 condition does not exist is in between the two largest numbers of the old 

sequence. Such insertion creates a new sequence satisfying symmetric hill order.                                 ■ 

Definition 3.4: local maximum. Let ( )0 1, , n−ℜ ℜ� be a sequence of positive real numbers. The 

number jℜ , is called a local maximum of  ( )0 1, , n−ℜ ℜ�  if both 1j j−ℜ ≥ ℜ  and 1j j+ℜ ≥ ℜ  .  

Property 3.3: local maximum elimination. Let ( )0 1, , n−ℜ ℜ� be a sequence of positive real numbers. 

Let ( )1,i i+ℜ ℜ and ( )1 2, ,j j j+ +ℜ ℜ ℜ  be two disjoint subsequences, where 1j+ℜ  is a local maximum 

and 1 1i j i+ +ℜ ≥ ℜ ≥ ℜ . Then, repositioning 1j+ℜ  in between iℜ and 1i+ℜ decreases the SRS of the sequence. 

Proof: we need to show that
1 1 1 2i i j j j j+ + + +ℜ +ℜ + ℜ +ℜ + ℜ +ℜ ≥ 1 1 1 2i j j i j j+ + + +ℜ +ℜ + ℜ +ℜ + ℜ +ℜ . Let 

us denote 1, 1, 1, 1p q r s= ≥ = ≤ = ≤ = ≤i j+1 i+1 j+1 j j+1 j+2 j+1R R R R R R R R . Therefore, we need to show 

that 1 1 1 1p q r s p q r s+ + + + + ≥ + + + + + . Rearranging, this is equivalent to: 

  1 1 1 1r s r s p q p q+ + + − + ≥ + + + − + .                                                                                (3.8) 

Since 1r ≤ , it follows that left hand side of (3.8) is monotonic decreasing in s , thus minimized for 1s = . 

Since 1p ≥ , it follows that right hand side of (3.8) is monotonic increasing in q , thus maximized for 1q = . 

So if the inequality still holds for the minimal value of left hand side and maximal value of right hand side, 

(3.8) does always hold. Indeed, substitution of 1s =  and 1q = we 

obtain 1 2 1 2 1 1r r q q+ + − + = + + − + .                                                                                      ■ 

 

Based on the above properties, we are ready to prove the theorem of optimal signal ordering in a bundle 

of parallel wires. 

Theorem 3.1 (optimal ordering of uniform-width wires): Let a signal bundle have arbitrary drivers, 

arbitrary capacitive loads, arbitrary required arrival times and uniform wire width. Let MCF be the same for 

all signal pairs, including the side walls. Then the symmetric hill ordering of the signals in the bundle 

according to their effective driver resistance yields minimum total weighted sum of delays. 

 

Proof: It was shown in (3.7) that for any order of the signals, the minimized total sum of delays 

3f consists of two terms If and IIf . The term If captures the delays resulting from the capacitive loads, a 

component that is independent of the signal order in the bundle. The term IIf captures the delay contributed 

by the cross capacitances of the signals, a component which depends on the signal order. It is therefore 

sufficient to minimize IIf . 

Let ( )*

0 1, , nπ −= ℜ ℜ�  be the effective driver resistance symmetric hill ordering of the bundle, and 

denote by ( )*IIf π  the corresponding term in the minimized total sum of delays thus obtained. We’ll show 

by induction that for any other ordering π of effective driver resistances ( ) ( )*II IIf fπ π≤ . 

For a bundle comprised of one or two signals the induction hypothesis trivially exists. For a bundle of 

three signals, the optimality of symmetric hill ordering follows from the optimal insertion property 3.2. Put 

the two smaller effective resistances, say aℜ and bℜ in the bundle first. Then, the optimal insertion property 
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3.2 dictates the location of cℜ at the center, thus resulting in symmetric hill order. If aℜ  ( bℜ ) and cℜ are 

placed first, a direct calculation shows that bℜ  ( aℜ ) needs to reside such that cℜ is located at the center. 

By the induction hypothesis, the symmetric hill order is optimal for any 1n − signals bundle. Assume on 

the contrary that there exists a n signal bundle whose optimal order π ′ is not symmetric hill. It follows from 

the non optimality of *π that ( ) ( )*II IIf fπ π ′> . 

Let ( ), ,l x rℜ ℜ ℜ  be the center triplet of *π , namely, xℜ is the largest resistance. There are two 

possibilities: triplet ( ), ,l x rℜ ℜ ℜ  exists or doesn’t exist inπ ′ .  

If it exists, let us delete xℜ from bothπ ′and *π , thus inducing bundles of 1n −  signals , 1nπ −′  and *, 1nπ − . 

The first is not symmetrically hill ordered, while the second is. It follows from the induction hypothesis 

that ( ) ( )*, 1 , 1II n II n
f fπ π− −′< . However, the magnitude of the difference in IIf between the n signal bundle 

and its 1n − signal bundle induced by xℜ deletion is the same for π ′and *π and equals to 

 l x r x l r∆ = ℜ +ℜ + ℜ +ℜ − ℜ +ℜ . 

Therefore 

( ) ( ) ( ) ( )* *, 1 , 1II II n II n II
f f f fπ π π π− −′ ′= + ∆ < + ∆ = . 

 This is a contradiction to ( ) ( )*II IIf fπ π ′>  that followed from the non optimality hypothesis of *π . 

Consider now the case where the triplet ( ), ,l x rℜ ℜ ℜ  doesn’t exist inπ ′ . Then there are two possibilities. 

In the first, the triplet appears in π ′  as a subsequence ( ), max( , ), min( , )x l r l rℜ ℜ ℜ ℜ ℜ . The pair swapping 

property 3.1 can be applied on quadruple ( ), ,max( , ),min( , )x l r l rℜ ℜ ℜ ℜ ℜ ℜ  and result 

quadruple ( ),max( , ), ,min( , )l r x l rℜ ℜ ℜ ℜ ℜ ℜ , hence IIf can be reduced. In the second possibility, in any 

order at least one of 
lℜ and 

rℜ is a local maximum inπ ′ , say
lℜ . Then applying the local maximum 

elimination property 3.3 to lℜ and moving it to be adjacent to xℜ , will decrease IIf  value of the newly 

created order. This again contradicts the optimality assumption ofπ ′ .                                                 ■ 

 

Notice that although wire width W is uniform, it is still a variable and should be optimally set together 

with the spaces ( )0 , , nS S�  between the wires in order to minimize the total sum of delays. This is a 

simplification of the total sum of delays minimization problem  [25], where individual wires may have 

different widths ( )1 , , nW W� . 

 

3.2 Non-uniform wire widths implied by impedance matching  

In the following we’ll prove the optimality of the symmetric hill ordering for more general cases with 

non-uniform wire width. We assume that wire widths are matched to driver strengths, a common design 

practice in most practical VLSI designs. It is shown below that minimal total weighted sum of delays is 

obtained by symmetric hill ordering.  

 

Let ( )Rψ be a positive, non decreasing function of the driver resistance R , and let the corresponding wire 

width be defined by 

( )1W Rψ=                                           (3.9) 
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In the former discussion of uniform wire width ( )Rψ  was simply a constant. The relation in (3.9) 

represents impedance matching, where a stronger driver (smaller R ) is assigned a wider wire with a lower 

impedance. According to (3.9), the effective signal resistance becomes ( )( )d R hRα ψℜ = + . Then the 

following theorem can be stated: 

Theorem 3.2 (optimal ordering of variable-width wires): Let a signal bundle have arbitrary drivers, 

arbitrary capacitive loads and wire width inversely proportional to the corresponding driver resistance. Then 

the symmetric hill ordering of the signals in the bundle according to effective signal resistances yields 

minimum total weighted sum of delays. 

Proof: All properties of symmetric hill order still hold since IIf remains an SRS.                                 ■ 

 

The function ( )R Rψ α β= + , where α and β are real positive number is admissible, providing further 

minimization compared to the case of uniform width. The minimum total sum of delays is obtained by first 

ordering the signals according to Theorem 3.2. Then a minimization of total sum of delays for that order 

takes place, where the wire spacing  ( )0 , , nS S�  and the parameters α and β are the optimization variables. 

Notice that 0β = is the case of uniform wire width. 

 

3.3. Symmetric Hill Order for arbitrary wire width 

Assume now that wire width can vary arbitrarily. It is no longer true that symmetric hill ordering yields 

the minimum total sum of delays. This general case might be caused by large capacitive loads, since the 

optimal setting of wire width depends on the corresponding load. This in turn affects the optimal order 

within the bundle. Note that if wire widths are predetermined randomly but are fixed, ordering by effective 

driver resistance is still advantageous and the optimal order is unaffected by the capacitive loads.   

What is the most general setting of wire widths such that symmetric hill order still yields minimal total 

weighted sum of delays? It can be derived by writing the relation between wire widths and driver 

resistances at minimum total sum of delays. At the minimum, equations (2.1) and (2.5) satisfy: 

0,0 1
i i

f g
i n

W W
λ

∂ ∂
+ = ≤ ≤ −

∂ ∂
.                                        (3.10) 

Differentiating (2.1) and (2.5) we obtain 

2

1

i

i i i

i i ii

f d d
b eC kR

W S SW

α
α

+

 ∂
= − + + + + 

∂  
    1

i

g

W

∂
=

∂
                         (3.11) 

Substituting (3.11) into (3.10) yields 

1

i

i i

i i i i

d d
W b eC

k R S S

α
λ α +

 
= + + + 

+  
                                     (3.12) 

 

Equation (3.12) demonstrates the dependency between wire width at minimum total sum of delays and 

the corresponding driver resistance, spacing to adjacent wires, signal criticality and the capacitive load. 

Substitution of (3.12) into the expression for effective signal resistance presented in definition 3.1 yields: 

( )
1

i i i

i i i

i i i

k R
d hR

b d S d S eC

α λ α
α

+

+
ℜ = +

+ + +
                              (3.13) 

Whenever 
i jR R≥  implies

i jℜ ≥ ℜ , symmetric hill order according to wire driver resistances yields 

minimum total sum of weighted delays among all possible orders.  
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As can be seen from (3.12), in order to satisfy the required relation in the numerator, i jR R≥  should 

imply i jα α≥ , namely, the weaker the driver is, the more critical the signal is. For the term 1i id S d S ++ at 

the denominator it has been shown in (3.5) that optimality implies that the spaces are necessarily 

monotonically increasing with driver resistance, which also imposes a non decreasing relation between iℜ  

and iR . The only term remaining “free” is the capacitive load at the denominator of (3.13). In order to obtain 

a monotonic relation in (3.13) the following condition between resistance of drivers, their corresponding 

capacitive loads and signal criticality weights is imposed: 

 

Theorem 3.3 (sufficient conditions for optimality of symmetric hill order): Let a n  signal bundle have 

arbitrary drivers and capacitive loads. Let , ,0 , 1i j i j nσ σ ≤ ≤ −  be any two signals and let ( ), ,i i iR C α and 

( ), ,j j jR C α  be their driver resistance, capacitive load and signal criticality weight, respectively.  If the 

relation i jR R≥ implies i j i jC C α α≤ ∧ ≥ , then symmetric hill order according to driver resistances yields 

minimum total sum of weighted delays among all orders. 

 

Proof: If follows from equation (3.13) that if i jR R≥ implies i j i jC C α α≤ ∧ ≥ , then i jℜ ≥ ℜ . We can 

therefore replace the “effective driver resistance” phrase in theorem 3.1 by “driver resistance” and obtain 

the same result.                                                                                                                            ■ 
 

A special case of the Theorem 3.3 occurs in real design when all signals are of same criticality, at “first 

order” circuit implementation. In that case if ,0 , 1i j i jR R C C i j n≥ ∧ ≤ ≤ ≤ − , symmetric hill ordering is 

optimal and sizing optimization should be performed in this order. The true criticality of the signals due to 

the physical realization is then discovered. As a result the signals are assigned criticality weights according 

to how far is their delay from the requirement, and the signal order in the bundle is then verified to be in 

symmetric hill order according to (3.13). If relation (3.13) is not satisfied, the signals are reordered to 

satisfy symmetric hill, and wire resizing takes place again. 

IV. IMPLICATIONS OF MILLER COUPLING FACTOR 

So far we ignored crosstalk effects between wires by assuming MCF=1. In order to account for worst-

case wire switching, the cross capacitances should be multiplied by MCF values. Thus, the delay equation 

in (2.5) turns to be: 

( ) ( ) ( )
1 1

1

3

0 0 1

, , , , ,
n n

i i i

i i i i i i i

i i i i i i

b eC MCF MCFd
f W S W S a R kW g C hR

W W S S
π α π α

− −
+

= = +

   + 
= ∆ = + + + + + + +   

    
∑ ∑    (4.1) 

where 
iMCF is Miller Coupling Factor between wires 1i − and i  (for side wires it is the MCF between 

the wire and the sidewall). In practice, worst-case crosstalk effect on delays is usually represented by 

2iMCF =  for 1 1i n≤ ≤ − . If sidewall shielding wires are inactive, they don't induce Miller effect, i.e. 

0 1nMCF MCF= = . Denoting intMCF for all 0 1i n< < − and sideMCF for 0i = and i n= , (4.1) can be 

rewritten as follows: 
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( ) ( ) ( )

( )

1 2

3 int

0 1 1

0 int
0 0 0 0 0

0 0 0 1

1 1 1

1 1
, , , ,

/ 1

n n
i

i i i i i i i

i i i i i i

side

n n n n

b eC d
f W S W S MCF a R kW g C hR

W W S S

b eC MCF MCFd
a R kW g C hR

W W S S

a R kW g C

π α π α

α

α

− −

= = +

− − − −

    + 
= ∆ = + + + + + + + +    

     

   + 
+ + + + + + + + +   

    

+ + + +

∑ ∑

( ) 1 int
1 1

1 1 1

/1n side
n

n n n n

b eC MCF MCFd
hR

W W S S

−
−

− − −

   + 
+ + + +    

    

. 

Decomposing 3f into order independent and dependent components, the order dependent component is 

the following: 
2

2
int

1 0 1

0

n
II

i i n

i

MCF
f r r

A nW

−

+ −
=

 
= ℜ +ℜ + ℜ + ℜ −  

∑ ,                       (4.2) 

where 
intsider MCF MCF=  is called MCF ratio. If worst-case crosstalk is assumed between internal 

wires, then 1 2r = . The following shows that the order of wires which minimizes the total weighted sum of 

delays is ascending, where wires with strongest and weakest drivers are placed oppositely near the walls 

and all others are sorted monotonically between them (Fig. 1(c)). Before proving optimality of the 

ascending order, a few more properties are in order.  

Property 4.1: end value repositioning for MCF ratio =1 2 . Let ( )0 1, , n−ℜ ℜ� be a sequence of positive 

real numbers and ( )1,i i+ℜ ℜ  a pair of successive entries. If 0 1i i+ℜ ≤ ℜ ≤ ℜ  (similarly 1 1i n i− +ℜ ≤ ℜ ≤ ℜ ), then 

repositioning 0ℜ (similarly 1n−ℜ ) in between iℜ and 1i+ℜ decreases the SRS of the sequence. 

Proof: We need to show that + + + + ≥0 0 1 i i+1
1 R R R R R
2

+ + + +1 i 0 0 i+1
1 R R R R R
2

. 

Denote , 1, 1p q r= = ≤ = ≥1 0 i 0 i+1 0R R R R R R , then the inequality turns into 1 p q r+ + + + ≥1
2

 

1 1p q r+ + + +1
2

 . Rearranging, we obtain 1 p p+ + − ≥1 1
2 2

1 1q r q r+ + + − + . The left hand side is 

minimized for 0p = . The right hand size is monotonic increasing in q , thus maximized for 1q = . Therefore, 

if the inequality still holds for minimal left hand side and maximal right hand side, it always holds.  Indeed, 

substituting 0p =  and 1q =  yields 12 1 2 1 1r r+ ≥ + + − + , which is definitely true.                             ■ 

 

 
Fig. 5 End value repositioning  
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We show next the existence of optimal insertion for the case of MCF ratio = 1 2 . 

Property 4.2: optimal insertion for MCF ratio =1 2 . Let ( )0 1, , n−ℜ ℜ�  be a sequence of ascending 

positive real numbers, let 1n−ℜ > ℜ . Then the location where inserting ℜ  into the sequence minimizes the 

new SRS, is between 1n−ℜ and the wall. Hence the new sequence is also ascending. 

 

Proof: Let us examine all 1n + possible locations forℜ insertion. It follows from the pair swapping property 

3.1 that among the 1n −  locations of which are not adjacent to walls, the best one is between 1n−ℜ and 

2n−ℜ . If we show that positioning ℜ between 1n−ℜ  and the wall yields smaller SRS, we are done. We 

therefore need to show that 2 1 1n n n− − −ℜ +ℜ+ ℜ+ℜ + ℜ ≥1
2 2 1 1n n n− − −ℜ +ℜ + ℜ +ℜ+ ℜ1

2
. 

Denote 2 1 11, 1n n np q− − −= ℜ ℜ ≤ = ℜ ℜ ≥ . Substitution in the above inequality 

yields p q+ + ≥1
2

1p q+ + 1
2

. Rearranging, we obtain 1p q q p+ − ≥ + −1 1
2 2

. The left 

hand side is monotonic increasing in q , so if we prove that the inequality holds for the minimal value of q , 

regardless of p , the inequality will always hold. Substitution of 1q = in the inequality 

yields 1 1 2 1 1 2p p+ − ≥ + − , which is indeed true, independent of p . 

 

It remains to show that positioning ℜ between 0ℜ  and the wall is inferior compared to positioning 

ℜ between 1n−ℜ  and the wall. In terms of SRS, this translates to showing 

that 1 0
1 1
2 2n−ℜ + ℜ +ℜ+ ℜ≥ 1

1 1
2 2n− 0ℜ+ ℜ+ℜ + ℜ . Denote 0 1 11, 1n np q− −=ℜ ℜ ≤ =ℜℜ ≥ . Substitution 

yields 1
2

p q+ + ≥ 11
2

q p+ + . Rearranging, we obtain 1 1 1
2 2

p q p q+ + − ≥ + . The 

left hand side is monotonic decreasing in p , which follows from ( )1 1
2 2

p q p
p

∂ + + − =∂  

1 1 1 1
0

2 2 2 2 2 2p q p p p p
− ≤ − =

+ +
. Therefore, if the inequality holds at minimum of left hand side, it 

always holds. Substituting 0p = we obtain 1 2 1q q+ ≥ + , which is always true for 1q ≥ .                  ■ 

 

The above properties establish the theorem below. 

 

Theorem 4.1 (optimal ordering with MCF ratio = 1 2 ): Let a signal bundle have arbitrary drivers, arbitrary 

capacitive loads, wire width decreasing with the corresponding driver resistance and MCF at walls 1 2 of 

 
Fig. 4 Optimal insertion case: the location near the wall is better than the location between two 

largest values 



 15 

MCF between wires inside the bundle. Then ascending order of the signals in the bundle according to 

effective signal resistances yields minimum total weighted sum of delays. 

 

Proof: Let ( )*

0 1, , nπ −= ℜ ℜ�  be sorted left to right in ascending order, and let ( )*II
f π  be the 

corresponding term in the total sum of delays which depends on the SRS. We’ll show by induction that for 

any other ordering π of driver resistances ( ) ( )*II IIf fπ π≤ . 

 

For a bundle comprised of one or two signals the induction hypothesis trivially exists. For a bundle of three 

signals, the optimality of ascending order follows from the optimal insertion property. By the induction 

hypothesis, ascending order is optimal for any 1n − signals bundle. Assume on the contrary that there exists 

a n signal bundle whose optimal order π ′ is not ascending. It follows from the non optimality contradictory 

hypothesis that ( ) ( )*II II
f fπ π ′> . 

 

Consider the location of the successive pair ( ) *

2 1,n n π− −ℜ ℜ ⊂ inπ ′ . It certainly cannot occur next to the 

right side wall. Because if it did, then 1n−ℜ  can be dropped from both *π andπ ′ . The remaining part of *π , 

*, 1nπ − , is ascending ordered, while the remaining part ofπ ′ , , 1nπ −′ , is not. SRS in both *, 1nπ − and , 1nπ −′  is 

decreased by 1 2 2 1n n n nδ − − − −
1 1= ℜ − ℜ + ℜ +ℜ2 2 . On the other hand, it follows from the induction 

hypothesis that *, 1nπ −  is an optimal order, while , 1nπ −′ is not, thus implying that ( ) ( )*, 1 , 1II n II nf fπ π− −′< . 

Consequently, ( ) ( ) ( ) ( )* *, 1 , 1II II n II n IIf f f fπ π δ π δ π− −′ ′= + < + = , thus contradicting ( ) ( )*II IIf fπ π ′> . 

 

The above shows that it is impossible for an optimal ordering to have the pair ( )2 1,n n− −ℜ ℜ residing next to 

the right wall (unless this is the ascending order *π , which we aim to prove is optimal). We’ll show next 

that any order π ′claiming to be optimal must have 
1n−ℜ positioned next to the right wall, by showing that if 

this was not the case, we could always decrease the corresponding SRS by changing the position of one of 

the otherℜ ’s.  

 

Indeed, if this was not the case, let min

0 2
min i

i n≤ ≤ −
ℜ = R . Assume that minℜ  is located in π ′between 1n−ℜ and the 

left wall, as shown in Fig. 6. (If minℜ is located in π ′between 1n−ℜ and the right wall, we could have 

mirrored the order since SRS is invariant over mirroring ofℜ ’s order). Pick ′ℜ which is located next to the 

right wall. Let ′′ℜ be the rightmost located between 
1n−ℜ and the left wall such that

1n−′′ ′ℜ ≤ ℜ ≤R , as 

shown in Fig.6. Such ′′ℜ must exist since min

1n−′ℜ ≤ ℜ ≤R . Let ′′′R be located next to ′′ℜ  on its right side 

as shown in Fig. 6. It follows from the way we selected ′ℜ and ′′ℜ that ′′ ′ ′′′ℜ ≤ ℜ ≤R . We can now apply 

the property of end value repositioning for MCF ratio1 2 and reposition ′ℜ between ′′ℜ and ′′′R , thus 

decreasing the corresponding SRS. Such decrement couldn’t happen if 
1n−ℜ would have been located next 

to the right wall. 

 

But having 1n−ℜ necessarily located next to the right wall implies that 2n−ℜ must be left adjacent to 1n−ℜ , 

since if this was not the case we could apply again the property of end value repositioning and inset 
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2n−ℜ between 1n−ℜ and its left adjacentℜ . 

 

In summary, we’ve shown that any order aiming at minimizing SRS for MCF ratio 1 2 must have 

( )2 1,n n− −ℜ ℜ next to the right wall. Consequently, the ascending order is superior over any other ordering 

having ( )2 1,n n− −ℜ ℜ next to right wall as already shown, which concludes the proof. Similar arguments hold 

for the case where the pair ( )1 2,n n− −ℜ ℜ is positioned next to the left wall.                                               ■ 

 

Consider now the case where the MCF occurring between the end signals and the walls is zero. This case 

corresponds to active shielding  [29]. Therefore, the MCF ratio between the end signals and the internal ones 

is zero. In the following we’ll show that the order of effective drivers yielding the smallest SRS is such that 

the two signals having weakest drivers are located near the walls, one at each side. The strongest one is 

located at the center. The rest are evenly and symmetrically distributed on both sides in ascending order of 

their effective driver strength, from the ends towards the center. Such an order is called symmetric valley, 

defined formally as follows. 

 

Definition: symmetric valley ordering.  Let 0 1 2 1n n− −ℜ ≤ ℜ ≤ ≤ ℜ ≤ ℜ� be a sequence of n  positive real 

numbers increasingly ordered. Assume without loss of generality that n is even. Let us split it into even and 

odd interleaved subsequences 0 2 2n−ℜ ≤ ℜ ≤ ≤ ℜ�  and 1 3 1n−ℜ ≤ ℜ ≤ ≤ ℜ� . Reverse the order of numbers in 

the even subsequence, thus turning it into monotonic decreasing sequence. Finally, concatenate the odd and 

the modified (reversed) even subsequences into one sequence. The new sequence thus obtained is said to be 

ordered in symmetric valley ordering (as it resembles descending and climbing a symmetric valley). Fig. 7 

illustrates how such an order is obtained. The following property is analogous to optimal insertion of 

maximal value 3.2 derived for symmetric hill order. 

 

Property 4.1: optimal insertion of minimal value. Let ( )0 1, , n−ℜ ℜ� be a sequence of positive real 

numbers ordered as a symmetric valley. Let { }0 1min , , n−ℜ < ℜ ℜ… . Then the location where inserting ℜ  

into the sequence minimizes the new SRS, is at the center between the two smallest numbers. Hence the 

 

Fig. 6 Proof of optimal ordering with MCF ratio = 1 2  
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new sequence is also in symmetric valley order. 

 

We skip the proof of this property, as it follows similarly to the proof of optimal insertion of maximal 

value 3.2. The following theorem manifests the optimal ordering for 0 MCF ratio. 

 

Theorem 4.2 (optimal ordering with MCF ratio = 0 ): Let a signal bundle has arbitrary drivers, arbitrary 

capacitive loads and wire width decreasing with the corresponding driver resistance. Let the MCF at the 

side walls be 0 and MCF of wire pairs inside the bundle be equal to all. Then, the symmetric valley order of 

the signals in the bundle according to effective driver resistances yields minimum total weighted sum of 

delays. 

 

Proof: Like the case of MCF ratio 1, where the optimal order is symmetric hill, the pair swapping property 

3.1 and local maximum elimination property 3.3 hold also for this case, since both involve comparing SRS 

of internal signals only. Following similar arguments as in symmetric hill order, with the aid of optimal 

insertion of minimal value property 4.1, the proof is identical to Theorem 3.1.                                     ■ 

 

Theorems 3.1, 4.1 and 4.2 manifested the optimal signal ordering in a bundle for typical cases of MCF 

boundary conditions, where external to internal signal MCF ratios are 1, ½ and 0. The implied orders are 

independent of the effective drivers’ strengths and are valid under very wide wire width settings applicable 

for most practical design scenarios. An interesting question is what happens for other MCF ratios. With 

some further manipulations of SRS it can be shown that: 

• When the ratio of end MCF to internal MCF is equal or greater than 1, symmetric hill order yields 

minimal total weighted sum of delays, independently of effective drivers’ strength. 

• When the ratio of end MCF to internal MCF is equal to ½, ascending order yields minimal total 

weighted sum of delays, independently of effective drivers’ strength. 

• When the ratio of end MCF to internal MCF is equal to or smaller than 0 symmetric valley order yields 

minimal total weighted sum of delays, independently of effective drivers’ strength. 

For all other ratios, namely, 0 1 2r< < and 1 2 1r< < the order depends on the specific values of effective 

drivers’ strength and may be none of the above. 

 

 

 (a)           (b)            (c)           (d) 

1 2 3 4 5 136 23 45 61 2 45 6 13 2 4 65
 

Fig. 7 Formation of symmetric valley ordering: (a) Sort numbers in ascending order; (b) Split sequence into odd and 

even subsequences; (c) Reverse order of numbers in the add subsequence; (d) Concatenate the even and the modified 

subsequences 
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V. CROSSTALK NOISE REDUCTION 

Instead of incorporating delay uncertainty into the delay expression by using worst-case Miller factor, we 

may directly consider delay uncertainty and optimize it simultaneously with the nominal (crosstalk-free) 

signal delay. 

For calculating crosstalk noise effectively, several models have been presented in the literature, e.g.  [14], 

 [24]. For peak noise voltage 
pV we use a simple model, given in  [14]. The peak noise in wire i can be 

represented as   

1 1

2
i i ii c w cp

i dd

i i i

R C R C
V V

− +

⋅ + ⋅
=

∆ + ∆ + ∆
                                   (5.1) 

In (5.1), the numerator represents a part of wire delay caused by coupling capacitance, and the denominator 
represents the sum of Elmore delays of the wire and its neighbors. Rewriting (5.1) in terms of (2.2), obtain 

( ) ( )

( )

( )

1

1 1

0 0 1

0

0 1

1 1 1

1

1

1 1
, 0 1

1

1

i i i ip

i dd

i i i

p

dd

n n np

n dd

n n

d W hR S S
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For analytical modeling of the delay uncertainty caused by effects of crosstalk noise on circuit timing, we 
use superposition-based approximations, proposed in  [22]. According to the approximation, the upper 
bound of delay uncertainty of wire i can be expressed as 

( )max, ln 2 1p

i i i ddV Vδ = ∆ +                                    (5.3) 

Let us introduce two new objective functions: 
1

1 max,

0

n

i

i

h δ
−

=

=∑                                           (5.4) 

and  

2 max,max i
i

h δ= ,                                         (5.5) 

which are the total sum of delay uncertainties and the largest delay uncertainty among the wires in the 
bundle.  
According to  [23], after some simplifications (5.2) can be represented in the form  

1 1

p i

i dd

i i i

R
V V

R R R
η

− +

≈ ⋅
+ +

, where η represents the ratio of cross-coupling capacitance to total wire 

capacitance. 
As it follows from this expression, if the driver of a wire is significantly larger than the driver of its 
neighbors, then the wire with the smaller driver (as a crosstalk victim) will be exposed to serious noise from 
the wires with the larger drivers (aggressors) . Therefore, crosstalk noise will be minimized, if neighboring 
wires have roughly equal drivers  [23]. It can be achieved by ordering wires in the bundle in one of the 
monotonic orders discussed above.  

Although we have not performed direct mathematical optimization of delay uncertainty, our experiments 

have shown that  total delay uncertainty (5.4) is reduced by minimizing the total weighted sum of delays 

(2.4),  and the worst delay uncertainty (5.5) is reduced  by  minimization the  worst wire delay (2.3), using a 

symmetric hill order. 
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VI. EXPERIMENTAL RESULTS  

Numerical experiments for various problem instances were performed using 65 nanometer technology 

parameters. Continuous optimization has been used, and results were verified for allowed discrete sizes as 

required by the technology. Delay improvements were verified by SPICE simulations of several circuits 

before and after optimization. 

In all experiments we assume uniform timing requirements, unless mentioned otherwise. 

Experiment 1. This experiment demonstrates the benefit of wire ordering. Random problem instances 

using five signals were evaluated as follows: Each signal was assigned a driver randomly. The range of 

driver resistances was 50 Ω  to 3 KΩ , and load capacitances in the range 10-200 fF  were assigned 

according to driver strength to avoid excessive driver loading, such that the conditions of theorem 3.3 were 

always satisfied. For each problem the wire widths and spaces were optimized once to yield minimum total 

sum of delays, and again to yield minimum worst-wire delay (MinMax). This was repeated for all the 

5!=120  possible orders. The procedure was done for eight different bundle widths A – 1.5, 2, 2.5, 3, 3.5, 7, 

9.5 and 12 mµ , and five different bundle lengths L – 300, 500, 800, 1200 and 1500 mµ . The optimization 

impact (% improvement of best versus worst ordering, after width/space optimization, averaged over 20 

random problem instances for each width and length configuration) is presented in Table 1. This 

experiment demonstrates that net ordering can significantly improve results of wire sizing and spacing 

optimization, especially when the bundle width is tightly constrained. All obtained optimal orders for total 

sum of delays minimization came out as symmetric hills (as expected, since theorem 3.2 is always satisfied 

in this example). As can be seen from the table, bundle worst wire delay (lower half cell) is more sensitive 

to the ordering than the total sum of delays (upper half cell).  

Experiment 2.  This experiment evaluates the benefit of ordering for a large number of wires in the 

bundle. The impact of net ordering on interconnect bundles containing a large number of wires was 

evaluated, using 15 representative interconnect bundles in 65nm technology. The number of signal wires 

per bundle varied from 10 to 128. The width of each bundle was determined by allocating for times the 

minimal width implied by the minimum design rules.. Driver resistances varied from 50Ω  to 2.5 KΩ , 

averaging 1.24 KΩ . Exhaustive search to find the worst and best ordering is infeasible for such problems. 

Instead, a poor ordering has been guessed, and the corresponding signal delays were compared with results 

of symmetric hill ordering. The experiment confirmed that symmetric hill net ordering can improve delays 

by a significant percentage: After net ordering and sizing optimization, up to 18.3% in average delays were 
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obtained. On average, the interconnect delay improvement in this experiment was 11.8%, which is 

equivalent to 5% of the clock cycle used in the given technology.  

Experiment 3. This example demonstrates how the set of wire driver resistances influences the impact of 

ordering optimization. The effect of signal ordering on MinMax delay in bundles with both strong and weak 

drivers is shown in Table 2. A bundle of 7 signals with driver-load pairs of (50Ω , 50 fF ) or (3 KΩ , 5 fF ) 

is examined for various numbers of the weak drivers. Bundle width and length were A=3 mµ  and 

L=500 mµ . As can be expected, when the numbers of strong and weak drivers were about equal, signal 

ordering is most effective.  The worst ordering is indeed the interleaved one, described in Fig. 2(a), while 

the best one is clearly symmetric hill. 

Experiment 4. This example demonstrates the influence of driver's resistances range on ordering 

optimization impact. The range of drivers is specified by the ratio
max minR R , where 

maxR and 
minR are the 

largest and the smallest driver resistances in a set of wires being ordered. 19 different 7-wire sets were 

evaluated, with driver resistances distributed uniformly around a constant average of 1 KΩ . In these sets, 

max minR R varied from 1 (all drivers equal) to 6.4. Bundle length is 700 mµ  and width is 3 mµ  in all cases. 

The results are presented in Fig.8. As can be seen, optimization impact increases with resistance range. 

Worst wire delay optimization is influenced much more than optimization of average delay. For larger 

TABLE 1 

AVERAGE IMPROVEMENT (BEST VS. WORST ORDERING) FOR RANDOM PROBLEM INSTANCES, IN SUM-OF-DELAYS (UPPER HALF 

CELL) AND WORST WIRE DELAY (LOWER HALF CELL) 

Bundle width Bundle 

length 1.5 µm 2 µm 2.5 µm 3 µm 3.5 µm 7 µm 9.5 µm 12 µm 

10.14% 9.13% 8.13% 7.25% 6.62% 3.12% 2.25% 1.97% 
300 µm 

17.19% 14.98% 12.7% 10.86% 9.84% 4.6% 2.86% 2.13% 

11.31% 9.5% 8.21% 7.46% 6.71% 3.32% 2.43% 2.14% 
500 µm 

17.24% 15.18% 13.29% 10.81% 9.64% 5.13% 3.07% 2.94% 

9.82% 8.76% 7.79% 7.32% 6.5% 2.47% 1.92% 1.05% 
800 µm 

16.22% 14.11% 13.08% 11.09% 9.98% 5.14% 3.24% 1.83% 

8.78% 8.23% 7.38% 6.89% 6.35% 2.24% 1.7% 1.1% 
1200 µm 

14.18% 14.58% 13% 11.63% 9.84% 5.13% 2.72% 1.51% 

7.63% 7.2% 6.94% 6.54% 6.12% 2.1% 1.81% 0.97% 
1500 µm 

14.13% 14.02% 12.97% 11.51% 10.15% 4.99% 2.62% 2% 

 

 

TABLE 2 

% IMPROVEMENT OF BEST VERSUS WORST ORDERING, AFTER WIDTH/SPACE OPTIMIZATION, FOR A SIGNAL CHANNEL WITH TWO 

DRIVER STRENGTHS 

No. of weak drivers Percent of improvement in worst delay 

1 0.11% 

2 8% 

3 12.7% 

4 16.3% 

5 10.76% 

6 5.25% 
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Fig.8. Influence of relative range of drivers on optimization impact 

a) 

 
 

b) 

 
Fig. 9 A bundle with uniform timing requirements; a) Cross section after weighted sum minimization without ordering; 

b) Cross section after weighted sum of delays minimization with ordering (symmetric hill order according to driver 

resistances) 

a) 

 
b) 

 
Fig. 10 A bundle with a critical wire; a) Cross section after weighted sum minimization without ordering (the critical wire is at 

the leftmost position); b) Cross section after weighted sum minimization with ordering (symmetric hill order according to 

effective signal resistance) 
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range of driver resistances, the increase in delay improvement saturates. 

Experiment 5. This experiment demonstrates the impact of signal criticality weight. Consider a 3 mµ -

wide bundle of 500 mµ length with 5 nets in it with drivers of different strengths , and all load capacitances 

are equal to 10 fF . The cross section of the bundle after sum-of-weighted-delays optimization when all nets 

have uniform timing requirements (all weights are 1) is shown in Fig. 9a. The wire with the largest driver 

(2.8 KΩ ), is allocated the largest spaces, as expected. After ordering optimization, according to symmetric 

hill order by driver resistances, this wire is placed in the middle of the bundle (Fig. 9b). Assume now that 

the net with the strongest driver (0.05 KΩ ) is the most critical and is assigned 10α = . The situation after 

sum-of-weighted-delays optimization and ordering optimization are shown at Fig. 10a and b respectively. 

Now, the critical net is placed close to the middle and shares a large space with the weakest driven net. In 

both cases, the average weighted delay was reduced by about 8%. In the second case, the net with the 

strongest driver was allocated larger width in order to reduce wire resistance due to net criticality. The 

experiment shows that the weighted sum method takes into account simultaneously both wire driver 

resistance and net criticality. 

Experiment 6. This experiment demonstrates a-priory assignment of wire widths by a heuristic which 

guarantees optimality of symmetric hill ordering. This is compared with the most general optimization 

where ordering, width and spacing are searched exhaustively. In this experiment, delays obtained by 

exhaustive simultaneous ordering/sizing/spacing optimization are compared with results of heuristics using 

symmetric hill order for total sum of delays objective. Another set of random 1600 instances was generated 

with the same range of drivers and the same set of bundle widths and lengths, but all load capacitances 

equal to 10 pF . Heuristic wire width assignment with the inverse linear width function 

( )
1W

Rα β
=

+
was applied. For each value of bundle width and length, the delay difference between the 

optimal result of exhaustive search and the result of the heuristic was expressed as a fraction of the delay 

difference between best and worst results of the exhaustive search. On average for all these problem 

instances, the global minimum delay was approached as closely as 0.37%. Hence, the heuristic wire width 

assignment, which allows to use symmetric hill ordering instead of exhaustive search, is effective.  

Experiment 7. In this experiment we demonstrate crosstalk reduction results by wire ordering. We 

evaluated 20 random problem instances using five signals. Each signal was assigned a driver randomly. The 

range of driver resistances was 100Ω to 2 KΩ  and load capacitances in the range 200 fF to 10 fF were 

assigned accordingly to satisfy theorem 3.3. For each problem the wire widths and spaces were optimized 

twice: first to yield minimum total sum of delays, and second to yield minimum worst wire delay. This was 

done for all the 5! =120 possible order permutations. The procedure was repeated for five different bundle 

widths of2, 5, 8, 12 and 20 mµ , and five different lengths of 300, 500, 800, 1200 and 1500 mµ . For the 

best and worst timing orders, the total sum of delay uncertainties and maximum delay uncertainty were 

calculated. The crosstalk results for total sum of delays optimization is presented in table 3 (the results for 

worst wire delay optimization are very similar) In each cell, the upper half cell (colored in gray) represents 

improvement in total sum of delay uncertainties and the lower half cell – improvement in maximum delay 

uncertainty. The experiment demonstrates that net ordering can significantly improve bundle noise 

immunity. The maximum delay uncertainty is affected more than sum of delay uncertainties.  
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VII. CONCLUSION AND OPEN QUESTION    

Reordering of wires in a constrained-width interconnect bundle has been studied. It has been shown that a 

monotonic order of the signals according to their effective driver resistance yields the smallest average 

weighted delay among all possible orderings of signal wires. The weighted delay objective was chosen in 

order to approximate MinMax optimization. Three variants of monotonic ordering have been found to be 

optimal, depending on the MCF ratio between the signals at the sides of the bundle and that of the internal 

wires.   

 

The monotonic order property exists for a very broad range of VLSI circuit settings arising in common 

design practice. The paper proposed a simple, yet near-optimal, setting of wire widths within the bundle to 

yield the best average weighted delay. 

 

The above theoretical results have been validated by numerical experiments on 65 nanometer process 

technology and industrial design data. In all cases the ordering optimization yielded improvement in the 

range of 10% in wire delay, translated to about 5% improvement in the clock cycle of high-performance 

microprocessor implemented in that technology. 

 

The authors could not prove that monotonic ordering by effective signal resistance yields the smallest 

MinMax timing slack, as it does for the average weighted delay. It is an interesting and important question 

what are the problem settings which ensure that monotonic ordering would yield the smallest MinMax 

delay. 
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