

 IRWIN AND JOAN JACOBS
CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Many-Core vs. Many-Thread
Machines: Stay Away From
the Valley

Zvika Guz, Evgeny Bolotin,
Idit Keidar, Avinoam Kolodny,
Avi Mendelson and Uri C. Weiser

CCIT Report #719
February 2009

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Many-Core vs. Many-Thread Machines:
Stay Away From the Valley

Zvika Guz1, Evgeny Bolotin2, Idit Keidar1, Avinoam Kolodny1, Avi Mendelson3, and Uri C. Weiser1

1{zguz@tx, idish@ee, kolodny@ee, uri.weiser@ee}.technion.ac.il , EE Department, Technion-IIT, Israel
2evgeny.bolotin@intel.com, Intel Corporation, Haifa, Israel
3avim@microsoft.com, Microsoft Corporation, Haifa, Israel

Abstract—We study the tradeoffs between Many-Core machines like Intel’s Larrabee and Many-
Thread machines like Nvidia and AMD GPGPUs. We define a unified model describing a
superposition of the two architectures, and use it to identify operation zones for which each machine
is more suitable. Moreover, we identify an intermediate zone in which both machines deliver inferior
performance. We study the shape of this “performance valley” and provide insights on how it can be
avoided.

1 INTRODUCTION
As chip multiprocessors are rapidly taking over the computing world, we see the evolution of such

chips progressing along two separate paths. At one end of the spectrum, general purpose uni-

processors have evolved into dual- and quad-cores, and are set to continue this trajectory to dozens of

cores on-chip. Such machines follow the legacy of single cores in using caches to mask the latency of

memory access and reduce out of die bandwidth, and typically dedicate a significant portion of the

chip to caches. We call these Many-Core (MC) machines. Intel’s Larrabee [8] is a prominent example of

this approach. At the same time, processor engines that can run numerous simple threads concur-

rently, which were traditionally used for graphics and media applications, are now evolving to allow

general-purpose usage (a trend called GPGPU [10]). The latter usually do not employ caches, and in-

stead use thread level parallelism to mask memory latency, by running other threads when some are

stalled, waiting for memory. We refer to these as Many-Thread (MT) machines. Examples of such ma-

chines are the current GPGPUs of Nvidia and AMD.

To date, the tradeoffs (and even the boundaries) between these approaches are not well formalized.

Such formalization and understandings are, nevertheless, essential for processor architects, who need

insights on how to improve their machine's performance on a broad range of workloads. In this pa-

per, we take a step towards understanding the tradeoffs between MC and MT machines, and the do-

lesley
Text Box
CCIT REPORT #719 February 2009

mains where each is more appropriate.

To this end, we define (in Section 2) a simple unified model of the two architectures. The model

captures an imaginary hybrid machine, comprised of many (e.g., 1024) simple (in-order) processing

elements (PEs) and a large (e.g., 16MB) shared cache. The model considers a number of parameters,

such as number of PEs, cache size, cache and memory latencies, etc. We then provide an equation for

deducing the performance for each set of parameters.

When instantiated with a relatively modest number of independent threads (say, up to a few hun-

dreds), the model approximates MC machines, where the cache is large enough to cater to all threads.

With a very large number of independent threads (in the thousands), the same model more closely

describes an MT machine, since the cache is no longer effective, and the memory access latency is

masked by the increased thread-level parallelism.

Number Of Threads

Valley MC
Region

MT
Region

Pe
rf

or
m

an
ce

Fig. 1. Performance of a unified many-core (MC) many-thread (MT) machine exhibits three performance
regions, depending on the number of threads in the workload.

Our results not only show these two distinct performance regions, but also show that there is a val-

ley between them, where performance is worse than at both regions. Fig. 1 illustrates this phenome-

non. We see that in the (leftmost) MC region, as long as the cache capacity can effectively serve the

growing number of threads, increasing the number of threads improves performance, as more PEs

are utilized. At some point the cache becomes too small for covering the growing stream of access

requests. Memory latency is no longer masked by the cache, and performance takes a dip into the val-

ley. The valley represents an operation point (number of threads) where both MC and MT perform

poorly, as neither can mask the memory access latency. However, as the number of threads increases,

the MT region is reached, where the thread coverage is high enough to mask the memory latency. In

this region, (in an unlimited memory bandwidth environment), performance continues to improve,

up to the maximal performance of the machine.

The question of how performance depends on the degree of multithreading was studied in the

early 90's by Agrawal [1]. In retrospect, Agrawal's analysis can be seen as applicable to our MC re-

gion, and it observes a similar trend to the one exhibited in the leftmost area of our curve: with the

first few threads, performance soars, but then hits a plateau, as caches become less effective. Given

(dated) parameter values from the 90's, Agrawal found that as little as two or four threads are suffi-

cient to achieve high processor utilization. Our work takes the level of parallelism much further, to

tens of thousands of threads, and observes that the plateau is followed by a valley, and then by an-

other uphill slope (the MT region), which in some cases even exceeds the MC peak.

While the exact shape of the curve depends on numerous parameters, the general phenomenon is

almost universal. This illustrates the major challenge that processor designers today face - how to

stay away from the valley? Indeed, the challenge for MC designers is to extend the MC area to the

right and up, so as to be able to exploit higher levels of parallelism. The challenge for their MT coun-

terparts is to extend the MT zone to the left, so as to be effective even when a high number of inde-

pendent threads is not available. In Section 3, we discuss how various parameters (of the machine or

the workload) impact the shape of the valley, providing insights on how the above challenges may be

addressed.

We would like to emphasize, however, that we do not purport to offer concrete blueprints for fu-

ture chip designs. We deliberately ignore several hardware aspects (e.g., area and power constraints,

PE performance and capabilities, etc.) in order to make the analysis tractable and the insights tangi-

ble. Rather, we provide an analytical foundation for understanding and reasoning about inherent

tradeoffs, from which we derive intuitions and identify directions in which the two studied design

paradigms ought to try to develop.

Finally, we note that we focus on workloads that can be parallelized into a large number of inde-

pendent threads with practically no serial code. It is already well-understood that for serial code, MC

machines significantly out-perform MT ones, and that for applications that alternate between parallel

and serial phases asymmetric machines are favorable [4] [6]. Our model instead focuses on workloads

that offer a high level of parallelism, where the questions we set to answer are still open.

2 MT/MC UNIFIED MODEL
In order to study the Many-Cores/Many-Threads tradeoff, we present a unified model describing

a superposition of the two architectures. We provide a formula to predict performance (in Giga Opera-

tions Per Second - GOPS), given the degree of multithreading and other factors. Our model machine is

described by the following parameters:

NPE - Number of PEs. (Simple, in-order processing elements.)

S$ - Cache size [Bytes]
CPIexe - Average number of cycles required to execute an instruction assuming a

perfect (zero-latency) memory system. [cycles]
tm - Memory latency [cycles]
T$ - Cache latency [cycles]
f - Processor frequency [Hz]
rm - Ratio of memory instructions out of the total instruction mix (0 1mr≤ ≤).

Given the above notations, we get that once every 1/rm instructions, a thread needs to stall until the

data it accesses is received from memory. We denote:

tavg - Average time needed for data access [cycles]

tavg is sometimes called Average Memory Access Time (AMAT). (We develop tavg to account for the

probability of finding the data in the cache in Equation (3).)

During this stall time, the PE is left unutilized, unless other threads are available to switch-in. The

number of additional threads needed in order to fill the PE’s stall time is avg

exe mCPI r

t
, and hence

1 m
PE avg

exe

r
N

CPI
t ⋅⋅ +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 threads are needed in order to fully utilize the entire machine.

Processor utilization (0 ≤η ≤ 1) (i.e., the average utilization of all PEs in the machine) is given by:

min 1 ,
1

threads

m
PE avg

exe

n
rN t

CPI

η

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟⎛ ⎞

⋅ + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (1)

where nthreads is the degree of multithreading (the number of threads available in the workload).

Our model assumes that all threads are independent of each other (as explained in Section 1), and

that thread’s context is saved in the cache (or in other dedicated on-chip storage) when threads swap

out. The machine can thus support any number of in-flight threads as long as it has enough storage

capacity to save their contexts. For simplicity, Equation (1) neglects the thread swap time, though it

can be easily factored in. The minimum in Equation (1) captures the fact that after all execution units

are saturated, there is no gain in adding more threads to the pool.

Finally, the expected performance is:

[] PE
exe

fPerformance GOPS N
CPI

η= ⋅ ⋅ (2)

The system utilization (η) is a function of two variables, nthreads and tavg , where tavg is affected by the

memory hierarchy (the access times of caches and external memory) and the behavior of the work-

load (which determines cache hit rate). tavg can be approximated as follows:

$ $ $() (1 ())thread thread
avg mhit hitt P S t P S t= ⋅ + − ⋅ (3)

where $()thread
hitP S is the hit rate ratio for each thread in the application assuming it can exploit a

cache of size $
threadS . Given a shared pool of on-chip cache resources, the cache size available for each

thread decreases as the number of threads grows. Hence Equation (3) can be rewritten as:

$ $
$() 1 ()avg mhit hit

threads threads

S S
t P t P t

n n
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= ⋅ + − ⋅ (4)

Equation (4) assumes that threads do not share data – we leave the effect of sharing for future

work. It also ignores the fact that threads contexts, saved in the cache, reduce the overall storage ca-

pacity left to hold data. This effect proved to be negligible in our example and is hence neglected here

for the sake of simplicity. Notice, though, that it can be easily factored in.

We deliberately refrain from presenting a concrete Phit function. Any hit rate function (derived ei-

ther from simulations or from an analytical model) may be used here without undermining the rest of

the discussion. In the next section, we present the results for several specific hit rate functions.

3 RESHAPING THE VALLEY
Both MC machines and MT machines strive to stay away from the performance valley, or to flatten

it. In this section, we study how different parameters affect the performance plot, via an example de-

sign. We first present an example system and an analytical hit rate function chosen to characterize the

workload. We then exemplify how workload attributes such as compute intensity (Section 3.1); and

how hardware attributes such as memory latency (Section 3.2) and cache size (Section 3.3), effect the

shape of the performance plot. While in these sections we assume for the sake of clarity an unlimited

bandwidth to memory, we consider bandwidth to be a principal performance limiter and account for

the effect of a limited off-chip bandwidth in Section 3.4.

The example system we use in this section consists of 1024 PEs and a 16MB cache. We assume a

frequency of 1GHz, a CPIexe of 1 cycle, and an off-chip memory latency (tm) of 200 cycles. In our base-

line workload, 1 out of 5 instructions is a memory instruction, i.e. rm=0.2. Notice that the peak per-

formance of the example machine is 1 Terra OPS (Equation (2) with η =1), which is ‘’the value the

vendor guarantees you cannot exceed1‘’

The problem of finding an analytical model for the cache hit rate function has been widely studied

([1] [2] [9] among others). In this paper, we use the following simple function [5]:

$ 1
$

1() 1
1

hitP S
S α

β

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

= −

+

 (5)

The function is based upon the well known empirical power law from the 70’s (also known as the

30% rule or √2 rule) [3]. In Equation (5), workload locality increases when increasing α or decreasing

β.

Fig. 2 presents the projected performance in GOPS as a function of number of threads, for different

values of α and β. It also presents the upper and lower limits –a perfect cache (dashed line, all ac-

cesses are satisfied from the cache) and no cache at all (dotted line, all accesses are satisfied from

main memory). For the rest of the paper, we use α=7 and β=50.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

800

900

1000

1100

Number Of Threads

G
O

PS

Rising workload locality

infinite cache
α=8.0, β=25
α=7.0, β=30
α=7.0, β=50
α=6.0, β=100
no cache

Fig. 2. Performance for different cache hit rate functions.

3.1 Compute/memory Ratio Impact
 We explore how the compute intensity of the workload (measured in the ratio between com-

1 Jack Dongarra, EECS, University of Tennessee; and Computer Science and Mathematics Division, Oak Ridge National Laboratory.

pute instructions and memory accesses, i.e., (1-rm)/rm)) affects the shape of the performance plot. Fig.

3 presents performance for different compute/memory ratios.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100
200
300
400
500
600
700
800
900

1000
1100

Number Of Threads

G
O

PS

Rising compute/memory compute/mem=5
compute/mem=10

compute/mem=20
compute/mem=100

compute/mem=200
pure compute

Fig. 3. Performance for different compute/memory ratios.

Fig. 3 shows that the more computation instructions per memory instructions are given, the steeper

performance climbs. The above trend results from the fact that as more instructions are available for

each memory access, fewer threads are needed in order to fill the stall time resulting from waiting for

memory. Moreover, the penalty of accessing memory is amortized by the small portion of accesses

out of the total instruction mix. All in all, a high compute/memory ratio decreases the need for

caches, and eliminates the valley.

Applications with more computation per memory access (for example the light-gray lines) reach

peak performance much faster, and can even avoid the valley entirely since there is no significant

memory latency to screen. Moreover, in such application there is practically no difference between

MC and MT as caches have almost no effect. In other words, a higher value of the compute/memory

ratio makes the workload more suitable for MT machines. This trend has been identified by MT ma-

chine makers, who suggest aiming for a high compute/memory ratio as a programming guideline

 [7].

3.2 Memory Latency Impact
We next examine how the latency to off-chip memory (given in number of cycles needed to access the

data, i.e. tm) affects the shape of the performance plot. Fig. 4 presents the performance plot for several

different off-chip memory latencies.

Memory latencies are important in the MT region, as observed in the gradient of performance im-

provement. Memory latency is also important in the MC region since a shorter latency draws the MC

peak higher. With the scaling of process technology, the memory latency gap is expected to grow,

thus pushing the plots down.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

800

900

1000

1100

Number Of Threads

G
O

PS

Rising memory latency

zero latency

50 cycles

100 cycles

200 cycles

1000 cycles

2000 cycles

Fig. 4. Performance for different off-chip latencies.

3.3 Cache Size Impact
Next, we examine the effect of cache size (i.e., S$) on the performance graph. Fig. 5 presents several

performance plots differing in their cache size.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100
200
300
400
500
600
700
800
900

1000
1100

Number Of Threads

G
O

PS

no cache
4 MB
8 MB
16 MB
32 MB
64 MB
100 MB
infinite cache

Rising cache capacity

Fig. 5. Performance for different cache sizes.

As can be seen in Fig. 5, cache size is a crucial factor for MC machines, as larger caches extend the

MC area up and to the left. This is because larger caches suffice for more in-flight threads, thus ena-

bling the curve to stay longer with the “perfect cache” scenario.

3.4 Off-Chip Bandwidth Impact
In the previous sections, we assumed an unlimited bandwidth to external memories. Alas, off-chip

bandwidth is a principal bottleneck and may limit performance as we show in this Section. In order

to take into account the role of off-chip bandwidth, we present the following new notations:

breg- Size of operands [Bytes]

BWmax- Maximal off-chip bandwidth [GB/sec]

The latter is an attribute of the on-die physical channel. Using the above notations, off-chip band-

width can be expressed as:

(1)m reg hitBW Performance r b P= ⋅ ⋅ ⋅ − (6)

where performance is given in GOPS.

Given a concrete chip with a peak off-chip bandwidth limit (BWmax), the maximal performance

achievable by a machine is ()max / (1)m reg hitBW r b P⋅ ⋅ − . Fig. 6 presents the performance plot with several

different bandwidths limits, assuming all operands are 4 bytes long. (i.e., single-precision calcula-

tions.)

0 5000 10000 15000 20000 25000 30000 35000 40000
0

100
200
300
400
500
600
700
800
900

1000
1100

Number Of Threads

G
O

PS

50 GB/sec
100 GB/sec
150 GB/sec
200 GB/sec
250 GB/sec
300 GB/sec
unlimited BW

Rising off-chip BW capacity

Fig. 6. Performance with limited off-chip bandwidth.

At the rightmost side of the plot, where all accesses to data are served from memory, performance

converges to ()max / m regBW r b⋅ . However, some of the plots exhibit reduction in performance after reach-

ing a peak at the MT region. To explain why this happen recall that Phit is affected by the number of

threads in the system, because the more in-flight threads there are, the less cache is available to each

one of them. Therefore, when the off-chip bandwidth wall is met, adding more threads only degrades

performance due to increasing off-chip pressure.

The bandwidth wall in our example causes some of the plots to never reach the point where the

MT area exceeds the performance of the MC area. This is because the BW wall limits the performance

of the MT region but not that of the MC region, where caches can dramatically reduce the pressure on

off-chip memories. In other words, MT machines, relying on very high thread counts to be effective,

dramatically increase the off-chip bandwidth pressure, and are hence in need of very aggressive

memory channels to be able to deliver performance (e.g., up to 150GB/sec in Nvidia’s current GPUs).

MC machines, on the other hand can suffice with relatively slimmer channels, as their caches screen

out most of the data access (e.g., 20-30GB/sec in Intel’s Nehalem processor).

4 SUMMARY
We studied the performance of a hybrid Many-Core (MC) and Many-Thread (MT) machine as a func-

tion of the number of concurrent threads available. We found that while both MC and MT machines

may shine when given a suitable workload (in number of threads), both suffer from a “performance

valley”, where they perform poorly compared to their achievable peaks. We studied how several key

characteristics of both the workload and the hardware impact performance, and presented insights

on how processor designers can stay away from the valley.

ACKNOWLEDGMENT
We thank Ronny Ronen, Michael Behar, and Ronny Rosner. This work was partially supported by

Semiconductors Research Corporation (SRC), Intel, and the Israeli Ministry of Science Knowledge

Center on Chip MultiProcessors.

REFERENCES
[1] A. Agrawal, “Performance Tradeoffs in Multithreaded Processors, ” IEEE Trans. on Parallel and Distributed

Systems, 1992
[2] A. Agarwal, J. Hennessy, and M. Horowitz, “An analytical cache model,” ACM Trans. on Computer Sys-

tems, May 1989
[3] C. K. Chow. “Determination of Cache's Capacity and its Matching Storage Hierarchy,” IEEE Transactions

on Computers, vol. c-25, pp. 157 - 164, 1976
[4] M. D. Hill, and M. R. Marty, “Amdahl's Law in the Multicore Era,” IEEE Computer, vol. 46, July 2008
[5] B. L. Jacob, P. M. Chen, S. R. Silverman, and T. N. Mudge, “An Analytical Model for Designing Memory

Hierarchies,” IEEE Transactions on Computers, vol. 45, no 10, October 1996
[6] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguadé, “Performance, Power Efficiency, and

Scalability of Asymmetric Cluster Chip Multiprocessors,” Computer Architecture Letters, vol. 4, July 2005
[7] NVIDIA, “CUDA Programming Guide 2.0,” June 2008
[8] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, et al., “Larrabee: a many-core x86 architecture for visual com-

puting,”
SIGGRAPH 2008

[9] D. Thiebaut, and H. S. Stone, “Footprints in the cache,” ACM Trans. on Computer Systems (TOCS), Nov.
1987

[10] General-Purpose Computation Using Graphics Hardware. http://www.gpgpu.org/

