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Abstract 

 
This paper presents a new technique for efficient 

usage of small trace caches. A trace cache can 
significantly increase the performance of wide out-of-
order processors, but to be effective, the size of the 
trace cache should be large. 

Power and timing considerations indicate that a 
small trace cache is desirable, with special 
mechanisms to increase its effectiveness despite the 
limited size. Hence several authors have proposed 
various filtering methods to select "good traces" for 
keeping in the trace cache, from among the general 
population of traces.  

This paper presents a new filtering technique, which 
is based on sampling. Our new technique suggests that 
instead of building all the traces and trying to select 
the good ones among them, it is more efficient to make 
a preliminary selection of traces. This selection is 
based on a random sampling approach. 

We show that the Sampling Filter improves trace 
cache and overall system performance, while reducing 
power dissipation. The Sampling Filter reduces 
admission of traces that are not used prior to their 
eviction from the cache, and prolongs the percentage 
of time a trace is in its live phase during its stay in the 
cache.  Moreover, the Sampling Filter reduces 
duplication between the trace cache and the instruction 
cache and thus reduces the overall misses in the first 
level of cache hierarchy.  
 
1. Introduction 
 

The effectiveness of a single threaded out-of-order 
processor is strongly dependent on the average number 
of useful instructions it can fetch in every cycle. Trace 
caches are very effective in serving this goal by storing 
instructions in their dynamic order rather than in their 
static order [11][16][17]. Thus, a trace cache has two 
major merits: it contains instructions from different 
basic blocks that would normally require several 

accesses to the instruction cache in order to be fetched, 
and it contains only useful instructions (contrary to an 
instruction cache line that is fetched but might include 
instructions that the processor doesn’t require). The 
trace cache was found to be very effective if size and 
power are not limited. However, relatively small trace 
caches, which are practical in term of access time and 
power consumption, are very vulnerable in terms of 
memory efficiency, because of several problems [12]: 
the same basic blocks can appear in different traces 
(duplication), some traces don't contain the maximum 
number of instructions (fragmentation), and the 
requested block might reside inside a trace and thus 
become inaccessible (Indexability). Thus, the key for 
efficient usage of relatively small trace caches is either 
to change the way the trace is constructed; i.e., the use 
of basic block traces [1], or to keep only the most 
valuable traces inside the cache and thus avoid their 
trashing by less valuable traces. This work will focus 
on the second option since the logic required to 
construct the traces out of a block-based cache is very 
costly in term of power. Filtering (selective admission 
of incoming traces to the cache) has already been 
proposed as a way to increase the usefulness of a 
limited size trace cache. In [13] it was proposed to 
store only traces containing taken branches, which 
cannot be fetched in one access from the instruction 
cache. In [14] it was proposed to filter traces based on 
their usage. The trace cache is divided into two blocks: 
the Filter trace Cache (FTC) and the Main Trace Cache 
(MTC). All traces are written to the FTC, but only 
traces that have been proven to be “useful” are inserted 
to the MTC. The success of this filtering method is 
based on the important observation, that most traces 
that are built and inserted to the trace cache are rarely 
used before eviction, and that most of the instructions 
the processor executes come from a small set of traces 
(“hot traces”) [14]. In [9] it was proposed to use 
profiling in order to filter out traces that are less 
frequent and show little time locality. 



This paper presents a new class of trace filtering 
techniques, which is based on statistical sampling of 
traces. This class of filters aims to improve the quality 
of the traces residing in a small trace cache, while 
reducing the power dissipation needed for maintaining 
the filter's bookkeeping. The paper presents and 
analyzes the performance and the power of a basic 
Sampling Filter (SF) and an enhanced version of it, and 
compares its performance and power with a regular 
trace cache and with the FTC-MTC organization.  

The rest of the paper is organized as follows: In 
Section 2 the simulation environment and the 
characterization of traces are discussed; Section 3 
describes the sampling filter architecture and compares 
it with the regular trace cache and with the FTC-MTC 
organization. In Section 4 the usage of the Sampling 
Filter with the FTC-MTC organization is demonstrated 
and Section 5 concludes and proposes related ideas for 
future studies. 
 
2. Simulation environment and basic 
observations 
 

This section presents the simulation environment 
we used, and some of the basic observations that our 
new proposed technique is based upon. 

 
2.1. The simulation framework 
 

The performance numbers presented below are 
based on an extended version of the sim-outorder 
simulator from the SimpleScalar tools set 3.0d [4] that 
was augmented with a detailed model of the trace 
cache that includes the impact of wrong path prediction 
and recovery, along with the simulation of the 
proposed filter mechanism and with a next trace 
predictor [7]. The power numbers presented in this 
paper were computed by an extended version of the 
Wattch [2] simulator (which is based on Simple scalar) 
and by Cacti [18] that was used to estimate the power 
of new structures such as the trace cache, and for 
examining the impact of power and timing on caches 
with different configurations. The modeling of the 
leakage power in Wattch assumes that it always 
consumes 10% of the maximal dynamic power. In this 
work, since we assume relatively small structures of 
the trace cache, we saw that the leakage has only minor 
impact on the overall power of the chip and so we use 
the same method as in Wattch.   

The structure of the traces within the trace cache we 
use for our model is similar to other works; i.e., a trace 
can contain up to 16 instructions and up to 4 branches, 
a trace is terminated also if it reaches indirect jumps, 
indirect branches, procedure-calls, return instructions 

and interrupts. Our traces are composed of basic blocks 
and we don’t allow traces to be truncated unless a 
single basic block is larger than the trace capacity (in 
our framework: 16 instructions). We allow loop 
unrolling and don’t terminate a trace upon a backward 
branch. This allows traces to contain enough 
instructions to have an advantage over the regular fetch 
mechanism and yet not increase the number of unique 
traces too much. In this paper we focus on two sizes of 
the trace cache: one that contains 32 traces, and 
another that contains 64 traces, both organized as 4-
way set-associative. Our trace build mechanism allows 
traces beginning at the same address, but with multiple 
paths, to coexist in the trace cache. In this case, it is up 
to the trace predictor to decide which of the traces to 
select. The work assumes a trace cache with a backing 
instruction cache, which are accessed in parallel as was 
described in [17]. 
 

Table 1. µarch settings of the simulated 
model. 

Execution engine 
Decode, Issue, Commit 
width 

8 

Functional units Integer ALU’s: 8 
4 Mult/Div. 
Floating point ALU’s: 8 
4 Mult/Div. 

Fetch queue size 32 
Register update unit  128 
LSQ 64 
Memory  
L1 Data Cache 
 

32KB 8-ways LRU, 64B 
blocks. 2-cycle latency. 

L1 Instruction Cache 8KB 4-way, LRU, 32B 
blocks, 2-cycle latency 

Trace cache 2KB (32 traces)/4KB (64 
traces) 4-way, LRU,  
2-cycle latency 

L2 Unified cache 1MB 8-ways, 64B blocks, 
LRU, 10-cycle latency 

Memory First chunk: 128 cycles 
TLB 30 cycles miss penalty 
Branch predictor 
Predictor Bimod 4k-entery 
RAS 32 
BTB 2K-entery, 4-way 
Next trace predictor 4K-entery 

 
The configuration of the baseline machine is presented 
in Table 1. We chose an 8-way machine as a baseline 



since it can take advantage of the improvement in 
instruction supply and still be power efficient. 

We used 10 benchmarks (See Table 2) from the 
SPEC2000 Benchmark Suite [5] to evaluate our work. 
We skipped the first 500M instructions and simulated 
another billion instructions in all our experiments 
except perlbmk that was ended after 880M 
instructions. 
 

Table 2. benchmarks list. 
Benchmark Input Suite 
164.gzip input.graphic INT 
175.vpr net.in arch.in place.in INT 
176.gcc 166.i INT 
197.parser 2.1.dict –batch ref.in INT 
253.perlbmk makerand.pl INT 
255.vortex lendian1.raw INT 
256.bzip input.graphic INT 
177.mesa mesa.in mesa.ppm FP 
183.equake inp.in FP 
168.wupwis
e 

wupwise.in FP 

 
2.2. Basic observations 
 

We start this section by presenting basic 
characterization of the utilization of each trace in the 
trace cache, and characterization of the utilization of 
the trace cache itself.  

Trace Utilization (TU) is defined to be the number 
of times the system finds the trace in the trace cache 
per a trace build. Please note this definition does not 
require that the traces will be unique; i.e., if a trace is 
replaced and built again, we count it as two different 
traces. Also, the length of the trace does not affect the 
utilization of the trace. In Figure 1. and Figure 2. the 
trace utilization breakdown is presented for 32-traces 
and 64-traces trace caches respectively. In both 
configurations the majority of traces that are written to 
the trace cache are not used prior their eviction from it 
(TU=0). Moreover, only 10% of the writes results with 
more than 2 hits (TU>2) for the 32-traces trace cache 
and 20% for the 64-traces trace cache. 

The trace cache utilization (TCU) id defined in 
equation 1. as the number of hits in a cache divided by 
the number of writes. This parameter gives a good 
sense of the power and performance efficiency of the 
trace cache. A trace cache with a high TCU is assumed 
to be power and performance efficient. For a 32-traces 
trace cache the average TCU is five. Moreover, five 
out of the ten benchmarks we examined have a TCU 
smaller than 2. Therefore, the power invested in 

building the trace and writing it to the trace cache is 
very poorly used. 
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Figure 1. Trace utilization breakdown for a 32-
traces trace cache. 

 
Trace Utilization Breakdown (64 traces)
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Figure 2. Trace utilization breakdown for a 64-
traces trace cache. 
 

The replacement rate (RR) of traces in the trace 
cache is defined in equation 2.   

 

.
replacements

RR
accesses

= ∑
∑

                                        (2) 

 
Figure 3. shows the replacement rate of a 32-traces 

and 64-trcaes trace caches. It is clear from the figure 
that for some applications (like Bzip), even a small 
trace cache can contain the whole program, but for 
other applications such a trace cache is too small. On 
average, the replacement rate is high (34% and 22% 
for a 32-trace and 64-trace caches respectively).  

The above observations indicate that for a limited 
area trace cache, traces are replaced too frequently by 
less effective traces and cause the entire trace cache 



mechanism to be ineffective in terms of performance 
and power. Therefore, it is critical to filter "bad" traces 
out of the general population of traces. 
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Figure 3. Replacement rate for 32-traces and 
64-traces trace caches. 
 
3. THE SAMPLING FILTER 
 

Unlike other proposed filtering techniques that try 
to keep track of all traces in the program in order to 
classify them as "hot traces" (that need to be kept) or 
"cold traces” (that can be discarded), the new proposed 
technique uses a statistical approach. By using 
statistical methods, we suggest to randomly select 
traces that are candidates for storing in the trace cache. 
Please note that by doing so, we do not preclude any 
other filtering techniques, which can be applied on the 
chosen subset of the traces. 

The structure of a system that supports the basic 
sampling algorithm is shown in Figure 4. On top of a 
trace cache system as described in [17] we add a 
sampling capability that chooses periodically, for 
example every X builds, to save a trace. Traces that are 
not sampled (selected) are discarded. The sampling 
rate is the rate at which traces are sampled, i.e., if every 
tenth trace is inserted to the trace cache, the sampling 
rate is 1/10. This filtering mechanism requires minimal 
hardware and can be easily implemented. 

In order to establish the new proposed technique 
effectiveness, the next subsection provides some 
performance (IPC) and power efficiency ( 2ED ) 
simulation measurements as well as trace cache 
behavior (hit rate and coverage). We choose the energy 
delay square metric ( 2ED ) as it is independent of 
voltage in first approximation [2]. Next we will extend 
the discussion in order to understand why the sampling 
filter works and how it can be further improved. 
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Figure 4. The sampling filter system. 
 
3.1. The Impact of the Sampling filter 
 

In this section we compare several fetch engine 
configurations. The different configurations and area 
budget are summarized in Table 3. The regular trace 
cache (CTC32) and the Sampling Filter (SF32) 
machines all have a 8KB backing instruction cache and 
a 2KB trace cache size. The FTC-MTC organization 
has also an 8KB backing instruction cache and a 2KB 
total trace cache that is divided equally between the 
FTC and the MTC. The SF32 uses a constant sampling 
rate of 1/20 for all the benchmarks. 

 
Table 3. Fetch engines configurations 
CONFIGURATION 
NAME 

CONFIGURATION 
DESCRIPTION 

TOTAL 
AREA 

I8KB Instruction cache 8KB 
I16KB Instruction cache 16KB 
CTC32 Concurrent trace cache 10KB 
FTC-MTC Filter trace cache + 

Main trace cache 
10KB 

SF32 Concurrent trace cache 
with a sampling filter 

10KB 

 
Figure 5. shows the IPC improvement of these fetch 

engines over a machine without a trace cache, which 
has an 8KB instruction cache only (I8KB). Doubling 
the Instruction cache to a 16KB cache (I16KB) 
improves the IPC by 9.6%, while the regular trace 
cache (CTC32) improves performance by 11%. The 
FTC-MTC achieves 11.6% improvement while the 
Sampling Filter (SF32) achieves 17.7% improvement.  
This demonstrates that the combination of a small trace 
cache (total area of 10KB) and sampling technique can 
outperform a larger instruction cache (16KB) and the 
other trace cache organizations occupying the same 
area. 
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Figure 5. IPC improvement over a regular 8KB 
instruction cache. 
 

Figure 6. shows the reduction in energy delay 
squared ( 2ED ) of several fetch engines compared with 
a regular 8KB instruction cache. The 16KB instruction 
cache achieves a reduction of 14.5% in 2ED . The trace 
cache and the FTC-MTC organization achieve 16.5% 
and 20% reduction in 2ED  respectively, while the 
Sampling Filter achieves a 27% reduction in 2ED . This 
indicates that the sampling filter is the most 
performance-power efficient among the compared 
alternatives. 
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Figure 6. 2ED  reduction over a regular 8KB 
Instruction cache. The Sampling Filter proves 
to be the most performance-power efficient 
out of all the configurations. 
 

The impact of sampling on the trace cache behavior 
is presented in Figure 7. The coverage (the percentage 
of instructions originated from the trace cache) of the 
Sampling Filter configuration compared with the 
regular trace cache increases from 56.5% to 66.3%. 
The hit rate of the Sampling Filter configuration 
increases from 66% to 72.6%. 
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Figure 7. Trace cache coverage (top figure) 
and hit rate (bottom figure) of a regular trace 
cache (CTC32) and the sampling filter 
organization (SF32). 
 
3.2. Why it work 
 

The reason that our new technique works so well is 
a combination of two effects: the reduction of pressure 
of new coming traces on the small trace cache, together 
with the impact of the LRU mechanism. As was 
published in some research in the past, it is known that 
most of the instructions a trace cache based processor 
executes come from a relatively small number of traces 
(“hot traces”). These traces, regardless of the random 
selection, will be selected eventually, and will be 
placed in the trace cache.  The main impact of the 
sampling filter is then, on the “cold traces”. In section 
2 it has been shown that the majority of writes are of 
“cold traces” with zero TU rate. The filter reduces the 
number of “cold traces” writes. This reduces the 
pressure on the small trace cache and enables the LRU 
mechanism to better capture the “hot traces”, so “cold 
traces” that happened to enter the cache can be 
identified as such, and be replaced. 

In order to justify the above claims, we present a 
new set of experiments. Figure 8. shows the impact of 
using the basic sampling algorithm on the trace 
utilization (TU), and in particular we focus on the 
percentage of traces that have TU=0. We can observe 
that the sampling technique reduces the population of 
these traces dramatically from 73.8% in the non-



filtered system to 25.6% in the sampling filter system. 
The impact of such reduction in the "useless traces" is 
twofold: it saves a lot of wasted power and it prevents 
cache pollution by inefficient traces. 
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Figure 8. Percentage of writes with zero Trace 
utilization (TU). 
 

An important indicator for the quality of a trace is 
the proportion between its “live” time and its “decay” 
time as was defined in [8][14]. A “live” time of a trace 
is measured from the time it was saved in the trace 
cache till the last time it was used. The “decay” time of 
a trace is measured from the last time it was used, until 
its eviction from the trace cache. Since the decay time 
is considered to be a waste of resources, we try to 
reduce it. Figure 9. shows the impact of the sampling 
technique on the lifetime of traces. While in the regular 
trace cache the average “live” time of a trace is only 
32%, after applying our new sampling technique, about 
75% of the time, a trace is “live”. For small trace 
caches the utilization of the area is very important and 
so it can explain why we see a vast improvement in 
performance due to our technique. 
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Figure 9. Percentage of time traces are live in 
the cache. 
 

So far we saw that the sampling technique improves 
both the trace utilization and the “live” time of traces 

within the cache. Table 4. shows that the proposed 
sampling technique also improves the overall 
utilization of the entire trace cache (TCU). This result 
has significance of its own. Several works have 
proposed to use hardware to optimize frequent code on 
the fly [10][15]. By increasing the TCU, the sampling 
filter ensures that optimized code will be reused many 
times prior to its replacement. Therefore, costly 
hardware optimization can be applied on traces that are 
inserted to the trace cache because the number of 
insertions is low and the utilization rate is high. The 
trace cache utilization rate increased 21.2 times for a 
Sampling Filter configuration over the regular trace 
cache (see Table   3.2). 
 
Table 4. TCU of a regular trace cache, a SF 
system and their ratio. 

BENCHMARK

REGULAR 
TRACE 
CACHE 

SAMPLING 
FILTER 

RATIO

gzip  5.13 160.69 31.3 
vpr  2.45 41.65 17.0 
gcc166  10.37 191.43 18.5 
parser  2.84 51.13 18.0 
perlbmk 1.19 36.84 31.0 
vortex  0.57 14.4 25.3 
bzip  28.1 435 15.5 
mesa  0.59 15.02 25.5 
equake  1.97 39.77 20.2 
wupwise  0.9 162.39 180.4 

Average 5 115 21.2 

 
3.3. Power consideration in Sampling Filter 
 

So far we focused on the performance aspects of the 
Sampling Filter technique. This subsection extends the 
discussion to power considerations and shows that the 
sampling technique is also advantageous in terms of 
power. The main reasons for that are the significant 
reduction in power that is used to write inefficient 
traces to the cache, and the better utilization of the 
trace cache that leads to fewer builds from the 
instruction cache. In Table 5. the number of writes per 
100 committed instructions is presented for a regular 
trace cache and a Sampling Filter organization. On 
average, the sampling filter organization has 29 times 
fewer writes to the cache than a regular trace cache. 



 
Table 5. Number of writes per 100 committed 
instructions in a regular trace cache, SF 
system and their ratio. 

BENCHMARK 

REGULAR 
TRACE  
CACHE 

SAMPLING 
FILTER 

RATIO

Gzip  2.25 0.08 28.14 
vpr  3.47 0.18 18.82 
gcc166  0.71 0.04 18.79 
parser  3.22 0.18 18.28 
perl  0.79 0.03 26.51 
vortex  5.76 0.26 22.19 
bzip  0.44 0.03 15.73 
mesa  5.37 0.24 22.56 
equacke  3.58 0.16 22.74 
wup  3.48 0.04 96.00 
Average 2.91 0.12 28.98 
 

Figure 10. shows the fetch stage energy of three 
equal area trace configurations: a regular trace cache, 
the FTC_MTC organization and the Sampling Filter 
organization as well as the 16KB instruction cache.  
All the results are normalized so the energy 
consumption of a regular 8KB instruction cache is 
always 1. It is clear from the figure that increasing the 
size of the instruction cache increases the energy 
consumption while using a small (and therefore power 
efficient) trace cache reduces the energy consumption. 
This is true even though our model assumes a parallel 
access to the trace cache and the instruction cache, 
because a successful access to the trace cache 
terminates the build from the instruction cache. 
Therefore, in comparison to the instruction cache 
model, using a small trace cache adds cheap accesses 
to the trace cache and eliminates more expensive 
accesses to the instruction cache.  The regular trace 
cache reduces the energy consumption by 17% while 
the FTC_MTC organization reduces it only by 4.8% as 
this organization involves accessing both the filter and 
the main trace caches in parallel. On the other hand, 
the Sampling Filter reduces the fetch stage power by 
27% over a regular 8KB instruction cache. This is due 
to the improvement in the hit rate, which reduces the 
number of accesses to the L1 instruction cache and to 
the massive reduction in writes to the cache. 
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Figure 10. Normalized (I8KB is 1) fetch stage 
energy of the different fetch engines.   
 
3.4. Trace and Instruction cache decoupling 
 

The purpose of the sampling filter is to reduce the 
percentage of low utilization rate traces. By reducing 
the number of writes to the trace cache the sampling 
filter also accomplishes a reduction in the overall miss 
rate at the Level 1 caches hierarchy (Trace cache and 
Instruction cache together). The backing instruction 
cache is important because it provides the instructions 
to build a trace upon a trace cache miss. Accessing the 
Level 2 cache to build traces would reduce the 
performance because of the L2 longer access time. 
After the trace is built the code is present in the trace 
cache as well as in the instruction cache. Thus, the 
code is duplicated and the Level 1 memory is not used 
efficiently. If the trace is repeatedly rebuilt then it will 
continue to be duplicated in both the trace cache and 
the instruction cache. The ability of the Level 1 
backing instruction cache to provide a high percentage 
of the trace misses is essential for maintaining a high 
instruction bandwidth. The sampling filter decouples 
the Trace Cache and the Instruction Cache by 
prolonging the lifetime of traces in the trace cache. At 
first, the basic blocks of a trace that was inserted to the 
trace cache are present in the instruction cache as well. 
But, those basic blocks are gradually replaced by the 
LRU replacement policy of the instruction cache, 
because the trace cache holds and serves them 
repeatedly over time. Consequently, duplication among 
the caches is reduced, and the overall instruction 
supply out of L1 caches is improved. In order to 
demonstrate the decoupling effect, we conduct a new 
set of experiments on a system with a small 4KB 
backing instruction cache. Figure  3.8 shows the 
instruction cache miss rate for various sampling rates. 
The miss rate is presented only for benchmarks that 
have an instruction cache miss rate higher than 0.5%. 
As the sampling rate decreases the decoupling effect is 
stronger and so the instruction cache miss rate 
decreases. 
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Figure 11. Add/change instruction supply in 
L1. 
 

The impact on the IPC is presented in Figure  3.9. 
The Average IPC over all the benchmarks is improved 
by 12.1% for a sampling rate of 1/100. The sampling 
filter improves the perlbmk benchmark by 43% over 
the “regular” trace cache (sampling rate of 1/100) as 
the Level 1 cache hierarchy is able to supply many 
more instructions. 
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Figure 12. IPC improvent for different 
sampling rates 
 
4. Combining the sampling filter with the 
FTC-MTC organization. 
 

The sampling filter is orthogonal to the FTC-MTC 
principle, hence the two can be combined. By placing 
the sampling filter in front of the FTC cache (see 
Figure 13.), the utilization rate of traces in the FTC can 
be improved. Moreover, by reducing the number of 
writes to the FTC it can better monitor the behavior of 
traces. The decision whether to discard the trace or 
store it in the MTC is taken after a longer period and 
thus the observation better reflects the nature of the 
trace. Figure 14. and Figure 15. show the improvement 
in IPC and the reduction in 2ED  of several filter 
organizations over a regular trace cache respectively. 
The combination of the sampling filter with the FTC-

MTC organization improves the IPC by 9.5% and the 
2ED  by 16.2% while the sampling filter improves the 

IPC and 2ED  only by 6.7% and by 10%, respectively. 
The combination of the sampling filter with the FTC-
MTC organization outperforms both the sampling filter 
and the FTC-MTC organization, applied separately. 

The Hit rate and Coverage of different trace cache 
organizations are presented in Figure  4.4 and Figure 
 4.5 respectively. The combination of the sampling 
filter with the FTC-MTC organization increases the 
average hit rate by 17% over a regular trace cache 
(from 66% to 77.2%) while the sampling filter 
increases the hit rate only by 9.9% (from 66% to 
72.5%). The coverage shows the same tendency, the 
coverage of the sampling filter is improved by 17.2% 
(from 56.5% to 66.3%) and the combination of the 
sampling filter and FTC-MTC organization improves 
the coverage by 24.2% (from 56.5% to 70.2%) over a 
regular trace cache. 
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Figure 13. Sampling Filter with FTC-MTC. 
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Figure 14. IPC improvement of different filters 
organization over a regular trace cache. 
 



EDD reduction
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Figure 15. EDD reduction of different filters 
organization over a regular trace cache. 
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Figure 16. Trace cache hit rate achieved by 
different organizatoin. 
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Figure 17. Coverage achieved by different 
trace cache organizations. 
 

These results indicate that the ability of the FTC-
MTC organization to capture the “hot traces” in the 
MTC is well complemented by the ability of the 
Sampling Filter to reduce the number of “cold traces” 
writes. Moreover, as the "hot traces" are better 
preserved in the cache, the population of traces that is 
built (and therefore is subject to filtering) is even 
"colder" than before. 

The effect on the live time of traces is presented in 
Figure 18. The percentage of time traces are live in the 
FTC-MTC organization is increased to 81% (the 
sampling filter increases the live time to 75%). This 
indicates that the small trace cache is now storing 
mainly "hot traces" and that "cold traces" are 
efficiently blocked. 
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Figure 18. Live time of traces in a regular trace 
cache, the sampling filter and the sampling 
filter with the FTC-MTC organization. 
 
5. Discussion and conclusions 
 

In this paper we investigated the impact of filtering 
on small trace caches and proposed a novel filter: the 
sampling filter. Small trace caches are efficient in 
terms of power and access time but suffer from low 
utilization of the memory space. We showed that a 
small trace cache combined with a larger backup 
instruction cache can be very power efficient in 
comparison to a regular instruction cache because it 
reduces the number of accesses to the more expensive 
cache. In order to increase the effectiveness of small 
trace caches, filtering mechanisms can be applied. The 
sampling filter is a novel filter that is based on a 
random sampling approach. Rather than inserting each 
trace to the trace cache and then monitoring its 
behavior, the sampling filter reduces the number of 
writes to the trace cache. It exploits the fact that most 
writes to the trace cache are of traces that are not used 
prior their eviction. The traces that are executed many 
times from the trace cache (and contribute most of the 
committed instructions) are captured quickly by the 
sampling filter and maintained in the cache more 
efficiently by the LRU mechanism. The LRU 
mechanism benefits from the longer time between 
replacements as "cold traces" that are entered to the 
cache can be replaced at the next replacement (as time 
pass they become least recently used). 

This paper showed that the sampling filter improves 
the trace cache behavior in terms of coverage and hit 



rate while the fetch stage power is reduced. The power 
of the fetch stage is reduced as the number of writes to 
the trace cache can be dramatically reduced while the 
number of hits in the trace cache increases. The 
coverage improvement can be especially beneficial for 
systems that store instructions in the trace cache after 
some processing, e.g. the Pentium 4   [6]. From a system 
perspective, the IPC and 2ED  are improved as well. 

The sampling filter also improves the utilization of 
the Level 1 caches hierarchy (instructions cache and 
trace cache together) by decoupling the instruction 
cache and the trace cache.  

The combination of the FTC-MTC organization 
with the sampling filter yields better results than each 
of the filters alone. This leads us to believe that the 
sampling filter random selection can be enhanced by a 
mechanism that retains the "hot traces" in the cache 
better than the LRU. Future research will focus on 
implementing such mechanisms, while maintaining the 
filter power efficiency. We also intend to present an 
adaptive mechanism to optimize the sampling rate for 
each program and trace cache size dynamically. 
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