
Packet-Level Static Timing Analysis for NoCs

Evgeni Krimer1,2, Isaac Keslassy2, Avinoam Kolodny2, Isask’har Walter2, Mattan Erez1

1Department of Electrical and Computer Engineering, University of Texas at Austin
2Department of Electrical Engineering, Technion — Israel Institute of Technology

{krimer, mattan.erez}@mail.utexas.edu,{isaac@ee, kolodny@ee, zigi@tx}.technion.ac.il

Abstract

Networks-on-chip (NoCs) are used in a growing number of
SoCs and multi-core processors, increasing the need for accurate
and efficient modeling to aid the design of integrated systems.
A methodology for packet-level static timing analysis in NoCs is
presented. It enables quick and accurate gauging of the perfor-
mance parameters of a virtual-channel wormhole NoC without
using simulation techniques. The network model can handle any
topology, link capacities, and buffer capacities. It provides per-
flow analysis that is orders-of-magnitude faster than simulation
while being both significantly more accurate and more complete
than prior static modeling techniques. Our methodology is in-
spired by models of industrial flow-lines. Using a carefullyde-
rived and reduced Markov chain, the model can statically repre-
sent the dynamic network state and closely estimate the average
latency of each flow. Usage of the model in a placement optimiza-
tion problem is shown as an example application of the method.

1 Introduction

Networks-on-chip(NoCs) are increasingly used instead of
buses and dedicated signal wires in large-scale processorsand,
even more so, in modern systems-on-chip (SoC) [4]. In NoC-
based systems, data transmission takes the form of multi-packet
flows routed through the NoC over multiple links and routers.
The purpose of this paper is to rigorously derive a delay model
for packet-levelstatic timing analysis (STA)for NoC-based SoCs.
Static timing analysis in a shared network is a non-simulation-
based technique to estimate the average delay of each flow in the
network, given the network topology, link capacities, router ar-
chitecture, and the bandwidth requirements and characteristics of
all flows.

The motivation for a per-flow STA technique is to enable a
range of design optimizations that can rely on accurate and fast
network analysis. Methods such as module placement and re-
source allocation [1,34] require a large number of iterations, and
thus the evaluation of network performance within each itera-
tion must be very efficient. Until now, an accurate and complete
modeling of advanced NoCs has only been possible with detailed
and time-consuming simulations. The main reason is that net-
work resources, including links, routers, buffers, and ports, are
shared between several information flows. Thus, contentioncan
arise inducingstatistical uncertaintyin the delay of each packet.

Detailed simulation, however, is too slow to be effective within
an optimization inner loop because all internal buffers andstates
must be modeled on a cycle-by-cycle basis.

Contributions

We present a rigorous analytical model that relies on a care-
fully constructed and reduced Markov chain to represent network
state, including the occupancy of all buffers. Our model is in-
spired by industrial work-flow modeling techniques and, to the
best of our knowledge, is the first that can accurately account for
arbitrary network topology, link capacities, and buffering, when
using wormhole routing with virtual channels. We rely on the
well-developed theory of stochastic processes and show that our
technique faithfully predicts network queuing delay for both syn-
thetic and real-world SoC traffic scenarios. In this paper welimit
the analysis to packets that have random arrival times according to
a Poisson distribution. We present results and validate themodel
for the delay analysis of flows with fixed-length packets thatare
composed of a large number of flits. We discuss extensions to
these assumptions as future work.

To summarize our contributions:

• We present the first rigorous NoC model that is based on
stochastic theory and show how to represent and solve for
the network state using a Markov chain.

• We show how to account for arbitrary and finite buffering, as
well as support wormhole routing and virtual channels. We
use network delay analysis as an illustrative example of the
modeling technique

• We validate our model using synthetic and real-world sce-
narios, and discuss why it is more complete and more accu-
rate than prior analytical models.

• We demonstrate that our model can serve at the core of a
design optimization method by showing that it can faithfully
choose between multiple placement options in a real-world
SoC example, and do so while requiringorders of magni-
tude less time than simulation. We also show that the most
advanced prior-art model fails to make the correct optimiza-
tion decision.

The rest of the work is organized as follows. We start by dis-
cussing the related work in Section 3. Then, in Section 4, we
establish a general analytical model for the average delay of each
flow in a general NoC topology. We evaluate the delay model in
Section 5 by comparing it with accurate simulation results and

1

with previous delay models. Finally, Section 6.2 uses the model
in a placement optimization tool and provides more insightsand
simulation results for the model.

2 Wormhole Routing and Virtual Channels
Wormhole Switching, orWormhole Routing[28], is a flow con-

trol technique that can improve latency while reducing required
buffering. In wormhole routing, large packets are broken into
small (constant length) units calledflits (flow control digits) and
two control flits are added, aheadflit at the beginning and atail
flit at the end of each packet. The head flit contains all the routing
relevant information and establishes a path through the network.
The subsequent flits follow the head flit in a pipelined fashion
through the intermediate routers, which need only buffer a few
flits at a time rather than the entire packet. In this way, the over-
all routing latency is reduced with pipelining, while intermediate
nodes require smaller buffers. The tail flit is used to signalthe end
of the message and for various bookkeeping purposes. Wormhole
routing is used widely in applications ranging from local com-
puter clusters [26], through SoC NoCs [12], to SpaceWire [31,32]
chips.

Wormhole routing has several disadvantages, with the most se-
rious being the long duration in which a channel in the network is
occupied. A particular channel in the network is occupied from
the time a head flit arrives until the time the corresponding tail is
processed, and the link cannot be used for any other packet. Be-
cause flit transmission is pipelined, multiple links in the network
are occupied by a single packet at any given time, detrimentally
impacting performance.

To mitigate this effect,Virtual Channels(VCs) [12] allows a
router to serve several packets simultaneously, by time multiplex-
ing the physical link resource. This is done by additional logic
and buffering in the router that maintains the status of fseveral
flows. Each of these flows is referred to as a virtual channel, and
is allocated when header flit is received by a router. The router can
continue processing other packets as long as virtual channels and
buffers are available. The different VCs arbitrate for the physical
link and many arbitration policies have been studied (e.g.,[35]).

3 Related Work
Much of the prior work on analytical delay modeling in

wormhole-enabled networks approximates the mean delay of
packets in the entire system rather than estimating the delay of
each source-destination flow separately [3, 20, 22, 25, 30].Such
gross approximations are often inadequate, and in such cases can-
not be used in the NoC design process to efficiently optimize the
allocation of resources.

In addition, while state-of-the-art NoC architectures multi-
plex multiple packets on the network links using virtual chan-
nels [5,6,24,27,36], most existing analytical models do not sup-
port virtual channels [9,11,14,29,38]. Further, in [18,23,37], the
authors formulate worst-case latencies of flows in the NoC. While
this approach is suitable for real-time flows with hard deadlines,
the vast majority of communication in typical SoCs has a set of
more relaxed timing requirements, which can be satisfied with
statistical guarantees.

A heuristic approach to estimate the average delay of each flow

was taken in [17]. The authors developed aheuristic delay model
(HDM) that takes into account the capacities of all the linkstra-
versed by the modeled flow, as well as the bandwidth consumed
by all other network flows which share some links with the mod-
eled flow. Their heuristics attempt to estimate the serialization
and head-of-line blocking, which add to the delays of a link be-
cause of congestion further downstream. This approach is useful,
providing a closed-formed formula to estimate the delay foreach
flow in the network based on traffic parameters of all the flows.
However, the model uses heuristics and its accuracy has not been
confirmed in a rigorous fashion. In addition, [17] does not cap-
ture the effects of finite buffer sizes. In Section 5, we compare
this model against ours and show how its heuristic approach can
lead to a wrong optimization decision.

4 Analytical Model

Our model supports an arbitrary NoC topology with wormhole
routing and virtual channels. The capacity of each link in the net-
work may be set arbitrarily. Likewise, the capacities of thebuffers
in each virtual channel are arbitrary as well. We assume thatall
packets have a fixed length, and that the packet arrival timesat the
injection port of each node can be modeled by a Poisson random
process. In Section 7 we discuss extensions to our model thatre-
lax these assumptions on packet length and distribution. Wealso
assume that there is no blocking in the network due to a lack of
virtual channels, and that the destination node can always eject
packets from the network. Finally, we place no restriction on the
routing algorithm except that it be deterministic.

Our technique follows three main steps:

1. We focus on the NoC service for a particular flow of inter-
est, which we generically callflow X, and model it using a
Markov chain (MC) [7]. The Markov chain represents the
network state of the routers and buffers on the path of flow
X, as well as the impact ofinterfering flows, i.e., those flows
that share at least one link with flowX.

2. We derive the flit propagation characteristics by computing
the stationary distribution of the Markov chain.

3. We use the derived properties and standard analysis of
M/G/1 queues to calculate the expected packet delay and the
throughput of flowX.

4.1 Constructing the Markov Chain

4.1.1 The Reduced Configuration

To fully represent the NoC as a Markov chain, the internal state
of each router (and in particular the buffer occupancies) aswell
as the characteristics of all flows need to be expressed as states in
the chain. Unfortunately, this naive approach would resultin an
enormous and intractable number of states.

As shown in the transition from Figure 1a to Figure 1b, to
reduce this Markov chain to a manageable size, we generate a
separate model for each ”isolated” flow, generically represented
as flowX. We call this model thereduced configuration. In the
reduced configuration, we limit the analysis to the routers on the

2

Table 1: Definition of symbols used in model derivation.

λα packet arrival rate of flowα [packets per unit time]
Mα packet length of flowα [flits]
φ(l) capacity of linkl [flits per unit time]
si Markov chain statei
πi stationary distribution probability of statesi

γi fraction of packets of a measured flow (X) served
while in statesi

ρi NoC throughput associated with statesi for flow X

[packets per unit time]
ηi head-flit propagation delay of packets in flowX in-

curred while in statesi [time units]
τα expected time to fully transmit a packet of flowα [time

units]
∆(l) buffer capacity on linkl for flow X

δ(l) bufferoccupancyon link l for flow X

path ofX, and only consider those other flows that share net-
work links with X, such as flowsA andB, but not flowC (this
particular reduction method was also used in [16,17,39]).

To further simplify the Markov chain, we restrict our analysis
to epochs in which the flits of flowX are waiting to be served by
the NoC. This last assumption eliminates the need to model the
large buffers at the network injection points and permits tomodel
them as infinite buffers. Without assuming that flowX is active,
we would need to track the state of the network during periods
of inactivity, which would complicate the MC representation. We
discuss the implications of this simplification in Section 5.2.

X

A

B

C

(a) Full configuration

X

B

(b) Reduced configuration

s1 s2

λB

1-λB cB

fB

(c) Associated MC

λx

∞

(d) Flowline representation

λx

λB

∞

∞

(e) Queue representation

Figure 1: FlowX sharing a single link with a single interfering flow.

The reduced configuration for flowX can be viewed as a

Markov chain in which each state is defined by the buffer occu-
pancies and the existence of interfering flows along the links, as
shown in Figure 1c and explained in Section 4.1.2. We construct
a specific Markov chain for flowX to model its reduced con-
figuration. This Markov chain representation accounts for both
the extra queuing delay caused by interfering flows, which share
links and ports with flowX, as well as for the delay of serializa-
tion and back-pressure within flowX and between the flits of a
single packet (Figure 1e).

This system is equivalent to an open queuing network (Fig-
ure 1e) and to a manufacturing flowline (Figure 1d) with unre-
liable parallel machines [13]. By casting our problem in terms
of unreliable machines, we can leverage a large body of works
on stochastic theory and modeling methodology. We represent
each hop taken by flowX as a production station consisting of
a group of parallel machines. Likewise, in each cycle, the router
is modeled as choosing a new machine in this group of paral-
lel machines, in a round-robin fashion. A functioning machine
processes flowX and contributes to its throughput, while a mal-
functioning machine is equivalent to the link being used by an
interfering flow.

In the following subsections we show how to construct the
Markov chain for a number of representative interference patterns
and conclude the analytical model section by deriving delayand
throughput using the Markov chain (Section 4.2).

4.1.2 Sharing a Single Link with a Single Flow

In this scenario, measured flowX shares a single link with in-
terfering flowB, as shown in Figure 1, which also depicts the
flow-line and queue representations and the associated MC. The
MC, which represents this single-interferer case, requires only
two states (Figure 1c). States1 represents a “no interference” sit-
uation, where flowX can use the entire capacity of the shared
link. If there are flits of both flowsX and B waiting in the
buffers, as illustrated in Figure 1e, the round robin arbitration
mechanism allocates the shared link to each flow on every other
cycle. As a result, each flow can utilize only half of the link ca-
pacity. States2 represents the situation where flowB interferes
with the measured flowX. The MC does not need to represent a
situation where only flow B is active, because it need only model
the network as seen by flow X, and a separate MC is constructed
to model the network properties of flow B.

The MC representation also expresses the probabilities of tran-
sitioning between the states, denoted in Figure 1c by the labels
on the arrows connecting the two states. Starting from states1,
where only flowX is active, the probability of transitioning to
states2 is simply the probability that a new packet of flowB ar-
rives. Assuming Poisson arrival times, this probability issimply
(λB). Conversely, the probability of staying ins1 is (1 − λB).
Starting from states2, where both flows are active, the probabil-
ity of transitioning tos1 is the probability that the current packet
of flow B is fully transmitted (fB) and that no new packet of flow
B has arrived during this transmission time. The time required
to transmit a packet is the length of the packet (MB) divided by
the available link capacityφ, which is only half of the total ca-

pacity because flowX is also active:
(

τB = MB

1

2
φ

)

. Thus, the

probability of fully transmitting a packet at any time is1
τB

. The

3

probability for another packet to appear during this time, which
prevents transitioning back tos1 is (λBτB). Therefore, the prob-
ability for transitioning from states2 to states1 is:

fB =
1

τB

max (1 − τBλB , 0) = max

(

φ

2MB

− λB , 0

)

Finally, the probability for flowB to continue being active, and
the MC to remain in states2 is:

cB = 1 − fB = min

(

(1 −
φ

2MB

) + λB , 1

)

Section 5.2 shows how to use this MC to derive delay and
throughput properties for flowX, validates the results with de-
tailed simulation, and discusses the implications and comparison
to HDM.

4.1.3 Sharing a Single Link with Multiple Flows

A configuration where the measured flow shares a link with two
other flows is shown in Figure 2 along with its flowline/queue
equivalence and associated MC. Here, states1 represents no in-
terference, statess2 ands3 represent inference by only flowA or
only flow B respectively (i.e., flits of a single flow other than flow
X are being multiplexed on the same link), ands4 represents the
state in which flits of all three flows (A, B andX) are multiplexed
on the same link.

With the additional states, the MC is more complex and has a
larger number of possible transitions. The evaluation of the tran-
sition probabilities is similar to the derivation discussed above.
For states1, the probability of staying in this state of no interfer-
ence is the probability that no new packets arrive on flowA and no
new packets arrive on flowB ((1 − λA)(1 − λB)). Conversely, a
transition froms1 to s4 occurs when both flowsA andB become
active at the same time (λAλB). The probability of transitioning
from s1 to s2 is that of a packet arriving on flowA and not arriv-
ing on flowB, while the opposite is true for a transition froms1

to s3.
We now discuss the transition probabilities from states2.

When a packet of flowA is fully transmitted and no other packets
of both flowsA andB arrived during the transmission time, then
the MC transitions back froms2 to s1. To calculate the proba-
bility of fully transmitting a packet, marked asfA, we need to
first derive the expected transmission time of a packet from flow
A (τA). When a packet of flowA is being serviced, it can be
done while at states2 at a rate ofφ2 , or in states4 with a rate
of φ

3 (because all three flows are active ins4 but only two in
s2). Therefore, the expected transmission time is given by theex-
pected fraction of time the packet is in statess2 ands4, which are
related to the stationary distribution probabilities of these states
(π2 andπ4 respectively):

τA =
MA

1
2φ

·
π2

π2 + π4
+

MA

1
3φ

·
π4

π2 + π4

=
2MA

φ

(

1 +
1

2

π4

π2 + π4

)

Given the expected transmission time, we can now write the prob-

ability of fully transmitting a packet as:

fA =
1

τA

max (1 − τAλA, 0) = max

(

1

τA

− λA, 0

)

Thus, the probability of transitioning froms2 to s1 is
(fA(1 − λB)). The probability for moving froms2 to s3 is that
of fully transmitting the packet from flowA while a packet from
flow B arrives at the same time, or(fAλB). The final two transi-
tions are of remaining ins2 or changing tos4, which occur when
flow A continues and either a packet from flowB does not arrive
(stay ins2), or does arrive (move tos4). As before, we mark the
probability of flowA continuing activity as:

cA = 1 − fA = min

(

(1 −
1

τA

) + λA, 1

)

The transitions out of states3 are derived in the exact way as
for states2, reversing the roles of flowA and flowB. With re-
spect to states4, the probability of transitioning tos1 is the prob-
ability that both flowsA andB are fully transmitted, orfAfB .
Transitioning froms4 to s2 occurs when flowA continues and
flow B finishes and the probability iscAfB . In symmetric fash-
ion, the probability ofs4 to s3 is cBfA. Finally, the probability of
staying in states4 is cAcB signifying that all flows remain active.

X

B
A

(a) Reduced configuration

λx

λB

∞

λA

(b) Queue representation

λx

∞

(c) Flowline representation

(1
-λ
A
)(
1-
λB
)

s1 s4

λ
B (1-λ

A)
fB (1-λ

A)

s2

s3

λ A
(1
-λ
B
)

fA
(1
-λ
B
)

c
A *λ
B

c B
*λ
A

cA(1-λB)

cB(1-λA)

c
A
*c
B

c B
*f A

λAλB

fA*fB

c
A *fB

fB *λ
A fA*

λB

(d) Associated MC

Figure 2: FlowX sharing a single link with multiple interfering flows.

4.1.4 Sharing Multiple Links

A configuration of interfering flows over multiple links, including
the equivalent queuing and flowline representations, is shown in

4

Figure 3. Unlike the previous cases, this scenario includesa finite
buffer that has to be taken into account. FlowX passes through
two routers, each with an interfering flow, and therefore canex-
perience back-pressure from the intermediate node that does not
have the infinite buffers assumed on the network injection and
ejection packet queues. We assume that the intermediate flit
queue has a depth of∆ flits, and will block transmission of an
upstream node when it is full (Figure 3b).

We explicitly model the occupancy of the intermediate buffer
in the MC, by dedicating states to each possible buffer occupancy
level. We show this in Figure 4 for the case where all link capac-
ities are equal. The figure has three parts: Figure 4a shows only
those states of the MC that correspond to an occupancy level of
δ; Figure 4b shows a schematic symbol that represents the par-
tial MC of Figure 4a; and Figure 4c is the entire MC, using the
schematic representation to simplify the figure.

Focusing on Figure 4a, states1,δ represents the case where
only flow X is active and the buffer has occupancy levelδ. State
s2,δ represents the case where flowsA andX are active but flow
B is inactive ands3,δ is for when flowsB andX are active but
flow A is inactive. Finally,s4,δ represents activity on all three
flows and occupancy levelδ. Starting froms1,δ the buffer occu-
pancy is not going to change in any scenario, because both routers
are servicing flowX at the same rate and the buffer is emptied
and filled at the same rate. The transition probabilities outof this
state follow the same derivation descried in Section 4.1.3.Simi-
larly, states4,δ cannot change the occupancy because the service
rate for flowX is equal toφ

2 at both routers. Again, the tran-
sition probabilities out ofs4,δ follow the reasoning presented in
Section 4.1.3. Because each link has only two multiplexed flows,
however, the probability for fully transmitting a packet ofthe flow
interfering with flowX is derived in the same manner as in Sec-
tion 4.1.2:

fα = max

(

φ

2Mα

− λα, 0

)

α ∈ {A,B}

cα = 1 − fα = min

(

(1 −
φ

2Mα

) + λα, 1

)

Note that these probabilities of fully transmitting, or continuing
with, an interfering flow are independent of the buffer occupancy.
This is true because we assume that flowX is always active and
that the ejection port of the network is always available foreach
flow.

When flowsA andX are active and flowB is inactive (state
s2,δ), the service rate for flowX is higher in the downstream
router, which is only servicingX, than in the upstream router
that is servicing two flows. Therefore, the buffer occupancyde-
creases, which is represented by the transition froms2,δ to s2,δ−1.
This transition occurs with probability(cA(1 − λB)), which is
the probability that flowA remains active and that flowB remains
inactive. The other transition probabilities ofs2,δ represent tran-
sitions that do not change buffer occupancy, either becauseflow
B becomes active or flowA is fully transmitted and the service
rate for flowX becomes equal at both routers. A similar analysis
of states3,δ shows that if flowB continues and flowA does not
become active, then the buffer occupancy increases and the MC

transitions to states3,δ+1. This is because the downstream node
is now servicing flowX at half the rate of the upstream node.

The edge statess2,0 ands3,∆ are connected to themselves as
shown on Figure 4c. Essentially, the buffer can never have fewer
than zero flits and cannot exceed∆ flits. When the buffer is full,
flow X is still being serviced by the downstream buffer and is not
stalled (remember that we assume ejection is always possible).
A full buffer causes back-pressure, which reduces the transmis-
sion rate in the upstream node. Our model inherently accounts
for this back-pressure through the stationary distribution of the
states, which directly determines the throughput as explained in
the following subsection.

Observe that swapping the order of the interfering flows, i.e.
swapping flows A and B in Figure 3a, would result in a symmet-
rical MC leading to exactly the same stationary distribution and
estimated network properties. This is a significant improvement
over the prior HDM technique, in which the order of the inter-
fering flows affected the estimated delay. We further discuss this
issue and show an example in Section 5.4.

X

A B

(a) Simplified configuration

λx

λA

∞

∞

x only

λB

∆

∞

(b) Queue representation

λx

∞ ∆

(c) Flowline representation

Figure 3: FlowX sharing multiple links with multiple interfering flows.

4.2 Deriving Throughput and Delay

To derive the expected throughput of the NoC observed by
flow X in the presence of interference we rely on the fact that the
Markov chain we construct is positive recurrent and aperiodic.
These properties imply that the random process corresponding to
the state transitions, which represents the NoC, is ergodic. Using
the ergodic theorem [7,21] the expected throughput is givenby:

TX =
∑

πiρi (1)

π (a vector) is the stationary distribution of the MC, which can be
computed by solving a system of linear equations.

Next, we express the expected delay of packets in flowX as:

LX = WX + HX +
1

TX

(2)

5

(1
-λ
A
)(
1-
λ B
)

s1,δ s4,δ

λ
B (1-λ

A)
fB (1-λ

A)

s2,δ

s3,δ

λ A
(1
-λ
B
)

fA
(1
-λ
B
)

c
A *λ
B

c B
*λ
A

cA(1-λB)

cB(1-λA)

c
A
*c
B

c B
*f A

λAλB

fA*fB

c
A *fB

fB *λ
A fA

*λB

(a) MC given that the buffer occupancy isδ

δ

(b) Schematic
symbol rep-
resenting Fig-
ure 4a

0 1 2 ∆-1 ∆...

(c) Full MC

Figure 4: Markov chain representing flowX sharing multiple links with
multiple interfering flows (Figure 3a).

WX is the expected waiting time in the source node input buffer,
which we derive in Equation 3.HX , is the average propagation
time of the head flit that we approximate in Equation 5. The fi-
nal term,TX , is the expected throughput observed by flowX as
computed earlier and expressed in units of packets per unit time.

To express the input delay (WX) we use classic results from
the analysis of M/G/1 queues [21], which the NoC conforms to
through the assumptions on Poisson packet arrival times andcon-
tinuous service:

WX =
(1 + C2

SX
)λX

2TX(TX − λX)
(3)

The waiting time is dependent on the throughput (TX), arrival
rate (λX), and the coefficient of variation (C2

SX
):

C2
SX

=
σ2

SX

S2
X

(4)

To calculate the average service time (SX) and its variance
(σ2

SX
) we first compute the expected number of packets serviced

at each state of the Markov chain,γ. γ is the fraction of packets
at each state, rather than the fraction of time spent at each state,
which isπ.

γi

πiρi

=
γj

πjρj

∀i, j

∑

γi = 1

We can now compute the average service time and its vari-
ance, and use the result to compute the coefficient of variation
(Equation 4) and finally the waiting time (Equation 3):

SX =
∑ γi

ρi

≡
1

TX

Table 2: Simulated NoC properties.

Dimensions 4 × 4
Message length 256 flits
Flit length 32 bit
Virtual Channels 4
Buffer size 5 flits
Routing wormhole XY
Node ↔ Router capacity 400Gbps
Router ↔ Router capacity 10Gbps
Router frequency 333MHz

σ2
SX

=
∑ γi

ρ2
i

− S2
X

The last component of the expected packet delay (Equation 2)
is the head-flit propagation delay:

HX =
∑

γiηi (5)

ηi is the head-flit propagation delay of packets in flowX incurred
while in statesi, measured in units of time.

Finally, for SX ≫ HX we can approximate the end-to-end
packet delay as:

LX ≈ WX +
1

TX

(6)

5 Model Validation
This section illustrates how to apply the model to compute

network properties such as delay and throughput. We use the
scenarios described in Sections 4.1.2–4.1.4 and, for each case,
compare the results of our model with detailed simulations and
with HDM [17]. Our cycle-accurate, discrete-event, NoC simula-
tor uses the OMNET++ framework [40]. The simulator simulates
wormhole switching with virtual channels [12], deterministic XY
routing, and configurable network topology, buffers, and traffic
parameters. The simulated NoC properties are summarized in
Table 2.

5.1 Isolation

X

A

B

C

Figure 5: Example of possible neglected interaction between interfering
flows.

In Section 4.1.1 we explained how to isolate the investigated
flow X from the rest of the flows. By doing this we neglect to
account for possible indirect interactions between other flows and

6

flow X in different parts of the NoC, as illustrated in Figure 5. In
this figure, flowC does not interfere with flowX directly , but
flows A andB, which do interfere with flowX, interact through
flow C.

A B C D

X

Figure 6: Configuration showing the isolation method

We investigate the potential impact of indirect interference us-
ing the configuration shown in Figure 6, where flowX is inter-
acting directly only with flowA, however, flowA might interact
with other flows (B,C,D). We simulated multiple configurations
of indirect interference described in Table 3 and varied thearrival
rate of flowX (λX), keeping other arrival rates fixed for simplic-
ity (λA = λB = λC = λD = 0.2). The results (Figure 7) show
that regardless of whether flowsB,C,D are present, the impact
on the end-to-end delay for flowX packets is only affected by
flow A. This observation holds since the examined system is sta-
ble, and hence, indirect interference does not change the arrival
properties of flowA as it interacts with flowX. Indirect interfer-
ence is likely to impact the delay of flowX in unstable systems,
but analysis of such systems is beyond the scope of this paper.

Table 3: Different interference configurations

configuration A B C D
I X X X X
II X X X
III X X X
IV X X
V X X
VI X

����

����

����

����

����

����

�����

��
���

���
�	

��

����
�

���
��
�
���

�

� ��

��� ��

� ��

�

����

	���

���

����

�� ��� 	��
�� ��� ��� ��� ��� ���

��
���

���
��

���
���

	

���

����
�
��

λX

Figure 7: End-to-end latency for flowX packets with in different inter-
ference configurations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00%

E
n

d
-t

o
-E

n
d

 l
a

te
n

cy
 o

f
fl

o
w

 X
 -

L X
[p

s]

sim

model

HDM

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00%

λ
X

Figure 8: FlowX sharing a single link with a single flow - variableλX .

5.2 Sharing a Single Link with a Single Flow

The simplest analyzed test case models a single link shared
with a single flow, as shown in Figure 1b. The stationary dis-
tribution π of the Markov chain derived in Section 4.1.2 is the
solution of the following set of linear equations:

π1λB = π2fB π1 + π2 = 1

Resulting in:

π1 =
fB

fB + λB

π2 =
λB

fB + λB

Applying Equation 1 for the expected throughput provides:

TX = π1ρ1 + π2ρ2 =
fB

fB + λB

+
1
2λB

fB + λB

=

= max

(

φ

MX

− λB

MB

MX

,
φ

2MX

)

TB can be calculated in exactly the same way and following
the steps in Section 4.2LX andLB can be calculated (not shown).
An important observation of this resulting throughput is that the
worst-case throughput observed by flowX is 1

2 of the link ca-
pacity, which corresponds to high contention with the interfering
flow B.

Figure 8 shows the expected delay of packets in flowX as
its throughput requirement, controlled by the arrival rate(λX) is
increased, and where the arrival rate of the interfering flowB is
constant (λB = 0.4). For these parameters, both our model and
HDM match the simulation results well. As explained above, the
minimum throughput observed by flowX is half of the link ca-
pacity, and this low throughput is reached when the interfering
flow arrival rate exceeds0.5. This phenomenon is not accounted
for in HDM, because its heuristics were developed and tuned for
low arrival rates. This error in delay estimation is apparent in Fig-
ure 9, which shows the case of fixed (λX = 0.4) and variableλB .
The HDM allows the interfering flowB to consume more that
half of the link capacity, resulting in a sharp increase of the esti-
mated delay of flowX, which tends to infinity for (λX → 0.6).
Our model, which inherently accounts for the minimum observed
throughput, on the other hand, matches simulations well.

7

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00%

E
n

d
-t

o
-E

n
d

 l
a

te
n

cy
 o

f
fl

o
w

 X
 -

L X
[p

s] sim

model

HDM

Linear region

ξ

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00%

λ
B

Figure 9: FlowX sharing a single link with a single flow - variableλB .

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

E
n

d
-t

o
-E

n
d

 l
a

te
n

cy
 o

f
fl

o
w

 X
 -

L X
[p

s] sim-double

sim-triple

model-double

model-triple

HDM

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

λ
X

Figure 10: Comparison of sharing a single link with three total flows
(two interfering flows with (λA = λB = 0.2) (sim-triple and model-
triple) and sharing the link with one interfering flow of equivalent rate
(λA = 0.4) (sim-double and model-double). HDM models both cases as
a single interferer with (λ = 0.4).

In addition, an interesting observation can be made regarding
the degree of estimation error of our model (see Figure 9). The
end-to-end latency of flowX when (λX = 0.4 < λB) has lin-
ear behavior with respect toλB . As can be seen, our presented
model overestimates the end-to-end delay for this case, albeit
with bounded error. The reason is that we assume that flowX

is always active and has flits available for transmission. This as-
sumption, however, partially fails when the interfering flow B

has a higher rate than the investigated flowX. When flowX is
not active, flowB observes higher service rate and is transmitted
more quickly. This reduces the probability that it actuallyinter-
feres with flowX and leads to the overestimation error.

While leaving more in-depth investigation of this phenomenon
to future work, both in terms of curbing it and with respect to
providing a tight bound, we now characterize the error behavior.
First, we notice that because of this error, the end-to-end latency
can only be over estimated and not under estimated. Second, the
error can be roughly bounded by:

ξ < LB(λX = 0.5) − LB(λX = λB)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00%

E
n

d
-t

o
-E

n
d

 l
a

te
n

cy
 o

f
fl

o
w

 X
 -

L X
[p

s] sim-buffer5

sim-buffer300

model-buffer5

model-buffer300

HDM

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00%

λ
X

Figure 11: FlowX sharing multiple links with multiple flows – variable
buffer capacity.

5.3 Sharing a Single Link with Multiple Flows

We now analyze the test case of a single link with multiple
interfering flows, which corresponds to Section 4.1.3. In this sce-
nario, HDM only considers the sum of the arrival rates of all the
competing flows; hence, it cannot distinguish between a single
interfering flow with (λ = 0.4) and two interfering flows with
(λ = 0.2) each, for example.

As shown in Figure 10, however, these two distinct cases result
in very different throughput/delay characteristics. Our technique
faithfully models the two cases, and closely follows simulation
results.

5.4 Sharing Multiple Links

The last example is of sharing multiple links with different
flows as shown in Figure 3a and discussed in Section 4.1.4. In
this scenario, there is a finite buffer in an intermediate node that
can back-pressure flowX.

Figure 11 demonstrates the impact of varying the buffer ca-
pacity for interfering flows of fixed rate (λA = λB = 0.2) and
varying λX . Simulation results for buffer capacities of5 and
300 flits are shown, along with estimates provided by the pro-
posed model and by HDM. With lower buffer capacity, the peak
throughput drops substantially, which our model accurately pre-
dicts. HDM [17], which is oblivious to the buffer capacity, does
not match the simulation results.

Finally, another aspect of this multiple interferer scenario re-
lates to the order in which the interfering flows appear alongthe
path of flowX. Following the conclusions of the analysis de-
scribed in Section 4.1.4, our proposed model estimates the same
network performance properties (throughput) regardless of the or-
der of the interfering flows. HDM, on the other hand, is sensitive
to the order in which the interfering flows are applied, as is evi-
dent in Figure 12, which shows results for two different configu-
rations: Configuration A, where (λA = 0.3) and (λB = 0.1); and
Configuration B where (λA = 0.1) and (λB = 0.3).

6 Benchmark Delay Model and Placement Opti-
mization

In this section we demonstrate how our analytical model can
be used in the inner-loop of many optimization algorithms, such

8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00%

E
n

d
-t

o
-E

n
d

 l
a

te
n

cy
 o

f
fl

o
w

 X
 -

L X
[p

s] model

sim-cfg-A

sim-cfg-B

HDM-cfg-A

HDM-cfg-B

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00%

λ
X

Figure 12: FlowX sharing multiple links with multiple flows – varying
the order in which interfering flows interact along the path of flowX.

Table 4: Audio-video benchmark traffic requirements from [19].
flow src dst rate [kB/s] flow src dst rate [kB/s]
F1 MEM1 ASIC4 1168730 F16 ASIC4 DSP1 338480
F2 ASIC2 ASIC1 800 F17 DSP1 DSP2 338480
F3 MEM1 CPU 752050 F18 DSP8 DSP7 282650
F4 MEM3 CPU 755840 F19 DSP6 ASIC2 282480
F5 ASIC4 CPU 1970 F20 DSP1 CPU 203630
F6 DSP3 DSP6 70610 F21 DSP2 DSP1 203630
F7 ASIC1 ASIC2 250 F22 DSP3 DSP5 70610
F8 DSP3 ASIC4 380160 F23 DSP7 MEM2 70650
F9 DSP8 ASIC1 800 F24 MEM2 ASIC3 77050
F10 DSP5 DSP6 269240 F25 ASIC3 DSP8 6410
F11 CPU MEM1 380160 F26 DSP4 DSP1 36720
F12 CPU MEM3 380160 F27 ASIC2 MEM2 6400
F13 CPU ASIC3 380160 F28 ASIC2 ASIC3 7650
F14 DSP2 ASIC2 338480 F29 ASIC3 DSP4 1440
F15 DSP4 CPU 1970 F30 ASIC1 DSP8 250

as module placement, buffer allocation, link capacity allocation,
and network topology selection. These inner loops cannot solely
rely on simulations, as simulations take too long to complete,
making analytical models crucial for an efficient design process.
Further, the correctness of the analytical models directlyaffects
the correctness of the optimization algorithm. Therefore,we
show that our analytical model is both fast and accurate in real-
world scenarios.

We first analyze the delay of all flows in a SoC using the audio-
video benchmark presented in [19], with the traffic requirements
summarized in Table 4. Using detailed simulations, Section6.1
compares the accuracy and computation time of our proposed
model against HDM. We then illustrate in Section 6.2 how our
analytical model can be used in amodule placementalgorithm
that attempts to minimize overall flow delay, whereas HDM fails
to make a correct optimization decision.

6.1 Benchmark Delay Model

We evaluate our analytical delay model for the benchmark sys-
tem and traffic requirements shown above assuming Poisson ar-
rival times. We use a4×4 mesh topology with the parameters de-
tailed in Table 2, and the module placement shown in Figure 13,
denotedplacement A, where arrows indicate the different flows.
For the simulations, we use the simulator described in Section 5,
and run the simulations long enough for all performance charac-
teristics of the different flows to stabilize.

Figure 14 shows the average total queuing delay of each flow
due to network contention, i.e. the average latency beyond the
network propagation time. It compares the simulation results with
our proposed analytical model, as well as the analytical model

DSP7 DSP2 ASIC1 DSP8

DSP4 DSP1 ASIC4 DSP3

MEM3 CPU MEM1 DSP5

MEM2 ASIC3 ASIC2 DSP6

Figure 13:Placement Aof the components and flows of the audio-video
SoC of [19].

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

A
v

e
ra

g
e

 n
e

tw
o

rk
 q

u
e

u
in

g
 d

e
la

y

sim

model

HDM

18571.9

0

1 2 3 4 5 6 7 8
flow

F F F F F F F F

Figure 14: Total queuing delay predicted by detailed simulation, our
model, and HDM for the 8 flows with highest latency corresponding to
the system of Table 4 with the placement depicted in Figure 13.

presented in [17]. Due to space limitations, we only presentthe
eight flows with the greatest relative slowdown, as ranked bysim-
ulation results and presented in Table 4 as(F1, . . . , F8).

As shown in Figure 14, our model approximates the simula-
tion results significantly more accurately than HDM. In particu-
lar, Figure 15 depicts the absolute error of the queuing delay for
each flow for both analytical models. We can see that the errorfor
each flow is under15% for our model, while the error of HDM
is often above50% and can be greater than even afactor of 10
times.

We also note that the time required to compute the results is
orders of magnitude faster using our model than with the detailed
simulation, requiring only33ms as opposed to over7 hours of
simulation time.

6.2 Placement Optimization

A possible use of the analytical delay model is to estimate net-
work and flow properties within the inner-loop of a module place-
ment optimization algorithm. As shown above, our model can
quickly compute delay with high accuracy and in this subsection
we demonstrate that it also reflects the change in delay as a result
of varying the module placement. Hence, our model can be used
to predict, and correctly and efficiently choose between multiple
placement options. Without loss of generality, we assume that

9

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

1 2 3 4 5 6 7 8

E
r
ro

r
 v

s
.

s
im

u
la

ti
o

n

model

HDM

1097.2%

F F F F F F F F
1 2 3 4 5 6 7 8

flow

Figure 15: Relative error in latency estimation between our model and
HDM relative to detailed simulation for the system requirements of Ta-
ble 4 and Placement A (Figure 13).

there is a need to choose between two placements:placement A,
illustrated in Figure 13, andplacement B, shown in Figure 16,
where modulesASIC4andDSP5have been swapped.

DSP7 DSP2 ASIC1 DSP8

DSP4 DSP1 DSP5 DSP3

MEM3 CPU MEM1 ASIC4

MEM2 ASIC3 ASIC2 DSP6

Figure 16:Placement Bof the components and flows of the audio-video
SoC of [19].

Figure 17 shows the average flow queuing delays for place-
mentsA (dark columns) andB (light gray columns). The sim-
ulation columns show that the average flow delay is lower in
placementA. This is accurately reflected in our analytical model,
which closely approximates the simulation delays to within3%,
and would also have pointed to placementA as having a smaller
overall delay. HDM, on the other hand, can be quite inaccurate,
and as a result leads to an incorrect placement decision, predict-
ing that placementB has lower overall latency than placement
A.

7 Discussion and Future Work
Our packet level static timing analysis (STA) model is con-

structed based on several important assumptions, which impact
its accuracy as discussed below. We assume that flowX is always
active, and is thus always competing for link capacity with the in-
terfering flows. We discuss the implications in Section 5.2 and
show that the resulting error is both bounded and limited to sce-
narios where the interfering flows require more throughput than
flow X. We plan to extend our model to reduce this effect in

400

500

600

700

800

900

1000

1100

1200

A
v

e
ra

g
e

 n
e

tw
o

rk
 q

u
e

u
in

g
 d

e
la

y

Placement A

Placement B

400

sim model HDM

Figure 17: Comparison of estimated latency of placementA (Figure 13)
and placementB (Figure 16) predicted by detailed simulation, the pro-
posed model, and HDM.

future work, as well as provide a tighter bound on the possible
error.

In this paper we assumed that packets are of constant length
and arrive according to a Poisson process. The arrival process
determines the expected delay through Equation 3, however,it
is possible to compute the delay using a G/G/1 queuing model
instead of the M/G/1 model we assumed to allow any stochas-
tic arrival process. Additionally, we plan to investigate non-
constant packet lengths and have initial promising resultsfor
exponentially-distributed packet lengths. Finally, we approxi-
mated the end-to-end delay by neglecting the header flit propaga-
tion delay (Equation 5), which is only accurate for long packets.
During our work, we verified that the queuing delay is accurately
estimated for any arbitrary packet length and will fully validate
the model for header-flit propagation delay (Equation 5) in the
future.

Our final assumption is that virtual channels are always avail-
able for any flow. Extending the model to account for this typeof
head-of-line blocking is left for future work.

Also as part of our future work, we will investigate the pos-
sibility of significantly simplifying the Markov chain by relying
on MC decomposition methods developed for industrial flowline
analysis [2, 8, 10, 15, 33]. This line of work promises to expedite
the solution of complex NoCs by curbing the exponential growth
in the number of states required to model a large number of inter-
fering flows.

Finally, while this paper demonstrated the application of our
model for estimating throughput and end-to-end delay, the model
inherently captures other network phenomena and parameters.
For example, estimating buffer occupancy levels is a straight-
forward extension, that uses the MC representation discussed in
Section 4.1.4.

8 Conclusions
In this paper we introduced a packet-levelstatic timing analy-

sis (STA) for NoCs. We showed how it allows for a quick and
precise evaluation of the performance parameters of a virtual-
channel wormhole NoC without using any simulation techniques.
It can handle any topology, link capacities, and buffer capacities
— and unlike existing models, is able to evaluate the performance

10

of a specific flow in a precise manner.
Our new model allows for a per-flow STA that is orders-of-

magnitude faster than simulation. Ultimately, the objective is for
this packet-level STA model to be used in the inner-loop of NoC
optimization tools — and become the packet-level equivalent of
gate-level critical path analysis utilized in CAD tools.

Acknowledgments
We would like to thank Prof. Moshe Sidi for an interesting and

fruitful discussion. This work was partly supported by European
Research Council Starting Grant No. 210389.

References
[1] T. Ahonen, D. Sig̈uenza-Tortosa, H. Bin, and J. Nurmi. Topology

optimization for application-specific networks-on-chip. InPro-
ceedings of the 2004 international workshop on System level in-
terconnect prediction, pages 53–60, 2004.

[2] T. Altiok. Performance Analysis of Manufacturing Systems.
Springer, Berlin, 1997.

[3] N. Alzeidi, M. Ould-Khaoua, and A. Khonsari. A new modelling
approach of wormhole-switched networks with finite buffers.In-
ternational Journal of Parallel, Emergent and Distributed Systems,
23(1):45–57, 2008.

[4] L. Benini and G. De Micheli. Networks on Chips: A New SoC
Paradigm.Computer, 35(1):70–78, 2002.

[5] D. Bertozzi and L. Benini. Xpipes: a network-on-chip architecture
for gigascale systems-on-chip.Circuits and Systems Magazine,
IEEE, 4(2):18–31, 2004.

[6] T. Bjerregaard and J. Sparso. A Router Architecture for
Connection-Oriented Service Guarantees in the MANGO Clock-
less Network-on-Chip. InProceedings of the conference on De-
sign, Automation and Test in Europe-Volume 2, pages 1226–1231,
2005.

[7] P. Brémaud.Markov Chains. Springer, Berlin, 1999.
[8] J. Buzacott.Stochastic Models of Manufacturing Systems. Prentice

Hall, Englewood Cliffs, 1993.
[9] B. Ciciani, M. Colajanni, and C. Paolucci. An accurate model

for the performance analysis of deterministic wormhole routing.
In Proceedings of the 11th International Symposium on Parallel
Processing, page 353, 1997.

[10] Y. Dallery and Y. Frein. On decomposition methods for tandem
queueing networks with blocking.Oper. Res., 41(2):386–399,
1993.

[11] W. Dally. Performance analysis of k-ary n-cube interconnec-
tion networks.IEEE Transactions on Computers, 39(6):775–785,
1990.

[12] W. Dally. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers, San Francisco, 2004.

[13] A. Diamantidis and C. Papadopoulos. Exact analysis of a two-
workstation one-buffer flow line with parallel unreliable machines.
European Journal of Operational Research, 2008.

[14] J. Draper and J. Ghosh. A comprehensive analytical model for
wormhole routing in multicomputer systems.Journal of Parallel
and Distributed Computing, 23(2):202–214, 1994.

[15] S. B. Gershwin. An efficient decomposition method for the ap-
proximate evaluation of tandem queues with finite storage space
and blocking.Oper. Res., 35(2):291–305, 1987.

[16] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny.
Efficient link capacity and qos design for network-on-chip. In
DATE ’06: Proceedings of the conference on Design, automation
and test in Europe, pages 9–14, 2006.

[17] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny.
Network delays and link capacities in application-specific worm-
hole nocs.Special Issue of the Journal of VLSI Design, 2007.

[18] S. Hary and F. Ozguner. Feasibility test for real-time communi-
cation using wormhole routing.IEE Proceedings-Computers and
Digital Techniques, 144(5):273–278, 1997.

[19] J. Hu, U. Ogras, and R. Marculescu. System-Level Buffer Allo-
cation for Application-Specific Networks-on-Chip Router Design.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 25(12):2919, 2006.

[20] A. Kiasari, D. Rahmati, H. Sarbazi-Azad, and S. Hessabi. A
Markovian Performance Model for Networks-on-Chip. InParal-
lel, Distributed and Network-Based Processing, 2008. PDP 2008.
16th Euromicro Conference on, pages 157–164, 2008.

[21] L. Kleinrock. Theory, Volume 1, Queueing Systems. Wiley-
Interscience, 1975.

[22] S. Loucif, M. Ould Khaoua, and G. Min. A queueing model for
predicting message latency in uni-directional k-ary n-cubes with
deterministic routing and non-uniform traffic.Cluster Computing,
10(2):229–239, 2007.

[23] Z. Lu, A. Jantsch, and I. Sander. Feasibility analysis of messages
for on-chip networks using wormhole routing. InProceedings
of the 2005 conference on Asia South Pacific design automation,
pages 960–964, 2005.

[24] A. Mello, L. Tedesco, N. Calazans, and F. Moraes. Virtual chan-
nels in networks on chip: implementation and evaluation on her-
mes NoC. InProceedings of the 18th annual symposium on Inte-
grated circuits and system design, pages 178–183, 2005.

[25] M. Moadeli, A. Shahrabi, W. Vanderbauwhede, and M. Ould-
Khaoua. An analytical performance model for the Spidergon NoC.
In 21st IEEE International Conference on Advanced Information
Networking and Applications, pages 1014–1021, 2007.

[26] P. Mohapatra. Wormhole routing techniques for directly con-
nected multicomputer systems.ACM Computing Surveys (CSUR),
30(3):374–410, 1998.

[27] R. Mullins, A. West, and S. Moore. The design and implementa-
tion of a low-latency on-chip network. InProceedings of the 2006
conference on Asia South Pacific design automation, pages 164–
169, 2006.

[28] L. Ni and P. McKinley. A Survey of Wormhole Routing Tech-
niques in Direct Networks.IEEE Computer, 26(2):62–76, 1993.

[29] U. Y. Ogras and R. Marculescu. Analytical router modeling for
networks-on-chip performance analysis. InDATE ’07: Proceed-
ings of the conference on Design, automation and test in Europe,
pages 1096–1101, 2007.

[30] M. Ould-Khaoua and H. Sarbazi-Azad. An analytical model of
adaptive wormhole routing in hypercubes in the presence of hot
spot traffic. IEEE Transactions on Parallel and Distributed Sys-
tems, 12(3):283–292, 2001.

[31] S. Parkes and P. Armbruster. SpaceWire: a spacecraft onboard
network for real-time communications. InIEEE-NPSS Real time
conf, pages 6–10, 2005.

[32] S. Parkes and J. Rosello. SpaceWire- Links, nodes, routers and net-
works. InDASIA 2001- DAta Systems in Aerospace; Proceedings
of the Conference, 2001.

[33] H. Perros.Queueing Networks with Blocking. Oxford University
Press, Oxford Oxfordshire, 1994.

[34] S. Pestana, E. Rijpkema, A. Radulescu, K. Goossens, and O. Gang-
wal. Cost-performance trade-offs in networks on chip: A
simulation-based approach. InProc. DATE, pages 764–769, 2004.

[35] M. Pirvu, L. Bhuyan, and N. Ni. The impact of link arbitration
on switch performance. InProceedings of the Fifth Symposium on
High-Performance Computer Architecture, 1999.

11

[36] D. Rostislav, V. Vishnyakov, E. Friedman, and R. Ginosar. An
asynchronous router for multiple service levels networks on chip.
In Proceedings of the 11th IEEE International Symposium on
Asynchronous Circuits and Systems, pages 44–53, 2005.

[37] Z. Shi and A. Burns. Real-Time Communication Analysis for On-
Chip Networks with Wormhole Switching. InNetworks-on-Chip,
2008. NoCS 2008. Second ACM/IEEE International Symposium
on, pages 161–170, 2008.

[38] R. Thakur and A. Choudhary. All-to-all communication on meshes
with wormhole routing. InParallel Processing Symposium, 1994.
Proceedings., Eighth International, pages 561–565, 1994.

[39] M. Uitert. Generalized processor sharing queues. Ponsen and
Looijen BV, 2003.

[40] A. Varga et al. The OMNeT++ discrete event simulation system.
In Proceedings of the European Simulation Multiconference (ESM
2001), 2001.

12

