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Abstract – This paper addresses the problem of ordering and 
sizing parallel wires in a single metal layer within an 
interconnect channel of a given width, such that cross-
capacitances are optimally shared for circuit timing 
optimization. Using an Elmore delay model including cross 
capacitances for a bundle of wires, we show that an optimal 
wire ordering is uniquely determined, such that best timing 
can be obtained by proper allocation of wire widths and 
inter-wire spaces. The optimal order, called BMI (Balanced 
Monotonic Interleaved) depends only on the size of drivers 
for a wide range of cases. Heuristics are presented for 
simultaneous ordering, sizing and spacing of wires. 
Examples for 90-nanometer technology are analyzed and 
discussed.  

1. INTRODUCTION 
Cross-capacitances between wires in interconnect structures 
have a major effect on circuit timing. Allocation of inter-wire 
spaces and wire widths is an optimization problem for 
interconnect structures under a total area constraint [1]. This 
paper addresses a more general problem, where delays in a 
bundle of parallel nets (with different drivers and loads) are 
minimized by choosing an optimal ordering of the nets, in 
addition to optimal allocation of wire widths and inter-wire 
spaces. The total width of the structure is a given constraint. The 
problem is motivated by the following example: Two different 
arrangements of the same wires, presented in Fig.1 a and Fig.1 b 
result in different circuit timing. In the second case inter-wire 
spaces are shared more effectively due to grouping of wires of 
each driver type together. A brute-force approach to determine 
the best ordering is to generate all signal permutations, and solve 
the wire-width and space optimization problem for each 
permutation. This approach is computationally infeasible for 
practical channels. The existence of an optimal wire ordering 
that yields best delay minimization after wire sizing and space 
allocation is proven in this paper. An efficient algorithm to find 
the optimal order for a wide range of practical cases is described. 
Heuristics for solving the more general cases of this problem are 
evaluated.  

The problem of allocating widths and spaces to maximize 
performance in tuning of bus structures was proposed in [1]. The 
wire sizing problem has been addressed in [2] and [3] for a 
single net. Sizing and spacing multiple nets with consideration 
of coupling capacitance has been addressed in [4] for general 
interconnect layouts by converting cross capacitance to effective 
fringe capacitance, and for bus structures in [22]. Coupling 
capacitance has been addressed explicitly in the context of 
physical design for minimizing crosstalk noise [5,6] or dynamic 
power [7]. Some authors treated the problem of throughput 

optimization in buses using uniform wire widths and spaces [21, 
23,24]. Several variants of net-reordering have been applied for 
improving layout efficiency [8], and for noise reduction [6, 9, 
10, 11, 12]. Swapping of wires for power reduction was applied 
in [13]. Vittal et al. [11] have suggested without proof to reduce 
capacitive coupling noise by sorting wires in order of driver 
strength, which is closely related to our results. However, delay 
optimization by net-ordering has not been addressed in previous 
works.  

2. PROBLEM FORMULATION 
Circuit structure and notation are shown in Figure 2, illustrating 
n signal nets 

0 1,..., nσ σ −
between two shield wires. 

iS and 
1iS +
, 

respectively, denote spaces to the left and right neighbors of 
wire  iσ . 

iW  is the wire width. The length of all the wires is L. 

The total sum of wire widths and spaces is constrained to be A , 
representing the area available for laying out all of the signal 
wires. 
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This is a common structure, which is amenable to simple 
mathematical analysis. Wires with repeaters can be segmented 
into several problem instances of this form. The delay 

i∆ of 

signal iσ  can be calculated from the π-model equivalent circuit 

shown in Figure 3, where iR is the effective output resistance of 

the driver,
iwR  is the wire resistance, 

iwC  is the area and fringe 

capacitance, icC  and 1icC
+  are the coupling capacitances to the 

Figure 1. Two ways to order wires in an interconnect channel. "A" –
strong drivers (small resistance), "B" – weak drivers (large resistance).
Case a: interleaved placement, all wires share equal spaces. Case b:
sorted placement, wires with weak drivers share large spaces and wires
with strong drivers share small spaces, with improved circuit timing. 



right and left neighboring signals, and iC  is the capacitive load 
of the receiver’s input.  
Using an Elmore model with first order approximation for 
capacitances [19], the delay can be expressed as [18]:  
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1 1
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∆ = + + + + + + + + +  (2.2) 

where coefficients of wire widths, spaces, driver resistances and 
load capacitances are technology-dependent constants and 

,i jm is Miller factor between wires i and j . If all wires can 

switch simultaneously, the cross-capacitance terms are typically 
multiplied by a uniform ,i jm of 2. For this worst-case 

assumption, inter-wire tradeoffs become very significant in 
optimizing the layout. For nominal delays, , 1i jm = is assumed. 

Derivations in this paper use this assumption. Despite its 
simplicity, this Elmore-based modeling approach is widely used 
in practical interconnect optimizations. With empirical 
parameter tuning, the model accuracy can be improved further. 
In [18], good absolute accuracy versus circuit simulation has 
been obtained. Interesting tradeoffs can be made because wire 
resistance and capacitance change in opposite directions as wire 
width grows, and increased spacing reduces the side-capacitance 
shared by adjacent wires. Hence, wire reordering can change 
adjacency relations and affect the optimal allocation of spaces 
and wire widths. 
Let 1f  given in (2.3) be the objective function we wish to 
minimize. 1f  denotes the sum of all signal delays. It is 
commonly used in early design stages since it captures the 
contributions of all signals to circuit timing. 
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For final performance tuning, it is appropriate to speed-up the 
slowest signal. The objective function for such MinMax 
optimization is 

2
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(2.4) 

When required times of signals are specified, the corresponding 
objective functions are sum of slacks and the worst slack among 

all signals. Minimizing the sum of slacks is equivalent to 
minimizing 1f . The case of minimizing worst slack can be 
transformed to minimizing worst wire delay

2f .  

3. SUM OF DELAYS OPTIMIZATION 
Let each wire have width iW  assigned as follows: 

 1

( )i

i

W
Rψ

= , (3.1) 

where ψ  is a monotonically non-decreasing functions of 

driver resistance iR . Such assignment is practically common, as 
one attempts to balance the resistance of the driver and the 
resistance of the driven line and is known as "impedance 
matching". Notice that the case of uniform width wires is also 
covered by (3.1). 1f  is a function of 1n + variables iS . The 

solution of minimizing 1f  under the constraint g (in (2.1)) 
implies 
 1 0, 0

j j
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j n

S S
λ

∂ ∂
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 (3.2) 

where λ is a Lagrange multiplier. Taking partial derivatives of 

1f  and g  with respect to iS , substituting to (3.2) and 
rearranging we obtain 

2 2 2 2 2 2 2 2

0 2 4 1 1 3 5n nS S S S S S S S−+ + + + = + + + +   (3.3) 
Notice that (3.3) holds regardless of wire widths, 
reflecting the fact that adjacent wires share common spaces. 
Equations (3.2) can be solved for iS  and λ . By substitution to 
(2.3), the minimal total sum of delays is expressed in terms of 
technology parameters, total area constraint and wire driver 
resistances:  
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The quadratic last term of (3.4) depends on wire ordering. 
Consequently, there exists an order which minimizes the total 
sum of delays. The important conclusion from expression (3.4) 
is that for wire widths assigned as in (3.1), wire ordering 
affects the minimal sum of delays via driver resistances, while 
the effect of load capacitances is order-insensitive.  
We now describe how to obtain the optimal order. The driver 
with the largest resistance is taken to reside at the center of the 
channel. The other drivers are taken in monotonically decreasing 
order of driver resistance, and located alternately on the left and 
right of as shown in figure 4. We call the resulting order BMI 
(Balanced Monotonic Interleaved). The advantage of BMI order 
stems from the fact that spaces are shared by wires with similar 
driver resistances, since the side-capacitance to the sidewalls can 
be modeled as capacitance to ground, hence the sidewalls affect 
our model as if they were wires with zero-resistance drivers. 
Definition (BMI order):  Given a channel of n signals with 
driver resistances 0 1,, nRR − , the permutation of signals 

0 1
* ( , , )nR R −Π =  is called Balanced Monotonic Interleaved 

(BMI) if it satisfies  

0 1 1 2
1 1

2 2 2

n n n n nR R R R R R R− −
− +     

          

< < < < < < < . (3.5) 

Figure 3. Equivalent circuit for calculating the ith signal delay 

Figure 2. Interconnect configuration. The total channel width is A and the 

length is L. Each wire iσ is of width iW , with spaces to neighbors

iS and 1iS + , driven by a gate with effective resistance iR and loaded by a 

gate with capacitance 
iC  . 



Notice that the reversed permutation which 
satisfies 1 0 2 1n nR R R R− −< < < <  , is also BMI. 

Theorem 1 (Optimal order): Let wire width be a monotonic 
non-increasing function of driver resistance. The net-
ordering yielding minimal sum of delays is then BMI. 
The function ( )Rψ (3.1) needs to be selected carefully. 
Although the theorem holds for equal-width wires, the goal is to 
approach the absolute minimum which could be achieved in the 
space of all orderings, wire width and wire spacing assignments. 
A simple, yet practical, wire width function is the inverse linear
 ( )i i

i

W R
R

α
β γ

=
+

, (3.6) 

whereα , β and γ are positive constants. In the most general 
case, both wire widths and spaces can vary arbitrarily, 
yielding 2 1n + equations. In this case the optimal wire ordering 
may depend on the values of capacitive loads and is not 
necessarily BMI. The next theorem defines conditions for 
optimality of BMI order in the most general case. 
Theorem 2: For a  given set of n  wires, if each pair of 

wires iσ and jσ with driver resistances and load 

capacitances ( iR , iC ) and ( jR , jC ) satisfy
i jR R>  and 

i jC C≤ , then the optimal order of this set of wires is BMI, 
under total sum of wire delays objective function. 
If the conditions of the theorem are not met, the solution of the 
most general problem is very complex, as it involves the 
exploration of many permutations.  
In order to make the computational effort reasonable, the 
following heuristic is proposed. It is based on the BMI order and 
yields near-optimal solutions. The complex optimization 
problem is divided into two successive simpler ones. First, 
theorem 2 is checked. If it is satisfied, the optimal order is BMI. 
Otherwise, the heuristic assigns wire widths by some 
parameterized monotonic non-increasing function such as (3.6). 
BMI order is now guaranteed to be optimal. Then continuous 
optimization is applied, exploring for the optimal values of inter-
wire spaces and the width-function parameters (e.g. α , β and 
γ in (3.6)). This heuristic reduces time complexity of the 

optimization problem by factor of ( !)O n and reduces the 
number of unknown parameters from 2 1n +  to n p+ , where p 
is the number of parameters in the width function. Experiments 
show that a well-chosen width-function yields ordering, widths 
and spaces that result in total sum of delays which is very close 
to the global optimum. 

4. OPTIMAL ORDERING OF WIRES UNDER 
MAXIMUM DELAY OBJECTIVE 
In this section, we examine ordering optimization for 
minimizing worst wire delay (2.4). We aim to demonstrate 
optimality of BMI order for minimization of worst wire delay as 
well. However, since (2.4) is not differentiable, the technique 
used for deriving optimal order for total sum of delays cannot be 
applied here. We have demonstrated experimentally that BMI 
order is optimal under maximum delay objective in most cases. 
We have created about 1000 random problem instances for 5 

wires and 100 random problem instances for 6 wires and 
obtained BMI optimal order in most cases (the computational 
effort is infeasible for a larger number of wires). We have found 
that when load capacitances are not all equal, in about 80% of 
cases the optimal order is BMI. When all load capacitances are 
equal, the relative number of optimal BMI orders rises to 93-
95%. We have found that with equal capacitances, the cases 
which deviated from BMI (7-5 %) were caused by effects of 
proximity to the shield wires at the sides, since spaces to the 
shield wires are not shared by a pair of signals. These effects 
become significant only if driver resistances are nearly equal.  

5. RESULTS AND DISCUSSION 
Numerical experiments for various problem instances were 
performed using 90 nanometer technology parameters calculated 
based on [15]. We have simulated some circuits in Spice before 
and after optimization, to verify the delay improvement.  In the 
first experiment we evaluated 20 random problem instances 
using five signals. Each signal was assigned a driver randomly. 
The range of driver resistances was 100 Ω to 2 KΩ  and load 
capacitances in the range 200 fF to 10 fF were assigned 
accordingly, to avoid excessive driver loading, such that the 
conditions of theorem 2 are always satisfied. For each problem 
the wire widths and spaces were optimized to yield minimum 
total sum of delays and minimum worst wire delay. This was 
done for all the 5!=120  possible order permutations. The 
procedure was repeated for five different channel widths A – 5, 
10, 15, 20 and 25 mµ , and five different  lengths L – 300, 500, 
1000, 5000 and 10000 mµ . The optimization impact (% 
improvement of best versus worst ordering, after width/space 
optimization, averaged for 20 random problem instances) is 
presented in Table 1. In each cell, the upper half cell (colored in 
gray) represents total sum of delays optimization and the lower 
half cell – worst wire delay optimization. Worst case crosstalk 
was assumed (i.e. Miller factor of 2). This experiment 
demonstrates that net ordering can significantly improve results 
of wire sizing and spacing optimization. The worst wire delay 
objective is affected more than sum of delays. Since  theorem 2 
is always satisfied in this example, all obtained optimal orders 
for total sum of delays minimization are BMI. On the other 
hand, only 80% of the obtained optimal orders for minimization 
of worst delay are BMI.  

Table 1 
Average improvement (best vs. worst ordering) for random problem 

instances, in sum-of-delays (upper halfcell) and worst wire delay 
(lower halfcell) 

 A=5 µm A=10 µm A=15 µm A=20 µm A=25 µm 

7.14% 6.13% 5.13% 4.25% 3.62% 
L=300 µm 

18.60% 13.23% 9.89% 7.68% 6.14% 
8.41% 7.39% 6.31% 5.40% 4.71% 

L = 500 µm 
20.73% 16.17% 12.91% 10.56% 8.79% 
9.51% 8.57% 7.65% 6.71% 5.97% 

L = 1000 µm 
22.14% 18.83% 16.05% 13.82% 12.03% 
9.65% 8.67% 7.97% 7.24% 6.63% 

L = 5000 µm 
20.64% 19.41% 17.75% 16.19% 14.79% 
8.62% 7.91% 7.29% 6.59% 5.99% 

L =10000 µm 
18.61% 18.05% 16.71% 15.37% 14.14% 

The second example shows in Table 2 the effect of signal 
ordering on wires with both strong and weak drivers. A channel 
of 7 signals with driver – load pairs of (100 Ω – 50 fF ) or (1.9 

ΩK  – 5 fF) was examined for various numbers of the weak 
drivers. Bus width and length were A=12 mµ   and L=600 mµ . As 
could be expected, when the numbers of strong and weak drivers 
were about equal, signal ordering was most effective.  The worst 
ordering was indeed the interleaved one described in Figure 1a, 
while the best one was clearly BMI. Miller factor of 1 was 
assumed (nominal delays). 

Table 2 

Figure 4. Building BMI order from a set of wires sorted
according to driver resistance 



 % improvement of best versus worst ordering, after width/space 
optimization, for a bus with two driver strengths 

No. of weak drivers Worst delay 
optimization  

Sum of delays 
optimization  

1 0.17% 0.39% 
2 8.94% 4.81% 
3 13.81% 8.12% 
4 18.17% 11.19% 
5 11.99% 7.52% 
6 6.16% 3.55% 

In the third example, delays obtained by exhaustive 
simultaneous ordering/sizing/spacing optimization are compared 
with results of heuristics using BMI order for total sum of delays 
objective. We used the same set of 20 instances as in example 1. 
The heuristic described in section 3 with the inverse linear width 
function (eq. 3.6) was applied. The results are presented in Table 
3. For each value of bus width and length, the delay interval 
between the optimal result of exhaustive search and the optimal 
result of the heuristic is presented as a fraction of the delay 
interval between best and worst results of the exhaustive search. 
As can be seen, by using parametric width optimization, the 
global minimum was approached as closely as 0.37% on 
average.  

Table 3 

Relative delay distance of heuristic result to global minimum 
 A=5 A=10 A=15 A=20 A=25 

L=300 0.16% 0.14% 0.42% 0.19% 1.34% 
L = 500 0.20% 0.25% 0.15% 0.18% 0.29% 
L = 1000 0.13% 0.14% 0.19% 0.28% 0.35% 
L = 5000 0.17% 0.21% 0.28% 0.45% 0.65% 
L =10000 0.25% 0.28% 0.38% 0.52% 0.66% 
Average 0.182% 0.204% 0.284% 0.324% 0.658% 

6. CONCLUSION 
We have shown that reordering of wires can improve results of 
timing optimization by wire-sizing and spacing, for a wiring 
channel of constrained width. The optimal order of wires 
generally depends on both wire driver resistances and load 
capacitances. Analysis of sum-of-delays minimization showed 
that when wire widths are uniform or are specified by a 
monotonic non-increasing function of driver resistance, the 
optimal order can be determined directly. This optimal order is 
BMI (Balanced Monotonic Interleaved) and depends on driver 
resistances only. Load capacitances do not affect the optimal 
order under these conditions. The general problem of 
simultaneous net-ordering, wire-sizing and spacing optimization 
has been presented. In the general case, the optimal solution 
might be dominated by load capacitances, and the optimal order 
may not be BMI. Solution heuristics were proposed for the 
general case. Numerical experiments demonstrated heuristic 
results approaching the global optimum within approximately 
0.5%.  
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