

Routing Table Minimization for Irregular Mesh NoCs

ABSTRACT

The majority of current Network on Chip (NoC) architectures

employ mesh topology and use simple static routing, to reduce

power and area. However, regular mesh topology is unrealistic

due to variations in module sizes and shapes, and is not suitable

for application-specific NoCs. Consequently, simplistic routing

techniques such as XY routing are inadequate, raising the need for

low cost alternatives which can work in irregular mesh networks.

In this paper we present a novel technique for reducing the total

hardware cost of routing tables for both source and distributed

routing approaches. The proposed technique is based on applying

a fixed routing function combined with minimal deviation tables

that are used only when the routing decisions for a given

destination deviate from the predefined routing function. We

apply this methodology to compare three hardware efficient

routing methods for irregular mesh topology NoCs. For each

method, we develop path selection algorithms that minimize the

overall cost of routing tables. Finally, we demonstrate by

simulations on random and specific real application network

instances a significant cost saving compared to standard solutions,

and examine the scaling of cost savings with growing NoC size.1

1. INTRODUCTION
Technology projections [1,2] predict that the number of modules

in a near future System on Chip (SoC) will grow to several

hundreds. NoCs were shown effective in solving the global

module interconnect problem [2-16, 21-24] of such SoCs. One of

the primary targets in NoC is a low hardware cost in terms of

network area and power [2-7, 21-24]. Therefore, most current

NoC architectures employ a 2D mesh topology due to the planar

nature of VLSI chips, achieving power and area savings [3-8,10-

13,23]. In addition, network interface and router logic complexity

and power considerations have led to the common use of static,

shortest path (SP) routing [3-7,12]. In particular, static routing is

cost effective in SoCs where traffic patterns are known a priori

and appropriate network topology and capacities can be designed

and deployed [3,7]. In other cases, where traffic patterns are not

known in advance, NoC routing that performs load balancing

based on the dynamic state of the system were proposed

[10,13,23,24], requiring more complex routing logic, and possibly

network interface that can cope with out-of-order delivery.

In this work we focus on the former design case, i.e. a NoC for a

fixed SoC with predefined communication patterns, where

appropriate link bandwidth allocation in the network is conducted

at the design phase [3,4]. The full design cycle of such a network

consists of the following stages. First, identifying the traffic and

QoS requirements of the target SoC. Next, customizing the

network by an appropriate module placement and applying a least

cost, static, SP (or lowest energy) routing function. Finally,

performing network load balancing by link bandwidth allocation

so that multi-class QoS requirements of each communication flow

1 This work was partially supported by the Semiconductor Research

Corporation (SRC), Intel Corp., and the iSRC consortium.

are satisfied while reducing the cost to minimum. First, note that

the link capacity assignment is the final stage and is performed

after the static routing of all source destination pairs are already in

place. Therefore, this methodology is in contrast with off-chip

networks, where the traffic requirements change in time and the

routing mechanisms need to balance the load of this changing

traffic over a given topology and link capacities which were

designed for legacy or unknown loads.

In a regular mesh it is easy to accomplish SP routing, by

employing a simple variation of dimension order routing [17]

such as XY [4,5-6,12]. XY is also a “table-less” routing discipline

whereby each packet is routed first in an “X” direction and then

along the perpendicular dimension. However, practical

application–specific NoCs are customized [3-5,14,15,21-24] for

better performance and lower cost. As the result the NoC

topologies become irregular meshes (Figure 1) because of module

shape and size variability and the need to physically separate

module internals from the NoC infrastructure.

Figure 1. SoC interconnected by irregular mesh NoC. The address of

each module corresponds to its top left corner coordinates.

Our definition of an irregular mesh topology is identical to the full

mesh including module addresses, except that some routers and

links are missing (Figure 1). Packet routing in such NoCs

resembles routing in a labyrinth, since some links are missing or

may lead to a dead-end. Therefore, a simple XY scheme cannot be

employed and different low cost routing techniques need to be

applied. In off-chip networks, routing in irregular topologies is

typically accomplished using routing tables (RT). The RTs can be

located in either the routers (distributed routing) or sources

(source routing). RT size and the corresponding power and area

grow with the network size. Moreover, the time required to access

each table, which affects NoC performance, depends on its size

and thus on the network size. Several recent studies addressed the

problem of routing in irregular mesh NoCs[21-24]. Srinivasan et

al.[22] have proposed a linear programming based algorithm for

routing communication traces such that the total number of

routers utilized in the topology is minimized. Schafer et al. [23]

proposed to combine adaptive routing based on “The Odd-Even

Turn Model” together with placement algorithm. In [24], Palesi et

al. proposed a tradeoff between the degree of routing adaptivity

and routing table size.

In this work we introduce a simple metric for the estimation of

VLSI area and power cost of NoC routing based on the total size

(transistor gate-count) of the routing tables [21,24]. Then, we

introduce for the first time, hardware-efficient routing techniques

that reduce the VLSI cost of static routing in irregular–mesh

topology NoCs. The techniques are based on a combination of a

fixed routing function (such as “route XY” or “don’t turn”) and

reduced deviation tables for both distributed and source routing

approaches. Deviation table entries are created only for

destinations whose routing decisions differ from the fixed routing

function. In most cases, this significantly reduces the area and

power costs of full routing tables. Our routing algorithms perform

SP path extraction for all source-destination pairs, and minimize

the VLSI cost of packet routing. The performance of the network

is not degraded by the logic saving actions, since we allow only

shortest path routing. In addition, the capacity of each network

link may be further tuned to provide the required QoS guarantees

at NoC design time. We do not treat in this paper the deadlock

avoidance problem related to wormhole based networks, since

there are standard ways to solve it by removing circular

dependencies using an appropriate virtual-channel ordering [17].

Simulations of random SoC topologies and communication

scenarios are used for comparing and estimating cost savings

obtained by the different algorithms.

2. TRADITIONAL STATIC ROUTING
Traditional static routing techniques are classified by where

routing information is held and where routing decisions are made.

In distributed routing (DR) each packet carries the destination

address, e.g. the XY coordinates. Each router contains a hard-

coded RT or routing function logic whose input is the destination

address of the packet and its output is the routing decision, i.e. the

output port to which the packet will be forwarded. The routing

decision is implemented in each router either by looking up the

destination address in the RT or by executing the routing function.

In source routing (SR) the pre-computed RTs are stored in the

network interface of the system modules. When a source node

transmits a packet, it looks up the SR information according to the

destination address and includes it in the header of the packet. The

SR information includes a routing command for each hop along

its path. When the packet arrives at a network router, its routing

output port is extracted from its header routing field. Typically,

the routing field is then shifted in order to expose the routing

command for the next router on its path.

2.1 VLSI Implementation and Cost
As shown above, both DR and SR make extensive use of RTs.

RTs can be implemented as tables having an entry for each node

in the network. However, this is inefficient, since the set of

destinations actually used by each source is likely to be much

smaller. This is true because the communication patterns are

known a priori and the routing itself is known and restricted.

Figure 2. Efficient implementation of a static routing table

More efficient RT implementations employ logic that includes

only the necessary table entries for each node (Figure 2). The

table comprises routing entries and lookup gates. Our hardware

cost model is based on transistor gate-count as an estimate for

area and power of the routing logic. The total size of the routing

entries of table i can be estimated by the sum of the entry sizes

(li,j). The look-up logic size can be estimated by the address width,

()
2

log N , where N is the total number of modules in the

network, multiplied by the number of table entries (ni). Thus, the

total area cost is the sum over all RTs in the network:

 ()
2

{ NoC tables} {entries of table i}

log N
i i j

i j

RT Area n l
∈ ∈

= +

∑ ∑ (1)

The dynamic power dissipated in these tables can be also

estimated by the size of the tables, since the total capacitance is

proportional to the number of entries and the size of the entry.

The same is true regarding static leakage power, since it is

proportional to the number of leaking devices.

2.2 Prior work on routing tables reduction
Several papers addressed memory complexity of routing

mechanisms in off-chip networks. Interval routing [18] reduces

RT sizes in large networks by grouping the set of destination

addresses that share the same output port into intervals of

consecutive integers. Gomez et al. [19] extended interval routing

for regular meshes and tori network topologies. Another scheme

named “street-sign routing” minimizes SR information [20]. It

resembles driving directions: Only the router name of the next

turn and the direction of the turn are included in the packet

header. All the above schemes can be further incorporated into

our schemes but will incur additional gate count costs.

3. HARDWARE-EFFICIENT ROUTING
In this section we present several hardware-efficient routing

techniques for irregular topology NoCs. Our DR methods are

based on the following observations. Traditional DR techniques

are designed to support all possible source-destination pairs,

general topologies and path diversity. As was explained above,

these features are not required in common custom SoC

architectures, but incur excessive VLSI costs. On the other hand,

function-based routing (i.e. XY) constrains network topology and

path diversity, but results in considerable savings in VLSI costs.

We propose a combination of a low cost fixed routing function

and reduced size DR deviation tables. Entries are created in each

deviation table only for destinations whose routing decisions

differ from the output of the routing function. To that end, we

propose two routing techniques, Turns Table (TT) and XY-

Deviation Table (XYDT). A third method uses an approach

similar to SR. Unlike general SR where the message header

carries a routing tag for every node along the traversed path, our

scheme termed Source Routing for Deviation Points (SRDP),

combines a fixed function (like "don’t turn", or "XY") with a

short list of tags used only at specific deviation points (DP).

3.1 Turns-Table (TT) Routing
In TT routing, where we use a "don’t turn" function, an entry in

the deviation table (turn-table) exists if there is a turn in at least

one path passing through this router towards the destination

(Figure 3, b). When a packet arrives at the router, its destination is

looked up in the table. If an entry exists, routing is performed

accordingly; otherwise, the packet proceeds without a turn.

Figure 3. Routing paths toward D: (a) no TT entry (b) one TT entry for

D

We develop an algorithm that finds SPs (preferred from power

considerations [4]) while taking into consideration the “don’t

turn” routing function in the routers in order to minimize the

overall number of TT entries in the network. Since an entry is

created only if there is a turn at a router along some path to the

destination, the intuitive solution would be to find SPs that make

the least number of turns. However, further minimization can be

achieved by exploiting the already existing routing entries in other

SPs to the same destination [21].

TT problem definition:

Among all SPs between all sources and destination D, choose a

covering set of paths that minimize the total number of entries in

the network turns-tables.

TT Routing Algorithm

The algorithm uses the idea of aggregating SPs from different

sources whenever possible. Using this heuristic, the algorithm

attempts to utilize existing paths (and entries). First, we define an

auxiliary Turns-graph (TG) for use by the TT algorithm.

Definition of Turns-Graph(TG): The vertices of the TG are the

ports of the original network nodes and its edges are the original

network links in four possible directions (+x, -x, +y, -y) and all

possible interconnections (turns) among the ports of each network

node (Figure 4). The weight of the edge that corresponds to an

original network link is a large number K (larger than the

maximum number of turns in any SP in the original network). The

weights of the edges connecting the ports inside each router are

set as follows: if the edge in TG consists a turn via the router, it is

set to ‘1’ (dashed lines), otherwise, it is set to ‘0’ (dotted line).

Figure 4. TG example: (a) Original network; (b) Resulting TG

The TT algorithm is formally described in Figure 5. The algorithm

is performed for each destination. It uses a greedy approach,

iteratively selecting a source node (for paving a path from it to a

destination) that adds the minimal number of turns-table entries

(heuristic) to the network along its SP to the destination or to an

already paved path. The algorithm starts by constructing a TG and

initializing node attributes. For each node v, the following

attributes are maintained: a pointer to the predecessor node, the

distance from the destination in TG, and a Boolean variable which

retains information about whether the node has already paved a

path to destination D. All nodes except D are initialized as not-

reached (lines 2-3). Then the algorithm repeatedly paves SPs from

all sources to D (lines 4-12). The process of paving the path starts

from relaxing the distances of all non-paved nodes in the graph.

The process of relaxing (line 5) improves the distance of each

non-paved node to D and updates the predecessor information in

each node, until no distance in the network can be improved. At

that point, the distance of each non-paved node consists of the

distance in hops to D multiplied by K, plus the number of turn-

entries that should be inserted into the network tables for this

path. Then the non-paved source with the shortest distance among

all non-paved sources is selected, and the path is paved from that

source to D. The process of paving the path includes marking the

nodes on the path as paved (line 9) and resetting its distance from

D to only the distance in hops multiplied by K (line 10). The

distances of the paved nodes do not include the number of turns to

the destination, since any future path that will pass through these

nodes will not create any additional routing entries to destination

D. The algorithm terminates when all sources have a paved path

to D.

Figure 5. TT Routing Algorithm - for one destination D

Theorem 3.1:

In each iteration, the TT algorithm selects a non-paved source S

and paves a SP from it to D (or to an already paved path to D)

which makes the minimal number of turns among all SPs from all

non-paved sources to D (or to an already paved path to D)2 .

Then, for each destination D the routing paths from all source

nodes towards D in the original network are extracted by

backtracking using the predecessor information in each node. The

turns along the paths are found and the TT entries for each turn

are inserted in the network nodes along the routing paths. In

addition, there is a need to store the direction of the first routing

hop for each destination in the source nodes. We use a source

default direction technique for minimizing the amount of routing

entries in the sources, whereby a default routing direction is stored

in the source router for all packets originating from it. A routing

entry is inserted into the source router table only for destinations

that the first routing step towards them deviates from the default

routing direction in the source.

3.2 XY-Deviation Table (XYDT) Routing
In the XYDT method, an entry in the deviation table towards

destination D exists only if the next hop from this router deviates

from the next hop calculated by the XY routing function. We

2 Proofs are omitted due to space limitations

1) construct a Turns-Graph TG

2) : () , () , ()v V Dist v Paved v False P v nil∀ ∈ = ∞ = =

3) () ; Dist() 0Paved D True D= =

4) while (!(: ()s Sources Paved s true∀ ∈ =))

5) Relax_not_paved(D,TG)

6) Pick Smin (min',s s Sources∀ ∈):/*Heuristic*/

 () () () ()
min min

' 'Dist s Dist s Paved s Paved s false< ∩ = =

7) Pave_Path(Smin,D)

8) foreach node v’ on Path:

9) Paved(v’) = True;

10) Distance(v’) = hop_num*K;

11) end foreach

12)end while

assume that packets carry the XY coordinates of the destination.

When a packet enters a router its next hop is looked up in the

table. If it is found it is routed according to the table. Else, the

hardware function calculates the exit port for that packet.

Clearly, the path that makes the minimum number of routing steps

that deviate from XY would result in a minimal total number of

table entries in the network. In addition, as already mentioned, we

consider only SPs. Therefore the XYDT path extraction algorithm

solves the following problem.

XYDT Problem definition:

Among all SPs between each S-D pair, select a path that

minimizes number of routing steps which deviate from XY routing

policy.

XYDT Routing Algorithm:

The algorithm performs a topological sort of the network nodes by

their distance from the destination D. For all nodes at same

distance from D (h+1) the algorithm assigns an XY-correlated SP

routing step towards D if possible, otherwise it assigns any other

SP routing step. The algorithm is formally described in Figure 6.

All nodes except D are initialized as not-reached. The algorithm

starts from D and runs iteratively over the increasing number of

hops h. In each iteration, the algorithm sets the predecessors to the

nodes that were reached in the previous iteration (in h hops from

D) for later routing path extraction. Then iteratively, the non-

reached nodes that can be reached in h+1 hops from D are marked

as reached and their predecessors would be set in the next

iteration. The function set_xy_Predecessor (line 5) is applied to a

newly reached node, setting its XY-correlated predecessor on SP

to destination if it exists; otherwise it sets any other existing SP

predecessor. The algorithm terminates when all nodes are reached.

Figure 6. XYDT routing algorithm – for one destination D

The algorithm in Figure 6 is performed for each destination node

D. Then, for each D the routing paths from all source nodes to D

are extracted by backtracking using the predecessor information in

each node. The XY deviations along the paths are found and the

XYDT entries for each deviation are inserted in the network

nodes along the routing paths. The algorithm does not insert

entries in case of deviation when the following two conditions

coexist: (i) the XY-correlated output port is missing and (ii) the

routing path continues according to the YX routing function.

Consider the examples in Figure 7. Applying XYDT in network

(a) results in zero routing entries because proceeding upwards

from node Z is the only choice that also matches the YX function

(doesn’t require an entry). On the other hand, applying XYDT in

(b) results in one entry in the table of node Z, since it contradicts

an available XY routing option.

Figure 7. XYDT Examples: (a) No routing table entries (b)One routing

table entry in node Z towards destination D

3.3 Source Routing for Deviation-Points

(SRDP)
SRDP is an SR method that reduces the size of the full SR

headers that are stored in the sources. It combines a fixed routing

function (for example XY) with a partial list of SRDP tags which

are only used at specific nodes, termed deviation points.

SRDP tag is a list of routing commands for each DP node on the

traversed path. The size of the SRDP tag is two bits for a DP node

that implements all ports and less in cases when some ports are

missing. DPs are network nodes such that a direction of at least

one routing path through them deviates from the decision of the

fixed routing function (i.e. XY). SRDP algorithm marks these

nodes as DPs and any packet (for each destination) that traverses

them would have to carry an SRDP routing tag for these nodes.

Usually, nodes that become DPs are routers that do not implement

all ports (Z in Figure 7 a) or routers that lead to a dead-end when

using a fixed routing function, because of a mesh irregularity on

the reminder of the path (Z in Figure 7b).

For example, let us apply the SRDP method on the example

illustrated in Figure 7b. The example shows a network with two

sources S0 and S1 and a destination D. Applying a traditional SR

scheme would result in six routing tags because S0 and S1 are

both three hops from the destination. Applying the SRDP scheme

reduces the amount of SR information to only one tag, since the

path from S0 to D can utilize XY function at each hop and the

path from S1 to D deviates from XY in only one hop (node Z).

Therefore node Z is defined as a DP and requires one SR tag.

Similar to XYDT, when SRDP routing method is used, the path

that makes the minimum deviations from XY results in the

minimal total number of DPs and consequently minimizes the

total amount of SRDP routing headers. Therefore, the SRDP

problem is equivalent to the XYDT problem (see Section 3.2).

SRDP Routing Algorithm:

First SRDP applies the XYDT algorithm to all destinations in

order to create XY-correlated routing paths between all S-D pairs.

Then, all routing paths are analyzed, and nodes that at least one

routing step through them deviates from the predefined routing

function are marked as DPs. When all DPs are found, SRDP

headers are calculated for all routing paths.

4. PERFORMANCE COMPARISON
In this section we compare the traditional DR and SR techniques

with the proposed deviation tables routing techniques (TT, XYDT

and SRDP) in irregular meshes.

4.1 Evaluation method
In order to evaluate and compare the heuristic techniques

presented above, we first apply them to numerous random

problem instances and finally check several real application

1) : () , ()v V Dist v P v nil∀ ∈ = ∞ = ; () 0Dist D =

2)
1

{ }, {}, 0;
h h

R D R h+= = =

3) while (!(: ()v V Dist v∀ ∈ < ∞))

4) foreach node
h hv R∈ :

5) set_xy_Predecessor(
hv)

6) foreach v’ in 1 hop from
hv :

7) if (')Dist v = ∞ :
1

{ '}
h

R v+ ← , (') 1Dist v h= +

8) end if

9) end foreach

10) end foreach

11)
1 1
, {}, 1

h h h
R R R h h+ += = = +

12)end while

examples. We use random irregular mesh networks in which

various modules are randomly designated as hotspots. A random

irregular mesh is created by inserting random holes into a regular

mesh (removing routers and links). The following assumptions are

used regarding the traffic patterns, as an abstraction of typical

SoC traffic behavior. Several nodes are defined as hotspots, with a

high probability to be destinations for messages from other nodes.

Non-hotspot nodes have low-probability of being a destination.

We perform a set of simulations on several such random

networks, while varying the degree of mesh irregularity (number

of holes), number of hotspots and the probability of a node to

communicate to a hotspot node. The probability to communicate

to a non-hotspot node is kept relatively low (0.1). Locations of

holes and hotspots are also randomly generated. The results are

averaged over 40 random systems derived with the same

parameters. The cost of each routing method is derived by

Equation (1). For real application examples we used two video

processing applications described by Bertozzi et al. at [15]: Video

Object Plane Decoder (VOPD) and MPEG-4 Decoder, both are

mapped on to 12 cores example.

4.2 Numerical Results
 Figure 8 shows the significant savings obtained by the proposed

hardware-efficient routing methods. It illustrates a 12x12 mesh

with a low number (10) of holes and many hotspots (50 out of

134). Comparing the DR methods, XYDT costs less than the

original table-based DR by a factor of 34X (a 97% saving).

Among SR methods, SRDP halves the cost of the original SR.

The TT also reduces the cost of DR (3.7X), but it is less efficient

than XYDT. The cost of traditional table-based methods grows

considerably with the number of S-D pairs (connection

probability growing), while the cost of XYDT remains almost

constant as it utilizes XY routing function in most cases, due to

the high network regularity.

Routing Cost in 12x12 NoC

(few holes, many hotposts)

0

20,000

40,000

60,000

80,000

100,000

120,000

0.1 0.3 0.5

Communication Probablility for Hotspot

R
o

u
ti

n
g

 C
o

s
t

 [
g

a
te

s
]

DR

TT

XYDT

SR

SRDP

Figure 8. The routing costs as a function of hotspot traffic(few holes,

many hotspots): 34X cost reduction by XYDT; 2X by SRDP

 Figure 9 illustrates a typical NoC with many holes and few

hotspots (50 holes, 10 hotspots). As a result there are fewer source

nodes in the network. The costs of DR and SR are smaller, since

there are less source-destination pairs. The cost of XYDT grows

due to higher irregularity. The savings obtained by XYDT reach

8X (87%) of the original DR. SRDP achieves 2.5X (60%) savings

of the original SR.

 Figure 10 demonstrates the performance of the proposed

algorithms in the two real video processing applications described

in [15]. In spite of the fact that the available examples are very

small, the obtained savings are very impressive. In the Mpeg4

example for DR case the cost reductions are: 35X by XYDT;

4.3X by TT, and 2.9X by SRDP for SR case. In the VOPD

example for DR case the cost reductions are: 40X by XYDT;

4.4X by TT, and 1.9X by SRDP in SR case. Applying our

algorithms on future SoC applications examples of hundreds of

cores and large communication matrix is expected to yield greater

savings.

Routing Cost in 12x12 NoC

(many holes, few hotspots)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

0.1 0.3 0.5

Communication Probablility for Hotspot

R
o

u
ti

n
g

 C
o

s
t

 [
g

a
te

s
]

DR
TT
XYDT
SR
SRDP

Figure 9. The routing costs as a function of hotspot traffic in typical

NoC: 8X cost reduction by XYDT; 2.5X by SRDP

Routing Cost Reduction in Real Aplications

1

10

100

1000

MPEG4 VOPD

L
o

g
 (

 R
o
u

ti
n

g
 C

o
s
t
)

DR

TT

XYDT

SR

SRDP

Figure 10. The routing costs on real video processing application

examples: up to 40X cost reduction by XYDT; and 2.9X by SRDP

Summarizing all examples, the possible routing table cost

reduction obtained by XYDT reach 40X of the original DR cost.

SRDP achieves 2.9X cost reduction of the original SR. From both

random and real application cases we can see that we can gain

significant savings using XYDT in distributed routing and SRDP

in source routing. The savings by TT routing scheme are more

moderate but still impressive.

4.3 Scalability of Savings in Routing Cost
We study the scaling of the potential cost savings of our methods

by simulating typical NoCs with a growing number of nodes

(Figure 11). We focus on the two best performing methods

(XYDT and SRDP). NoC size grows from 9 to 256 nodes. On

average, in each NoC, 40% of the routers are missing and 10% of

the nodes are hotspots. The probability of each node to

communicate with each hotspot is relatively high (0.5) and the

probability to communicate with a non-hotspot node is relatively

low (0.1). The triangle marked curve shows the saving of XYDT

versus traditional DR and the circle marked curve shows the

saving of SRDP versus traditional SR. The graph clearly shows

that savings in routing costs grow rapidly (super-linear) with the

size of the network. In all points, the relative savings obtained by

XYDT and SRDP were around 90% and 60% respectively.

Savings vs. network size

23607

112960

36595

5464
166

88824

3195
1020

20000

40000

60000

80000

100000

120000

0 30 60 90 120 150 180 210 240 270

Network Size [Nodes]

S
a

v
in

g
s

 [
g

a
te

s
]

DR-XYDT

SR-SRDP

Figure 11. Savings vs. network size in typical NoC

4.4 Scaling of DR vs. SR
Table-based routing suffers from lack of scalability when the

network grows (Figure 11). When using SR, scaling is even

worse. In SR, in addition to the linear growth of the table with the

network size, the amount of the routing information that is stored

in each entry grows linearly with the length of the routing path.

Therefore SR is efficient only for patterns with a small number of

S-D pairs (Figure 12). For a small number of destinations, SR is

on-par with DR. As the number of destination grows, the cost of

SR grows much faster than the cost of DR. The same is true for

the more efficient SRDP and XYDT.

Routing Cost in 12x12 NoC

(many holes, high hotspost probability)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

10 30 50

Hotspot Number

R
o

u
ti

n
g

 C
o

s
t

 [
g

a
te

s
]

DR

XYDT

SR

SRDP

Figure 12. SR scales poorly with growing number of destinations

5. SUMMARY
Novel, hardware-efficient methods for routing in irregular mesh

NoCs and routing table size minimization have been presented.

The methods are based on static shortest path routing, as typically

employed in SoC based NoCs. They overcome the practical issue

of mesh irregularities, at minimal cost in terms of size of routing

tables. For distributed routing, the preferred method is a fixed

routing function along with reduced deviation tables that are used

only when the routing decisions deviate from the predefined

routing function. For SR, a fixed routing function is combined

with a partial list of SRDP tags which are only used at specific

nodes, termed deviation points. Path selection algorithms

minimize the overall routing cost for each technique. Simulations

of random and real application examples have demonstrated a

significant cost saving compared to standard DR and SR (40X and

2.9X). We show a super-linear saving growth with the size of the

network. In addition, we show scalability advantages of DR over

SR as the number of destinations grows.

6. REFERENCES
[1] ITRS, 2003 edition, Design Chapter.

[2] J. Liu et al., “Interconnect intellectual property for Network-

on-Chip (NoC),” JSA, Feb. 2004

[3] Z. Guz et al., "Efficient Link Capacity and QoS Design for

Wormhole Network-on-Chip", DATE 2006

[4] E. Bolotin, et al., “QNoC: QoS Architecture and Design

Process for Networks on Chip”, JSA, Feb 2004

[5] K. Goossens et al. “A design flow for application-specific

networks on chip with guaranteed performance to accelerate

SOC design and verification. DATE, 2005.

[6] F.Moraes et al,“HERMES: an Infrastructure for Low Area

Overhead Packet-switching NoC,“ VLSI Journal, 2004.

[7] M. Dall'Osso et al., “XPIPES: a Latency Insensitive

Parameterized Network-on-Chip Architecture” ICCD, 2003.

[8] M. Millberg et al., “The Nostrum Backbone-A

Communication Protocol Stack for Networks on Chip,”

VLSI Design Conf., Jan 2004.

[9] D.S. Tortosa and J. Nurmi, “Proteo: A New Approach to

Network-on-Chip,” IASTED CSN’02, Spain, 2002.

[10] M. Majer et al., "Packet Routing in Dynamically Changing

Networks on Chip", IPDPS 2005.

[11] S. Kumar et al., “A Network on Chip Architecture and

Design Methodology,” ISVLSI 2002.

[12] Banerjee N. et al. “A power and performance model for

network-on-chip architectures”, DATE 2004.

[13] J. Hu, R. Marculescu, “DyAD - Smart Routing for Networks-

on-Chip,” DAC 2004.

[14] J.Henkel, W.Wolf, and S.Chakradhar, "On Chip Networks: A

scalable communication-centric embedded system design

paradigm", in Procedings, VLSI Design 2004

[15] D. Bertozzi et al., “ NoC synthesis flow for customized

domain specific multiprocessor systems-on-chip”. IEEE

Trans. on Parallel and Dist.Systems, 16(2):113–129, 2005.

[16] A. Hemani et al., Network on a chip: An architecture for

billion transistor era. In IEEE NorChip, 2000.

[17] W. Dally et al, “Deadlock-free message routing in

multiprocessor interconnection networks,” IEEE Trans.

Comp., C-36(5):547-553, 1987.

[18] J. Van Leeuwen and R.B. Tan, “Interval routing,” The

Computer Journal, 30(4):298-307, Aug. 1987.

[19] M.E. Gómez et al., “A Memory-Effective Routing Strategy

for Regular Interconnection Networks,” IPDPS 2005.

[20] S. Borkar et al., “iWarp: An Integrated Solution to High-

Speed Parallel Computing,” Proc. Supercomputing, 1988

[21] E. Bolotin, at al., "Efficient Routing in Irregular Topology

NoCs", CCIT Report #554, EE Dept, Technion, Sep. 2005

[22] K. Srinivasan, at al. "An Automated Technique for Topology

and Route Generation of Application Specific On-Chip

Interconnection Networks", ICCAD 2005

[23] M. Schafer, et al. "Deadlock-free routing and component

placement for irregular mesh-based networks-on-

chip”,ICCAD 2005.

[24] M.Palesi, S.Kumar, R.Holsmark. A Method for Router Table

Compression for Application Specific Routing in Mesh

Topology NoC Architectures”, SAMOS VI Workshop, 2006.

