Life in the Synchronous Lane

Thoughts about Engineering Methodologies and CAD Avi Kolodny Intel Corporation, Haifa, Israel & Technion - I.I.T.

Async 2000

This talk is about a journey

- Changes in design methods at Intel
 - Over the years
- Insights about CAD's role along the way

the w

Views of the road ahead

How the journey started

VLSI was driven by Silicon technologists

cond

- They were not experts in logic design theory.
- Design had very few rules

Design in the old days

8086 8080 8008 4004

'75

Year

10⁸

10⁷

10⁶

10⁵

10⁴

10³

10²

10¹

intal

'70

Transistors

Transistor-level circuits
Free mix of:

– Ratioed-logic

- Wired logic (contention based)

- Race-based logic
- Level / edge signaling
- Dynamic storage nodes
- Pass transistors
- Clock input to logic
- Loops in combinational logic

CAD Tools of the good old days Fighting the Fire" step by step" Schematic editor Layout editor **Design-Rule Checker** Circuit Simulator Layout digitizer

...What Next?...

CAD is not planned. It develops by <u>Evolution</u>

New CAD mutations emerge to solve the painful problem of the era الم

The goal was: High Integration

intel

Which design style to use?

Synchronous design was simpler for doing high integration

Why synchronous design for hi-integration?

• "Time is assumed to come in discrete steps..... By providing a central 'clock' source it is possible to organize even asynchronous components so that they act in the discrete time steps of a synchronous machine" [E.F. Moore, 1956]

Time as sequence (discrete)

Time as duration (continuous)

We had plenty of time...

- Speed was not an issue in product specs.....
 - Virtually no design for speed

ASV

intal

- The first PC 'came out' at 4.77 MHz
- So <u>time was a free resource</u>, used mainly to organize sequencing

 A CAD tool limitation actually helped enforce synchronous design

The next CAD challenge: Logic verification If (Phil='1') the

- Logic errors were too painful....
- Circuits were too large for SPICE
- An event-driven logic simulator was tried...
- It was too cumbersome
- Engineers wrote RTL models in a Pascal-like language
- The RTL simulator was born
- It could handle <u>synchronous</u> <u>design only</u>

If (Phi1='1') then Begin e := a AND b;f := c AND d;g := e OR f;x := NOT g;y:=g AND z;. End: If (Phi2 = '1') then Begin e:=y; End.

RTL modeling was a clever methodology !

It 'divorced' functional behavior from timing

 Functionality and timing could be verified separately

But.... timing verification was ignored!

RTL model assumptions:

1) In each clock cycle, new values propagate until a steady-state is captured in registers.

2) Someone has guaranteed that the cycletime is long enough to reach a steady state.

Then speed became important

Intel386™

'85

80286

'80

8086

8080

'75

10⁶

10⁵

10⁴

10³

10²

10¹

int_d.

8008 4004

'70

Fransistors

- 286 speed debug challenge
 - On silicon...
 - Steppings
 - Clock-stretcher testing
 - Pain & cost

 Duration of the clock cycle became a precious resource!

Design-for-speed Impact on methods & tools • Time borrowing as a design technique (transparent latches) New static tools : - Critical Path Finder - Delay Analyzer Synchronous methodology enforced by these tools too source sink intal 14

The synthesis CAD solution

Synergetic action of

- HDL
- Logic synthesis
- Cell library + Place & Route tools
- A "package deal"
- Migration to Single-phase clock and Master-Slave Flip-Flops
- Current ASIC methodology

Design for high clock rate

- Internal clock doubling
- Super-pipelined microarchitecture
- Domino logic

intal

- Buffered clock-trees
- CAD: timing-driven everything
- ... new problems came up

Clock-skew problems

 Started systematic checking of minimum-delay violations

- Automatic insertions of buffers for delay padding
- 30 to 50% of gates are inverters!

Timing Convergence Problem

- Timing analysis with real layout RC is in a feedback-loop of the design flow
- Synthesis produces totally different solutions each time
- It's difficult to reach timing convergence!
- New approaches to solve the problem:
 - Wire planning with time budgeting
 - Layout-driven synthesis
 - Synthesis-driven layout

intel

Design productivity gap keeps growing

Now the road starts climbing into big mountains...

Deep-Sub-Micron problems:
Wiring dominance:
R, L, C, delay, power, noise
System-On-Chip issues:
hierarchy, re-use

Future Technology Characteristics (ITRS 99 - predictions for MPU chips)

Year	1999	2000	2008	2011
Technology [micron]	.18	.1	.07	.05
Transistors/chip	24M	190M	539M	1523M
Frequency [MHz]	1250	3500	6000	10,000
Wiring levels	7	9	9	10
Vsupply [V]	1.8	1.2	0.9	0.6
Power/chip [W]	90	160	170	174

Trends in Deep Sub-Micron (DSM)

• Physical effects at the circuit level:

- Interconnect design becomes critical
- Crosstalk and switching noise
- Heat dissipation (power) is severely limited
- Complicated design rules and reliability requirements

System level requirements:

 System-On-Chip: Re-use, modularity, co-design of h/w and s/w

Accelerated development cycle

Low level models required

High level models required

CAD

Noise is worse in DSM ■ Vsupply ↓ Vthreshold/Vsupply 1 – Noise margins \downarrow • Wire Resistance \uparrow , **Cross-capacitance** 1 – Crosstalk noise ↑ Must insert repeaters on wires to restore drive-strength – I*R voltage drop on power supply lines \uparrow • Higher frequency \rightarrow higher dV/dt More coupling noise intal

Clock is no longer a friend

- Significant part of cycle time is wasted
 - $-T_{Clock-Q}$, T_{D-Q}
- Eats-up switching power
 - $C * V^2 * f$
- Takes-up area and metal layers
- Induces crosstalk and IR noise

Q

clock

clock

Clock is no longer a friend 2

 People are used to clock-by- clock modeling

 This slows down the take-off of high-level design

Workaround Approaches

- More domino logic
- Multiple frequencies on chip
- Selective stop-clock (power saving)
- Wave pipelining?
- Useful skew
- Master-slave FF losing favor?
 - Back to transparent latches
 - New latch designs for small Power*Delay
- Retiming (="borrowing of logic")

Static noise analysis

Interconnect-centered design

- Gates are ideal and free
- Wires require planning and optimization
 - Layer assignment, width, repeaters, driver sizing
- Noise+timing considerations

Time zones and chip assembly

 SOC is envisioned as a hierarchy of modules within several isochronous zones (clock domains)

Design challenges:

- Chip-assembly
- Chip-level
 - delays signal-integrity
 - power

intel

The show must go on...

More complex systems

More performance required

'10X' technical forces

• Past:

- Electronics \rightarrow no moving parts & Relays
- Solid-state \rightarrow no vacuum Tubes
- Integrated circuits \rightarrow no coupling Capacitors
- MOS technology \rightarrow no Resistors

• Future:

- DSM technology \rightarrow no Clocks ???

Synchronous Vs. Asynchronous: Will the lanes merge now?

- "The distinction is very hazy in many cases of actual engineering interest" [G.H. Mealy, 1955]
- Inertial delay problem of learning by the engineering community....

Education on asynchronous techniques is a must!Can CAD help?

Async

Insights on CAD

- Big productivity gains come from new design methods
- Tools and methods: chicken and egg
- CAD leverage
 - Evolution in tools causes revolutions in design work
- Successful tools take advantage of
 - Abstraction
 - Hierarchy
 - Regularity
 - Self-imposed restrictions
- Designers lose something and need to gain a lot in return
- o 3 essentials:
 - Design capture
 - Synthesize
- Verify intاما

Summary

- Timing and synchronization issues will keep growing in importance
- Logic design will keep changing:
 - Modeling
 - Optimization goals
 - Methods
- 2 keys to success:
 - Education
 - CAD

