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Abstract 

The effect of wire delay on circuit timing typically increases when an existing 

layout is migrated to a new generation of process technology, because wire 

resistance and cross capacitances do not scale well. Hence, careful sizing and 

spacing of wires is an important task in migration of a processor to next 

generation technology. In this paper, timing optimization of signal buses is 

performed by resizing and spacing individual bus wires, while the area of the 

whole bus structure is regarded as a fixed constraint. Four different objective 

functions are defined and their usefulness is discussed in the context of the 

layout migration process. The paper presents solutions for the respective 

optimization problems and analyzes their properties.  In an optimally-tuned bus 

layout, after optimizing the most critical signal delay, all signal delays (or 

slacks) are equal. The optimal solution of the MinMax problem is always 

bounded by the solution of the corresponding sum-of-delays problem. An 

iterative algorithm to find the optimally-tuned bus layout is presented. 

Examples of solutions are shown, and design implications are derived and 

discussed.  
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Introduction 

Interconnect delays have become dominant in CMOS VLSI digital systems as 

a result of technology scaling [ 1] [2]. In recent generations, wire resistance 

and cross-capacitance between adjacent wires have become increasingly 

important in their effect on signal delay. For a given metal layer, wire 

resistance and cross-capacitance depend on wire width and inter-wire spacing, 

respectively. Allocation of wire widths and spaces for bus structures under a 

total area constraint is an important problem in process migration of existing 

mask layouts (also known as “process shifting”), which often produces 

excessive wire delays in the new layout. In state-of-the-art technology 

migration, about 10% improvement in timing of buses is achievable by 

judicious allocation of wire widths and inter-wire spaces. The strategy of 

allocating widths and spaces to maximize performance in bus structures was 

proposed in [ 3] without formal analysis and solution. The nature of this 

problem allows tradeoff between the resistance of a wire and its coupling 

capacitances to adjacent wires, by increasing wire width while reducing 

spaces, or vice versa. Wire resistance affects only the delay of the signal 

carried by the wire, while coupling capacitances affect the delays of both the 

wire and its neighbors. For multiple nets, the optimal solution involves 

simultaneous tradeoffs among all wires sharing a given common area. 

 

The wire sizing problem has been addressed in [ 4] and [ 5] for a single wire and 

for a single-net interconnect tree. Simultaneous wire sizing and driver sizing 

has been presented in [ 6,  7]. The problem of sizing and spacing multiple nets 

with consideration of coupling capacitance in global interconnect has been 

addressed in [ 8], considering general tree structures for nets with fixed 
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terminals, without a total area constraint. The authors modeled coupling 

between nets by converting cross-capacitance into an effective fringe 

capacitance, which resulted in a decoupled delay model for each net. The 

routing tree for each net was sized independently, using an algorithm based on 

dynamic programming [ 9]. Coupling capacitance has been considered more 

explicitly in the context of physical design algorithms for minimizing crosstalk 

noise [ 4, 10, 11] or dynamic power [ 12]. The authors of [ 13] derived layout 

guidelines and presented a simultaneous multiple-net spacing algorithm for area 

minimization in general layouts under a noise-constraint.  

 

This paper addresses the problem of simultaneously assigning widths and 

spaces to n parallel wires, representing a bus or several interleaved busses, as 

illustrated in Figure 1. Such geometry is commonly used in practice, and its 

simplicity enables straightforward mathematical analysis. With given drivers, 

load capacitances and timing requirements for the individual signals, wire 

widths and spaces are allocated to maximize circuit speed. Note that driver 

strengths, load capacitances and required arrival times are not necessarily 

equal. The total sum of widths and spaces is a given constraint, representing 

the total width available for the bus structure in the layout. The problem is 

presented in the context of technology migration, but the same methods can be 

used to optimize a initial design, not just a migrated one. 
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Figure 1. Structure of the bus: n parallel signal wires share a 
fixed total width A between two shield wires.   

 

Problem Formulation 

Consider a bus of n signal nets nσσ ,...,1 between two side-walls (wires at 

fixed locations, connected to ccV  or ssV ) as shown in Figure 1. 1−iS and iS , 

respectively, denote spaces to the right and left neighbors of wire iW . The 

length of each wire is L. The sum of wire widths and spaces between the left 

and right side walls is given in the following constraint, which represents the 

total width A of the available area for laying out the signal bus. 
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Another set of constraints on wire sizing is geometrical design rules, which are 

imposed by the manufacturing technology. In modern processes of 90 

nanometers and below, the width and the space of wires are bounded in some 

range as follows: 

 

(2) niSSS i ≤≤′′≤≤′ 0, , and  

 

(3) niWWW i ≤≤′′≤≤′ 1, . 

 

Delay model 

Signal delays are expressed by an Elmore model using simple approximation 

for capacitances. The delay of signal iσ  can be calculated from the π-model 

equivalent circuit shown in Figure 2, where
idR is the effective output 

resistance of the driver,
iwR  is the wire resistance, 

iwC  is the wire area and 

fringe capacitance, 
1icC
−

 and 
icC  are coupling capacitances to the right and left 

neighboring signals, and 
il

C  is the capacitive load presented by the receiver’s 

input. Using technology parameters these can be expressed as isR WLRR
i
= , 

iw a i fC C LW C L= +  and 
ic c iC k L S= , where aC  is area capacitance coefficient, 

fC is fringe capacitance coefficient, ck  is a line-to-line coupling coefficient, 

and sR  is the metal sheet resistance. These are first-order approximations [ 14] 

which capture the fundamental nature of the problem. 

 

 



 6

 
 

Figure 2. Equivalent circuit for calculating the ith signal delay 

 

Under Elmore delay model, the delay i∆ of signal iσ  from driver’s input to 

receiver’s input is given as follows: 

(4)
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Note that the cross-coupling capacitances between wires are multiplied by a 

Miller Coupling Factor (MCF) [ 16] in the model equation. For nominal 

delays, without delay uncertainty induced by crosstalk, MCF=1 is assumed. 

This is valid in particular when adjacent wires are functionally interleaved, 

such that simultaneous transitions of neighbor wires are avoided. If all wires 

can switch simultaneously, the cross-capacitance terms are typically multiplied 

by a uniform MCF of 2. For such a case, inter-wire tradeoffs would become 

even more pronounced in optimizing the bus layout. In the remainder of this 
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paper we assume MCF=1.  The coefficients of wire width and spaces in (4) 

will be marked as edcba iiii ,,,, . The delay expression can be rearranged 

as 

  

(5) ( ) 
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Note that in (5) the coefficient e is not indexed since it encapsulates only 

technology parameters, which are common to all delays. The other coefficients 

are indexed since they include parameters related to the signal’s driver and 

receiver.  

 

  Despite its simplicity, this Elmore-based modeling approach is widely used 

as a high-fidelity estimator in practical interconnect optimizations. Although it 

uses first-order capacitance approximations, and even though it does not 

account for signal slope effects, it is effective in guiding the search towards 

improved timing, as was verified by detailed circuit simulations on examples 

below. A multiplicative factor of 0.7 is generally used to fit the Elmore model 

with 50% signal delay. With more elaborate empirical parameter tuning, the 

model accuracy can be improved further: In [ 15], good absolute accuracy 

versus circuit simulation has been obtained by applying a parameter fitting 

procedure to a similar wire delay model, where the cross-capacitances were 

replaced by a fringing-field term.  

 

Sensitivity of signal delay to wire width and spaces 

Consider a single wire placed between two side-walls. The delay of the wire is 
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given by (5), with 1=i . Partial derivatives with respect to W1 and S1 are as 

follows (note that the delay function is symmetrical in S variables, S0= S1): 

 

(6) ( )1 12
1 1

1a c e
W W
∂∆

= − +
∂  

(7) 12
1 1 1

1 ed
S S W

 ∂∆
= − + ∂  

 

 
Omitting the index i=1, for each specific value of S  the sensitivity to W  is 

zero at a certain point min( ( ), )W S∆ . This point is the minimum delay point for 

the given value of S . Sensitivity to S decreases monotonically with increasing 

of S and W .  

 

In layout migration, wire width and spaces to neighbors cannot change 

independently. The additional constraint applied to W and S  is: 

 

(8) 0 1W S S A+ + = , and therefore for fixed 1S : 

 

(9)
0SW ∂
∆∂

−=
∂
∆∂ . 

 

The sensitivities to both S and W are thus identical.  An example is shown in 

Figure 3 using 90 nanometer technology parameters for different driver 

resistances – 100Ω , 500Ω  and 1000Ω , driving a wire of 1000 microns length, 

with load capacitance of 50 fF  and the distance between walls is 1.5 microns. 

Sensitivity to both W and S was calculated for values of W from 0 to 1.5 µm. 

At the minimum delay point, sensitivity to wire width and spaces is zero, 
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because the effect of any change in wire resistance balances out with the 

respective change in capacitances. A similar balance is obtained also when a 

bus with multiple wires is optimized, as will be discussed below.  For wide 

buses, where inter-wire separation is large, the optimal width for each wire 

depends mostly on values of driver resistance and load capacitance of the wire,  

according to (8).  This may be used as a first approximation for assigning  

initial values to wire widths in bus optimization. 

 

 

 

 
Figure 3:  Delay sensitivity to width and space for a single wire 
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Timing Objectives for bus optimization 

 We are seeking wire width and space allocation yielding “optimal timing”. 

The definition of optimality depends on the design scenario. In the following 

we’ll define four commonly used timing objectives.  

  First objective aims at maximizing the total sum of slacks (same as 

maximizing the average slack). Let iT be the required time of the signal iσ . 

The objective is thus defined as follows: 

 (10) ( ) ( ) ∑∑
= −= 
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When required times are still undetermined, an objective of minimizing total 

sum of delays is commonly used. Notice that from a mathematical point of 

view this is equivalent to maximizing the first objective, since  

 (11) ( ) ( ) ( ) ∑∑
==

+−=∆=
n

i
i

n

i
i TSWfSWSWf

1
1

1
2 ,,, .  

The term ∑
=

n

i
iT

1
however is constant and doesn’t affect the optimization. In the 

sequel we’ll discuss the minimization of total sum of delays 2f . Without loss 

of generality the results are applicable to maximization of total slack 1f . 

 

Both (10) and (11) are cumulative metrics, integrating the contribution of all 

signal wires. These are useful objectives for design migration, where the goal 

is to deliver overall timing speedup. The important factor in such a design 

scenario is the average speedup, which is well reflected by (10) and (11). 
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When tuning of critical signals is of interest, the design scenario calls for 

MinMax optimization problems. Hence, a third objective is to minimize the 

worst slack among all signals, expressed by 3f  below. Note that we 

exchanged the terms of the slack for the sake of mathematical convenience. 

 

 (12) ( ) ( ){ }ii
ni

TSWSWf −∆=
≤≤

,, max
1

3 . 

 

A fourth objective aims at minimizing the delay of the slowest signal in the 

bus. It can be used when timing constraints are not known yet. The 

corresponding objective function is: 

 

(13) ( ) ( ){ }SWSWf i
ni

,, max
1

4 ∆=
≤≤

. 

    In the following we’ll explore the optimization of the objective functions 

1f through 4f  by varying the widths and spaces of the bus wires. We first 

note that all the objectives have a global optimum since the underlying 

problems are all convex or concave. The convexity proof is given in Appendix 

A. Additional useful properties of the underlying optimization that suggest 

efficient solutions are discussed below. Let us ignore design rules (2) and (3) 

for the sake of easing the analysis. These do not change the nature of the 

problem.  

 

Optimizing total sum of slacks or delays 

We are aiming at minimizing (11) subject to (1). In order to find the minimum 

of 2f under g constraint, let us calculate partial derivatives. 
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At minimum there exists some real numberλ  (Lagrange multiplier), 

satisfying gf ∇=∇ λ1 .  Rearranging and substituting yields the 

following: 
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We define ∞== +10 nWW  to represent a sidewall connected to power or 

ground. The above equations plus the area constraint equation (1) impose 

2n+2 algebraic equations in 2n+2 variables nn SSWW 01 ,,λ . 

 

The equations to obtain the maximum of total sum of slacks are identical to 

(18) and (19). Similar arguments hold, except that minimum is replaced by 

maximum and convexity by concavity. 
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Minimizing maximal delays and negative slack: MinMax problems 

   Objective functions (12) and (13) dealing with worst delay and slack are not 

differentiable. Therefore, the respective MinMax optimization problems 

cannot be solved analytically. Although general convex programming or 

Lagrange relaxation [ 7] can be employed, we propose a solution approach 

based on the following properties of these specific problems, yielding an 

efficient iterative solution with guaranteed convergence.  

 

Theorem 1 (necessary condition): In the optimal solution of minimizing the 

maximal delay in (13) (worst slack in (12)) subject to the area constraint (1), 

all the delays (slacks) are equal. 

 

Proof: Let us prove the case of delays. Assume on the contrary that the above 

assertion doesn’t hold. Namely, in the optimal solution there exists a wire 

i whose associated delay is greater than all others. If there are few maximal 

ones, pick one having a neighbor with a smaller delay. Such one must exist, as 

otherwise the delays satisfy the statement of the theorem. 

 

There exist therefore signals 1−iσ , iσ and 1+iσ , such that their corresponding 

delays
1−∆i
, 

i∆  and
1+∆i
, respectively, satisfy 

ii ∆<∆ −1
and

ii ∆≤∆ +1
. We may 

now narrow wire 1−i  slightly, thus increasing its delay, say by a magnitude 

that doesn’t exceed( ) 21−∆−∆ ii  in the worst case. We may similarly narrow 

wire 1+i and increase its delay by ( ) 21+∆−∆ ii  if 
ii ∆<∆ +1
indeed.  Such 

narrowing must reduce 
i∆ since the width of wire i  didn’t change, but its 

spacing from neighbors was increased. 
i∆  Which was a maximal delay was 
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thus reduced.  If this was the single maximal delay, a contradiction follows 

since the maximal delay was reduced, while other delays do not exceed it. If 

there are several wires with maximal delay, the same procedure repeats itself 

for the next maximal delay wire, until all maximal delays are reduced. This 

procedure must terminate since the problem it finite. 

 

The proof for objective of worst negative slack follows similarly. •  

 

Theorem 1 imposes necessary conditions on optimal solutions. It is not true 

that any solution whose delays (or slacks) are all equal is optimal. The 

convexity of the max objective functions ensures a unique and global 

minimum. These functions are continuous but not differentiable, so we cannot 

rely on equating first derivatives to zero in order to express sufficient 

conditions for optimality. We’ll instead attempt to change one of the space or 

width variables. A single variable however cannot change alone due to the 

area constraint. We’ll therefore attempt to make a local change of a triplet 

( )iii SWS ,,1−  or ( )1,, +iii WSW , without changing any other variable, such that 

iii SWS ++−1 or 1+++ iii WSW  are invariant. We define this as an area 

preserving local modification. Clearly, it affects only the delays of 

( )11 ,, +− iii σσσ  or ( )1, +ii σσ , respectively. All other delays are unaffected1. 

 

Let 0>ε be arbitrarily small and 10 ≤≤α be real positive numbers.  Area 

preserving local modification of ( )iii SWS ,,1−  will result in the 

triplet ( )( )εαεαε −±− 1,,1 ∓∓ iii SWS , for which wire width is increased 

                                                 
1 This is true under the assumptions stated in this paper, because signal slope effects are neglected. However, 
in reality cross-coupling might slightly affect other delays, as a result of slope change.   
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(decreased), while its neighbor spaces are decreased (increased). Similarly, the 

modification of ( )1,, +iii WSW  will result in the 

triplet ( )( )εαεαε −± + 1,, 1 ∓∓ iii WSW . Notice the correspondence between 

the plus and minus signs in the modified triplets. 

 

Since max delay (or worst slack) is a convex objective whose global minimum 

is the MinMax point, the following statement is in order. 

 

Postulate: For any equal delay (or slack) solution other than the MinMax one, 

there exists an area preserving local modification which reduces the delay (or 

slack) of a signal without increasing the delay of any other signal. 

 

The following theorem provides a sufficient condition for an equal delay (or 

slack) solution to be the global minimum. 

 

Theorem 2 (sufficient condition): Let all the delays in max delay (worst slack) 

objective function be equal to each other. This is then the MinMax solution if 

for all i  and any 10 ≤≤α  the following relations exist: 
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where, edca iii ,,,  are the coefficient of delay equation (5). The proof can be 

found in Appendix C. Notice that the terms comprising the conditions (20) – 

(22) are reminiscent of the derivatives in (14) and (15). Hence, an equal delay 

(slack) solution is optimal if no area-preserving local modification can be 

found to improve any of the bus wires. 

 

Iterative algorithm for MinMax delay or slack 

   Theorems 1 and 2, and the convexity properties discussed earlier suggest an 

iterative algorithm to obtain a minimum of maximal delay (It can be easily 

adapted to maximize the most critical slack). The algorithm works in two 

phases which repeat themselves until convergence. 

 

The first phase equates the delay of all signals by iterations. It picks the signal 

whose delay is currently maximal. It then reduces the delay by equating it with 

its two neighbors, a technique used in the proof of Theorem 1. This is repeated 

until all delays are equal. 

 

The second phase checks for existence of the sufficient condition posted in 

Theorem 2. It then picks the triplet which mostly violates the sufficient 

condition and performs an optimal area preserving local modification which is 

reducing the delay of the triplet’s signals.  

 

This gives a rise for another iteration of first phase, as the delay of all the 

signals can equate at a lower value. If the sufficient condition is satisfied 

however, the algorithm terminates at optimum.  
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The algorithm for maximal delay minimization is outlined below. Some 

heuristics aiming at speeding up convergence are included. 
 

MinMaxDelay ( ) 

set initial solution; 

do {  

   while ( not all signal delays are equal ) { // first phase 

       1. Pick signal with maximal delay; 

       2. Equate delay of the selected signal with its 

                 two neighbors;  

   }  

 

   if (sufficient condition fulfilled ) 

      terminate; // optimum reached 

   else // second phase 

     1. Find the triplet which violates the sufficient condition most strongly; 

    2. Reduce delay of triplet’s signal by area preserving local modification; 

} 
 

Convergence of the above algorithm can be proven as follows: The inner loop 

of while (first phase) iterates over signals and reduces the maximal delay. 

Therefore, the maximal delay, which is positive, is monotonically decreasing. 

Hence it must reach a limit. In the outer do loop the delay (equal for all 

signals) is also monotonically decreasing, thus it must reach a limit as well.  
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The relation between minimal total sum and MinMax solutions 

We further study the relation between the optimal solutions of total sum and 

MinMax optimizations, for either delay or slack optimizations. We may 

interpret the delay (slack) of the bus ( )n∆∆≡∆ ,...,1  (analogously for slacks) 

as a vector in n  dimensional vector space over real positive numbers.  The 

addition of delay (slack) vectors is interpreted as connecting two busses 

serially, signal by signal. It is not difficult to prove that the objective function 

of total sum of slacks (10) or delays (11), and the objective function of max 

slack (12) or delay (13) are nothing but the norms
1
 and

∞
, respectively. 

Let Vv∈  be any vector in n  dimensional vector spaceV . The norm 

equivalence theorem states that there exist real positive numbersα andβ  

satisfying βα <<
∞

vv
1 . This means that an optimal solution of 

minimizing the total sum of delays is also a good MinMax solution and vice 

versa. Indeed, the following theorems claim that the optimal solution of the 

MinMax problem is bounded from both sides by the optimal solution of the 

total sum problem. The notation is shown in Figure 4, illustrating distributions 

of signal delays in the solution of a minimal total delay problem and in the 

solution of the corresponding MinMax delay problem. 
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Figure 4:  Distributions of  signal delays in MinMax solution (top)  compared with  minimal 

sum-of-delays solution (bottom). 
 

Theorem 3: Let∆′ , ~∆ and ∆ ′′ be the smallest, average and largest delay, 

respectively, among all the bus signals in the optimal solution of minimal total 

sum of delay. Let *∆ be the delay of each signal in the MinMax optimal 

solution. There exists then ∆ ′′≤∆≤∆≤∆′ *~ .  

 

Proof: The inequality ∆ ′′≤∆≤∆′ ~ is satisfied by definition. It is impossible 

that ~* ∆<∆ . Otherwise, the optimal MinMax solution yields total sum of 

delay *∆n , thus contradicting the optimality of ~∆n . It is also impossible that   
*∆<∆ ′′ as it yields a solution whose max delay is smaller than *∆ , 

contradicting the optimality of *∆ . ● 
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Theorem 4: LetΩ′ , ~Ω and Ω′′ be the smallest, average and largest slack of 

a signal, respectively, in the optimal solution of maximal total sum of slack. 

Let *Ω be the slack of a signal in the MinMax optimal solution. There exists 

then Ω′′≤Ω≤Ω≤Ω′ *~ . 

 

Examples 

Exampel 1:  Sidewall effects in a uniform bus. 

 Figures 5 and 6 illustrate the optimal solutions of MinMax and sum-of-delays 

optimization, respectively. The bus has eight signals whose wire length is 500 

microns. All drivers are of 500Ω  resistance and all load capacitances are 

50 fF . The area allocated for the bus is 7 microns. 



 21

 

 
 

 

 
Figure 5:  ( Top): Cross section of  the bus after MinMax delay optimization, annotated 

with values of wire widths and spaces.  (Bottom): Width and spaces shown as graphs versus 

wire position in the bus. 
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Figure 6: ( Top): Cross section of  the bus after sum-of-delays optimization, annotated with 

values of wire widths and spaces.  (Bottom): Width and spaces shown as graphs versus wire 

position in the bus. 
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compensation by a wide wire, otherwise large RC delay will occur. This 

phenomenon repeats itself for the next adjacent wires, with decreasing 

amplitude. In the minimization of sum-of-delays, the first and last wires are 

affected similarly as in MinMax optimization due to same reason: sidewalls 

don’t care for space. All other signals however have the same width and space. 

Consequently, the extreme wires have larger delay than all others. Despite 

differences in width-space distributions between two cases, numerical values 

of delays are very close. Comparing average delay obtained in sum-of-delays 

optimization with delay obtained by MinMax optimization yield 
~ 67.473 psec∆ =  and * 67.562 psec∆ = , which are indeed very close. 

 

   For deeper insight while comparing total sum-of-delays with MinMax 

problems, let’s simplify the bus model and ignore the sidewall effect. This is 

done by dropping the sidewalls and assuming that the leftmost signal and the 

rightmost signal are adjacent. Pictorially, it is equivalent to placing the signal 

bus on a cylindrical surface, thus obtaining two neighbors for every signal. 

The optimal solution satisfies the following theorem whose proof is given in 

Appendix B. 

 

Theorem 5: Let all signals have identical drivers and identical receivers and 

let their order be cyclical (placed on a cylindrical surface).  Then in the 

optimal solution of maximizing (minimizing) the total sum of slacks (delays), 

all the widths, spaces and delays are necessarily equal. 

 

We now characterize the optimal solution of MinMax delay in a cyclical 

uniform bus by a direct consequence of Theorems 3 and 5 above.  
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Corollary 1: For a cyclical bus where all signals have identical drivers and 

identical receivers, the minimization of max delay yields the same solution as 

the minimization of total sum of delays. 

 

Proof: Follows directly from Theorem 3 which states 

that ∆ ′′≤∆≤∆≤∆′ *~ , where ∆′ , ~∆ and ∆ ′′ are the smallest, average and 

largest delays in the minimal total sum of delays, respectively, and *∆ is the 

delay of a signal in the optimal MinMax solution. Theorem 5 states that for 

cyclic uniform bus there exists ∆ ′′=∆=∆′ ~ . Hence the corollary follows.● 

 

Returning to Example 1 above, let us modify the bus to be cyclical. Both 

MinMax optimization and minimal sum-of-delay optimization were solved in 

MATLAB and yielded a result 65.524 psec . In conclusion, a uniform bus is 

similar to a cyclical bus, except for the edge effects near the sidewalls. 

Therefore, optimal solutions for total delay and MinMax delay are almost 

identical. Note that the identity of optimal solutions for total sum and MinMax 

doesn’t exist for slacks, even in a uniform cyclical bus.  Maximizing total sum 

of slacks is the same as minimizing total sum of delays; hence delays of 

signals are all equal in the optimized uniform cyclical bus. Slacks, however, 

are not equal to each other as they depend on the required time which may 

change from signal to signal. In the optimal solution of the MinMax slack 

problem, all slacks are equal.   

 

The next example deals with optimizing total slack and worst slack in a 

uniform bus with side walls. 
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Example 2:  Slack optimization. 

 Figures 7  illustrates the case where a required time is assigned to each signal. 

Using the same bus from example 1, a required time of 65 picoseconds was 

assigned to the fifth wire, while all other wires were allowed 70 picoseconds. 

Applying MinMax optimization of the slacks results in equal slacks of 1.4 

picoseconds for all signals, as shown in Figure 7. The distribution of wire 

widths and spaces is depicted in the bottom part of Figure 7. Its nature is 

similar to the case of MinMax delay optimization. Notice however that the 

non-uniformity in required time disturbs the symmetry obtained in Example 1.  

The wire which was assigned the most difficult (earliest) required time became 

wide, while its spacing to adjacent wires became larger too. This is for the 

sake of reducing its RC delay, thus compensating for the early required time. 
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Recall that maximizing total sum of slack is not affected by required times as 

this optimization is identical to minimizing total delay, as discussed earlier. 

 

 

 

 

Figure 7: ( Top): Cross section of  the bus after MinMax slack optimization. 

  (Bottom): Width and spaces shown as graphs versus wire position in the bus. 

 

Example 3:  Non-uniform bus  

This example presents an interleaved bus structure, with alternating drivers; 

odd-numbered wires have strong drivers (Rd=100Ω ), and even-numbered 

wires have weak drivers (Rd=1000Ω ). Wire length is 3000µm and load 

capacitance 70 fF in this example. A total bus width is constrained to 10 

microns. Results of optimizing this bus are depicted in Figures 8 and 9. Notice 

first that the wire width and space distributions of MinMax optimization differ 
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significantly from total sum-of-delays minimization. Since in MinMax 

optimization all the delays must be equal, and since the weak and strong 

drivers are interleaved, the spaces must be equal to each other. An exception is 

the leftmost space. This is due to the asymmetry resulting from a strong driver 

on the left side and a weak driver on the right side of the bus. The equality of 

spaces and signal delays implies that signals with strong drivers will be 

narrower than those driven by weak drivers, as demonstrated in the bus cross 

section. Minimization of total sum-of-delay also yields alternating widths of 

wires, but neither uniformity nor symmetry exists. Notice also that wider wires 

were allocated to strong drivers in this case. It is interesting to compare the 

delays obtained by the two optimizations. Although all the relations proved in 

Theorem 3 do exist, the MinMax delay is much worse than the average delay 

in the total sum-of-delay optimization. In fact, it is very close to the maximal 

delay of the latter distribution.  
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Figure 8: Non uniform bus minmax optimization 

 

 

Example 5: Optimal delay dependency on bus width. 

 Let us change the total width of the bus in example 4. The MinMax delay is 

compared to the minimum, average and maximum delay of the corresponding 

total sum-of-delays optimization, for various bus widths, as illustrated in 

Figure 9. According to Theorem 3, the MinMax delay of all wires always 

resides between the average and the maximal wire delay in the total sum-of-

delay minimization. As the bus width constraint is relaxed (larger widths), the 
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is due to the fact that large bus width decouples the signals, so signals of weak 

and strong drivers are optimized independently.  

 

Figure 9: Non uniform bus total sum of delays optimization 
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Figure 10: Optimal solution parameters ∆ ′′∆∆∆ ′ ,,, *~  (see Figure 4) versus bus width 

constraint A, for the circuit of example 4. 

 

 

 

Example 6. Migration of a bus in an industrial circuit.   

A 20-wire metal 3 bus structure from an industrial circuit block was migrated 

from 90 nanometer to 65 nanometer technology, with a clock frequency target 

of several GHz. The total width of the bus is 13.53 µm, length of wires is 500 

µm. Before optimization, wire widths and spaces were determined by 

shrinking the old layout, as specified in Table I below. Two kinds of drivers 

are used in the bus: strong drivers with resistance of 85 Ω and input 

capacitance of 14 fF and weak drivers with resistance of 2.17 KΩ and input 

capacitance of 0.75 fF. 
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Table I:  Migration of a circuit block in 65 nanometer technology  

Before optimization After optimization 

Wire 

no.(i) 

driverR  

[ KΩ ] 

loadC  

[fF] 
1iS −  

[µm] 

iW  

[µm] 

Delay 

(% of clock 

cycle time) 

1iS −  

[µm] 

iW  

[µm] 

Delay 

(% of clock 

cycle time) 

1 2.17 0.75 0.33 0.33 46.5 0.54 0.11 34.9 

2 2.17 0.75 0.33 0.33 44.5 0.86 0.11 33.2 

3 0.085 14 0.33 0.33 6.4 0.46 0.11 14.3 

4 2.17 0.75 0.33 0.33 44.8 0.65 0.11 32.9 

5 0.085 14 0.33 0.33 6.4 0.72 0.11 10.8 

6 2.17 0.75 0.33 0.33 45.2 0.29 0.11 38.3 

7 0.085 14 0.33 0.33 6.4 0.26 0.16 10.3 

8 2.17 0.75 0.33 0.33 44.0 0.34 0.11 36.0 

9 2.17 0.75 0.33 0.33 44.2 0.31 0.11 34.4 

10 2.17 0.75 0.33 0.33 43.8 0.7 0.11 32.6 

11 0.085 14 0.33 0.33 6.6 0.47 0.14 13.0 

12 0.085 14 0.33 0.33 6.2 0.21 0.11 14.8 

13 2.17 0.75 0.33 0.33 44.1 0.9 0.11 32.4 

14 2.17 0.75 0.33 0.33 44.1 0.58 0.11 33.4 

15 0.085 14 0.33 0.33 6.6 0.42 0.11 14.6 

16 2.17 0.75 0.33 0.33 44.6 0.42 0.11 33.4 

17 0.085 14 0.33 0.33 6.6 0.93 0.16 9.7 

18 2.17 0.75 0.33 0.33 45.2 0.52 0.11 34.2 

19 0.085 14 0.33 0.33 6.6 0.5 0.11 14.7 

20 2.17 0.75 0.33 0.33 44.6 0.57 0.11 33.4 

Average   29.4  25.6 

 

Total sum of delays timing optimization was run on this bus and results are 

presented in Table I. The delays in Table I were obtained from circuit 
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simulations, performed with extracted parasitics from actual layouts before 

and after optimization, using accurate industrial tools.  The delays are 

represented as a percentage of the clock cycle time. As seen in the table, 

average timing of the bus was improved by about 13%. It was achieved by 

decreasing widths of wires and varying spaces, thus decreasing wire 

capacitances on the slower signals. As expected, the timing improvement of 

critical signals as well as the improvement in total sum of delays were 

obtained by trading off the less critical signals whose delay got worse.  Almost 

all wires were narrowed to the minimal allowed value of 0.11 µm. Since the 

bus is relatively short, wire resistance effect is not critical and therefore most 

of the channel area was allocated to inter wire spaces in order to decrease 

loading of weak drivers by inter-wire cross capacitances. Minimization of 

worst wire delay has also been performed, and results were verified by circuit 

simulation, using extracted layout capacitances and resistances, yielding 

36.2% of clock cycle time versus 46.5% before optimization (compare with 

the average wire delay of 25.6% and maximum wire delay of 38.3% in sum of 

delays optimization).  Elmore delay estimates were about 35% larger than 

circuit simulation results. 

 

Discussion and conclusions 

It has been noted in general circuit timing optimization that whenever 

MinMax formulation is used, all timing paths tend to become equally critical, 

as proven in theorem 1 for the bus sizing problem. This phenomenon was 

termed path-balancing [ 17][ 18]. Shaping of delay distributions involves a 

number of considerations: minimization of critical delay for maximal circuit 

speed tends to push the right tail of the path delay distribution towards the 

center, and minimization of area and power often tends to push the left tail 
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towards the center. Circuit tuning by MinMax optimization  results in a very 

narrow distribution of delays, as illustrated in figure 4. However, a narrow 

distribution where many paths are critical, is more sensitive to parameter 

variability [ 17, 18, 19]. A modification of the objective function in MinMax 

formulation has been proposed, involving a penalty function [ 18] which 

separates the most critical paths from others. An alternative approach is to use 

the total sum objective, at least in the initial stages of layout migration. At the 

optimal the solution of total sum minimization, every wire is at a balance point 

where sensitivity to the value of wire width and spaces approaches zero, as 

illustrated in Figure 3. In contrast, the MinMax solution takes most signals 

away from this stable point in order to equalize all of the delays or slacks, and 

therefore the circuit becomes more sensitive to variations in geometrical 

dimensions. Our computational experiments in bus tuning show that typically, 

most signal delays become much worse while the critical signal become only 

slightly better as resources are shifted to make all wires equally critical. In 

other words, the largest wire delay in the total sum solution is typically a tight 

bound on the solution of the MinMax problem, as seen in the example of 

Figure 9.   

 

In conclusion, we have characterized the problem of simultaneously allocating 

wire widths and spaces to all wires in parallel bus structures under a total area 

constraint, for circuit performance optimization. We have demonstrated its 

importance in migration of layouts to new generations of CMOS process 

technology. Our results show that total sum of delays (or slacks) is a useful 

objective function for minimization. Compared with MinMax delay tuning, it 

is mathematically more convenient, leads to robust solutions which are less 

sensitive to parameter variations, and typically produces bus layouts which 
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closely approach the best achievable performance. We have also presented an 

iterative algorithm for MinMax performance tuning of bus layouts, based on 

problem-specific necessary and sufficient conditions for optimality. 

 

Appendix A: The optimization problems are all convex 

Proposition: The objectives functions 4321 ,,, ffff  presented above are all 

convex or concave. Their associated constraints are linear, and therefore also 

convex. Consequently all the optimization problems have unique, global 

minimum or maximum, depending on convexity or concavity. 

 

Proof: The area and design rules constraints given in (3), (4) and (5) are all 

linear equalities or inequalities. Altogether they define a convex feasible 

region on which the above objective functions are defined. 

 

The function ( )SWi ,∆  in (2) is a sum of terms depending on the 

variables iW , iS and 1−iS . In order to prove its convexity it is sufficient to see 

the convexity for each term, since a linear combination with positive 

coefficients of convex functions is convex too. Convexity exists if all its 

second order derivatives are non-negative. Deriving twice all the terms 

comprising ∆  yields 02 =
∂
∂

W
W ; 021

32 >=
∂
∂

WW
W

; 021
32 >=

∂
∂

SWW
WS ; 

0111
22 >=

∂∂
∂

=
∂∂

∂
SWWS

WS
SW

WS ; 021
32 >=

∂
∂

WSS
WS , which are all nonnegative. 

Consequently, the delay of single signal is convex 
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The function 1f  defined in (10) is a negative sum of convex terms and 

therefore yields a concave function. Its maximization on convex region yields 

unique global maximum. For similar reasons, 2f  defined in (11) is convex 

and has therefore global minimum. 

 

Both functions 3f  and 4f of maximal slack delay as defined in (12) and (13), 

respectively, are convex since they are a maximum of convex functions. Their 

minimization on convex region yields therefore a unique global minimum.● 

 

Appendix B: Proof of Theorem 5 

Proof:  From (11) we obtain: 

(23) 
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In the above we identify 0S  with nS  due to the cyclic ordering of signals. Note 

also that the coefficients are not indexed since all drivers and receivers are 

identical.  

 

Assume that the optimization problem (3), (18) and (19) was solved and the 

optimal solution is given. Let ∑ =
=

n

j jWW
1 and ∑ =

=
n

j jSS
1 denote the total 

wire widths and total spacing in the optimal solution. Obviously, there 

exists SWA += . Let us show that among all the settings of area preserving 

W and s , the one in which all iW and is are identical is optimal. 
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Examination of (23) shows that it consists of the following sums∑=

n

i iW
1
1 , 

∑=

n

i iS
1
1 and ( ) ( )[ ] ( )112 1 111111, SSWSSWSWt n

n

i iii +++= ∑ = − . The first 

two sums are minimized only when all iW  are equalized and all iS  are 

equalized. We’ll show the term ( )SWt ,  is also minimized by such 

equalization.  

 

Substitution of ∑−

=
−=

1

1

n

j jn WWW  and ∑ −

=
−=

1

1

n

j jn SSS in ( )SWt ,  and then 

differentiating by each of the 22 −n  variables 1111 ,...,,,..., −− nn SSWW yields: 
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Note that in both (24) and (25) the second term is identical and independent of 

i  for all equations. Consequently, all the derivatives of ( )SWt , by widths 

satisfy same equation, and so the derivatives by spacing. Therefore, there exist 

two real numbers wλ and sλ , satisfying ( ) wiii SSW λ=+− 111 1
2  

and ( ) siii WWS λ=+ +1
2 111 . This implies that nWWW === …21  

and nSSS === …21  is indeed the optimal and unique solution.  

 



 37

In conclusion, minimal total sum of delays requires identical wire widths and 

identical wire spacing.  Identical signal delays follow immediately due to 

identical drivers and identical receivers. ● 

 

 

Appendix C: Proof of Theorem 2 

Proof: Assume to the contrary that a given equal delay solution is not 

minimal. According to the above postulate there exists area preserving local 

modifications that will reduce the delay of a signal without increasing the 

delay of any other signal. Four modifications are possible: Increasing or 

decreasing wire width, and increasing or decreasing a space. Let us consider 

each. 

 

Case 1: Increasing wire width is impossible since area preservation implies 

that at least one of the adjacent spaces is decreased. This however increases 

the delay of the adjacent signal that shares this space. 

 

Case 2: Decreasing the width results in the new 

triplet ( )( )εαεαε −+−+− 1,,1 iii SWS , where 10 ≤≤ α . The delays 1−∆i and 

1+∆i do not increase as their adjacent spaces do decrease. For the new delay 

i∆′ to decrease there must exist some 10 ≤≤ α  , such that substitution of the 

new width and spaces in (2) yields 
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Dropping the term ( )2εO implies that delay reduction requires the above 

square brackets to be positive. Case 1 can be viewed as being obtained by 

using negativeε  , thus implying an opposite inequality than the above. Hence 

equation (20) follows. 

 

Case 3:  Decreasing a space results in the new 

triplet ( )( )εαεαε −+−+ + 1,, 1iii WSW . We require that none of i∆ and 1+∆i  is 

increased. This implies the for some 10 ≤≤α , there exists 

 

( )2
2

1
22

1110 εαε O
SW

ed
SSW

e
W
ca

ii
i

iiii

i
iii +





















+−
















+++−=∆′−∆≤

−
 

( ) ( )2
2

1
1

1
2

1
2

1
111

11110 εαε O
SW

ed
SSW

e
W

c
a

ii
i

iiii

i
iii +





















+−




















+++−−=∆′−∆≤

+
+

+++
+++  

Dropping the term ( )2εO  implies that delay reduction requires the above 

square brackets to be positive. Hence (21) and (22) must be non negative. 

 

Case 4:  Increasing a space results in the new 

triplet ( )( )εαεαε −−+− + 1,, 1iii WSW . This is exactly the same as case 3, but 

with negativeε . Therefore, the braces need now be non positive. ● 
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