
Trace Cache Sampling Filter

Michael Behar
Department of Electrical Engineering

Technion, Haifa, Israel
behar@tx.technion.ac.il

Avi Mendelson
Intel Corporation

Haifa, Israel
avi.mendelson@intel.com

Avinoam Kolodny
Department of Electrical Engineering

Technion, Haifa, Israel
kolodny@ee.technion.ac.il

Abstract

This paper presents a new technique for efficient

usage of small trace caches. A trace cache can
significantly increase the performance of wide out-of-
order processors, but to be effective, the size of the
trace cache should be large.

Power and timing considerations indicate that a
small trace cache is desirable, with special
mechanisms to increase its effectiveness despite the
limited size. Hence several authors have proposed
various filtering methods to select "good traces" for
keeping in the trace cache, from among the general
population of traces.

This paper presents a new filtering technique, which
is based on sampling. Our new technique suggests that
instead of building all the traces and trying to select
the good ones among them, it is more efficient to make
a preliminary selection of traces. This selection is
based on a random sampling approach.

We show that the Sampling Filter improves trace
cache and overall system performance, while reducing
power dissipation. The Sampling Filter reduces
admission of traces that are not used prior to their
eviction from the cache, and prolongs the percentage
of time a trace is in its live phase during its stay in the
cache. Moreover, the Sampling Filter reduces
duplication between the trace cache and the instruction
cache and thus reduces the overall misses in the first
level of cache hierarchy.

1. Introduction

The effectiveness of a single threaded out-of-order
processor is strongly dependent on the average number
of useful instructions it can fetch in every cycle. Trace
caches are very effective in serving this goal by storing
instructions in their dynamic order rather than in their
static order [11][16][17]. Thus, a trace cache has two
major merits: it contains instructions from different
basic blocks that would normally require several

accesses to the instruction cache in order to be fetched,
and it contains only useful instructions (contrary to an
instruction cache line that is fetched but might include
instructions that the processor doesn’t require). The
trace cache was found to be very effective if size and
power are not limited. However, relatively small trace
caches, which are practical in term of access time and
power consumption, are very vulnerable in terms of
memory efficiency, because of several problems [12]:
the same basic blocks can appear in different traces
(duplication), some traces don't contain the maximum
number of instructions (fragmentation), and the
requested block might reside inside a trace and thus
become inaccessible (Indexability). Thus, the key for
efficient usage of relatively small trace caches is either
to change the way the trace is constructed; i.e., the use
of basic block traces [1], or to keep only the most
valuable traces inside the cache and thus avoid their
trashing by less valuable traces. This work will focus
on the second option since the logic required to
construct the traces out of a block-based cache is very
costly in term of power. Filtering (selective admission
of incoming traces to the cache) has already been
proposed as a way to increase the usefulness of a
limited size trace cache. In [13] it was proposed to
store only traces containing taken branches, which
cannot be fetched in one access from the instruction
cache. In [14] it was proposed to filter traces based on
their usage. The trace cache is divided into two blocks:
the Filter trace Cache (FTC) and the Main Trace Cache
(MTC). All traces are written to the FTC, but only
traces that have been proven to be “useful” are inserted
to the MTC. The success of this filtering method is
based on the important observation, that most traces
that are built and inserted to the trace cache are rarely
used before eviction, and that most of the instructions
the processor executes come from a small set of traces
(“hot traces”) [14]. In [9] it was proposed to use
profiling in order to filter out traces that are less
frequent and show little time locality.

This paper presents a new class of trace filtering
techniques, which is based on statistical sampling of
traces. This class of filters aims to improve the quality
of the traces residing in a small trace cache, while
reducing the power dissipation needed for maintaining
the filter's bookkeeping. The paper presents and
analyzes the performance and the power of a basic
Sampling Filter (SF) and an enhanced version of it, and
compares its performance and power with a regular
trace cache and with the FTC-MTC organization.

The rest of the paper is organized as follows: In
Section 2 the simulation environment and the
characterization of traces are discussed; Section 3
describes the sampling filter architecture and compares
it with the regular trace cache and with the FTC-MTC
organization. In Section 4 the usage of the Sampling
Filter with the FTC-MTC organization is demonstrated
and Section 5 concludes and proposes related ideas for
future studies.

2. Simulation environment and basic
observations

This section presents the simulation environment
we used, and some of the basic observations that our
new proposed technique is based upon.

2.1. The simulation framework

The performance numbers presented below are
based on an extended version of the sim-outorder
simulator from the SimpleScalar tools set 3.0d [4] that
was augmented with a detailed model of the trace
cache that includes the impact of wrong path prediction
and recovery, along with the simulation of the
proposed filter mechanism and with a next trace
predictor [7]. The power numbers presented in this
paper were computed by an extended version of the
Wattch [2] simulator (which is based on Simple scalar)
and by Cacti [18] that was used to estimate the power
of new structures such as the trace cache, and for
examining the impact of power and timing on caches
with different configurations. The modeling of the
leakage power in Wattch assumes that it always
consumes 10% of the maximal dynamic power. In this
work, since we assume relatively small structures of
the trace cache, we saw that the leakage has only minor
impact on the overall power of the chip and so we use
the same method as in Wattch.

The structure of the traces within the trace cache we
use for our model is similar to other works; i.e., a trace
can contain up to 16 instructions and up to 4 branches,
a trace is terminated also if it reaches indirect jumps,
indirect branches, procedure-calls, return instructions

and interrupts. Our traces are composed of basic blocks
and we don’t allow traces to be truncated unless a
single basic block is larger than the trace capacity (in
our framework: 16 instructions). We allow loop
unrolling and don’t terminate a trace upon a backward
branch. This allows traces to contain enough
instructions to have an advantage over the regular fetch
mechanism and yet not increase the number of unique
traces too much. In this paper we focus on two sizes of
the trace cache: one that contains 32 traces, and
another that contains 64 traces, both organized as 4-
way set-associative. Our trace build mechanism allows
traces beginning at the same address, but with multiple
paths, to coexist in the trace cache. In this case, it is up
to the trace predictor to decide which of the traces to
select. The work assumes a trace cache with a backing
instruction cache, which are accessed in parallel as was
described in [17].

Table 1. µarch settings of the simulated
model.

Execution engine
Decode, Issue, Commit
width

8

Functional units Integer ALU’s: 8
4 Mult/Div.
Floating point ALU’s: 8
4 Mult/Div.

Fetch queue size 32
Register update unit 128
LSQ 64
Memory
L1 Data Cache

32KB 8-ways LRU, 64B
blocks. 2-cycle latency.

L1 Instruction Cache 8KB 4-way, LRU, 32B
blocks, 2-cycle latency

Trace cache 2KB (32 traces)/4KB (64
traces) 4-way, LRU,
2-cycle latency

L2 Unified cache 1MB 8-ways, 64B blocks,
LRU, 10-cycle latency

Memory First chunk: 128 cycles
TLB 30 cycles miss penalty
Branch predictor
Predictor Bimod 4k-entery
RAS 32
BTB 2K-entery, 4-way
Next trace predictor 4K-entery

The configuration of the baseline machine is presented
in Table 1. We chose an 8-way machine as a baseline

since it can take advantage of the improvement in
instruction supply and still be power efficient.

We used 10 benchmarks (See Table 2) from the
SPEC2000 Benchmark Suite [5] to evaluate our work.
We skipped the first 500M instructions and simulated
another billion instructions in all our experiments
except perlbmk that was ended after 880M
instructions.

Table 2. benchmarks list.
Benchmark Input Suite
164.gzip input.graphic INT
175.vpr net.in arch.in place.in INT
176.gcc 166.i INT
197.parser 2.1.dict –batch ref.in INT
253.perlbmk makerand.pl INT
255.vortex lendian1.raw INT
256.bzip input.graphic INT
177.mesa mesa.in mesa.ppm FP
183.equake inp.in FP
168.wupwis
e

wupwise.in FP

2.2. Basic observations

We start this section by presenting basic
characterization of the utilization of each trace in the
trace cache, and characterization of the utilization of
the trace cache itself.

Trace Utilization (TU) is defined to be the number
of times the system finds the trace in the trace cache
per a trace build. Please note this definition does not
require that the traces will be unique; i.e., if a trace is
replaced and built again, we count it as two different
traces. Also, the length of the trace does not affect the
utilization of the trace. In Figure 1. and Figure 2. the
trace utilization breakdown is presented for 32-traces
and 64-traces trace caches respectively. In both
configurations the majority of traces that are written to
the trace cache are not used prior their eviction from it
(TU=0). Moreover, only 10% of the writes results with
more than 2 hits (TU>2) for the 32-traces trace cache
and 20% for the 64-traces trace cache.

The trace cache utilization (TCU) id defined in
equation 1. as the number of hits in a cache divided by
the number of writes. This parameter gives a good
sense of the power and performance efficiency of the
trace cache. A trace cache with a high TCU is assumed
to be power and performance efficient. For a 32-traces
trace cache the average TCU is five. Moreover, five
out of the ten benchmarks we examined have a TCU
smaller than 2. Therefore, the power invested in

building the trace and writing it to the trace cache is
very poorly used.

.
hits

TCU
writes

= ∑
∑

 (1)

Trace Utilization Breakdown (32 traces)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

gzip

vp
r

gcc
16

6

pars
er perl

vo
rte

x
bzip

mes
a

eq
ua

ck
e

wup

Ave
rag

e

TU
 B

re
ak

do
w

n

TU>2
TU=2
TU=1
TU=0

Figure 1. Trace utilization breakdown for a 32-
traces trace cache.

Trace Utilization Breakdown (64 traces)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

gzip

vp
r

gcc
16

6

pars
er perl

vo
rte

x
bzip

mes
a

eq
uac

ke

wup

Ave
rag

e

TU
 b

re
ak

do
w

n

TU>2
TU=2
TU=1
TU=0

Figure 2. Trace utilization breakdown for a 64-
traces trace cache.

The replacement rate (RR) of traces in the trace
cache is defined in equation 2.

.
replacements

RR
accesses

= ∑
∑

 (2)

Figure 3. shows the replacement rate of a 32-traces

and 64-trcaes trace caches. It is clear from the figure
that for some applications (like Bzip), even a small
trace cache can contain the whole program, but for
other applications such a trace cache is too small. On
average, the replacement rate is high (34% and 22%
for a 32-trace and 64-trace caches respectively).

The above observations indicate that for a limited
area trace cache, traces are replaced too frequently by
less effective traces and cause the entire trace cache

mechanism to be ineffective in terms of performance
and power. Therefore, it is critical to filter "bad" traces
out of the general population of traces.

 Replacement Rate

0%
10%
20%
30%
40%
50%
60%
70%
80%

gzip vp
r

gcc
16

6

pars
er perl

vo
rte

x
bzip

mes
a

eq
ua

ck
e

wup

Ave
rag

e

re
pl

ac
em

en
t r

at
e

32 traces
64 traces

Figure 3. Replacement rate for 32-traces and
64-traces trace caches.

3. THE SAMPLING FILTER

Unlike other proposed filtering techniques that try
to keep track of all traces in the program in order to
classify them as "hot traces" (that need to be kept) or
"cold traces” (that can be discarded), the new proposed
technique uses a statistical approach. By using
statistical methods, we suggest to randomly select
traces that are candidates for storing in the trace cache.
Please note that by doing so, we do not preclude any
other filtering techniques, which can be applied on the
chosen subset of the traces.

The structure of a system that supports the basic
sampling algorithm is shown in Figure 4. On top of a
trace cache system as described in [17] we add a
sampling capability that chooses periodically, for
example every X builds, to save a trace. Traces that are
not sampled (selected) are discarded. The sampling
rate is the rate at which traces are sampled, i.e., if every
tenth trace is inserted to the trace cache, the sampling
rate is 1/10. This filtering mechanism requires minimal
hardware and can be easily implemented.

In order to establish the new proposed technique
effectiveness, the next subsection provides some
performance (IPC) and power efficiency (2ED)
simulation measurements as well as trace cache
behavior (hit rate and coverage). We choose the energy
delay square metric (2ED) as it is independent of
voltage in first approximation [2]. Next we will extend
the discussion in order to understand why the sampling
filter works and how it can be further improved.

Level 2
cache

Level 1

Instruction
Cache

Trace Cache
Hit logic

To
Execution
EngineSampling Filter

memory

Instruction buffer

Level 2
cache

Level 1

Instruction
Cache

Trace Cache
Hit logic

To
Execution
EngineSampling FilterSampling Filter

memory

Instruction buffer

Figure 4. The sampling filter system.

3.1. The Impact of the Sampling filter

In this section we compare several fetch engine
configurations. The different configurations and area
budget are summarized in Table 3. The regular trace
cache (CTC32) and the Sampling Filter (SF32)
machines all have a 8KB backing instruction cache and
a 2KB trace cache size. The FTC-MTC organization
has also an 8KB backing instruction cache and a 2KB
total trace cache that is divided equally between the
FTC and the MTC. The SF32 uses a constant sampling
rate of 1/20 for all the benchmarks.

Table 3. Fetch engines configurations
CONFIGURATION
NAME

CONFIGURATION
DESCRIPTION

TOTAL
AREA

I8KB Instruction cache 8KB
I16KB Instruction cache 16KB
CTC32 Concurrent trace cache 10KB
FTC-MTC Filter trace cache +

Main trace cache
10KB

SF32 Concurrent trace cache
with a sampling filter

10KB

Figure 5. shows the IPC improvement of these fetch

engines over a machine without a trace cache, which
has an 8KB instruction cache only (I8KB). Doubling
the Instruction cache to a 16KB cache (I16KB)
improves the IPC by 9.6%, while the regular trace
cache (CTC32) improves performance by 11%. The
FTC-MTC achieves 11.6% improvement while the
Sampling Filter (SF32) achieves 17.7% improvement.
This demonstrates that the combination of a small trace
cache (total area of 10KB) and sampling technique can
outperform a larger instruction cache (16KB) and the
other trace cache organizations occupying the same
area.

IPC improvement

0%

10%

20%

30%

40%

50%

60%

gzip

vp
r

gcc
16

6

pars
er perl

vo
rte

x
bzip

mes
a

equ
ac

ke

wup

Ave
rag

e

%
 im

pr
ov

em
en

t

I16KB
CTC32
FTC_MTC
SF32

Figure 5. IPC improvement over a regular 8KB
instruction cache.

Figure 6. shows the reduction in energy delay
squared (2ED) of several fetch engines compared with
a regular 8KB instruction cache. The 16KB instruction
cache achieves a reduction of 14.5% in 2ED . The trace
cache and the FTC-MTC organization achieve 16.5%
and 20% reduction in 2ED respectively, while the
Sampling Filter achieves a 27% reduction in 2ED . This
indicates that the sampling filter is the most
performance-power efficient among the compared
alternatives.

EDD reduction

-10%

0%

10%

20%

30%

40%

50%

60%

70%

gzip

vp
r

gcc1
66

parser perl

vo
rte

x
bzip

mesa

eq
uac

ke
wup

Ave
ra

ge

%
 re

du
ct

io
n

I16KB
CTC32
FTC_MTC
SF32

Figure 6. 2ED reduction over a regular 8KB
Instruction cache. The Sampling Filter proves
to be the most performance-power efficient
out of all the configurations.

The impact of sampling on the trace cache behavior
is presented in Figure 7. The coverage (the percentage
of instructions originated from the trace cache) of the
Sampling Filter configuration compared with the
regular trace cache increases from 56.5% to 66.3%.
The hit rate of the Sampling Filter configuration
increases from 66% to 72.6%.

 Coverage

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

gzip vp
r

gcc
16

6

pars
er perl

vo
rte

x
bzip

mes
a

eq
ua

ck
e

wup

Ave
rag

e

co
ve

ra
ge

CTC32
SF32

 Trace cache hit rate

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

gzip vp
r

gcc1
66

pars
er perl

vo
rte

x
bz

ip
mesa

eq
uac

ke wup

Ave
ra

ge

hi
t r

at
e

CTC32
SF32

Figure 7. Trace cache coverage (top figure)
and hit rate (bottom figure) of a regular trace
cache (CTC32) and the sampling filter
organization (SF32).

3.2. Why it work

The reason that our new technique works so well is
a combination of two effects: the reduction of pressure
of new coming traces on the small trace cache, together
with the impact of the LRU mechanism. As was
published in some research in the past, it is known that
most of the instructions a trace cache based processor
executes come from a relatively small number of traces
(“hot traces”). These traces, regardless of the random
selection, will be selected eventually, and will be
placed in the trace cache. The main impact of the
sampling filter is then, on the “cold traces”. In section
2 it has been shown that the majority of writes are of
“cold traces” with zero TU rate. The filter reduces the
number of “cold traces” writes. This reduces the
pressure on the small trace cache and enables the LRU
mechanism to better capture the “hot traces”, so “cold
traces” that happened to enter the cache can be
identified as such, and be replaced.

In order to justify the above claims, we present a
new set of experiments. Figure 8. shows the impact of
using the basic sampling algorithm on the trace
utilization (TU), and in particular we focus on the
percentage of traces that have TU=0. We can observe
that the sampling technique reduces the population of
these traces dramatically from 73.8% in the non-

filtered system to 25.6% in the sampling filter system.
The impact of such reduction in the "useless traces" is
twofold: it saves a lot of wasted power and it prevents
cache pollution by inefficient traces.

 Percentage of Writes with zero TU

0%

20%

40%

60%

80%

100%

120%

gzip vp
r

gcc
16

6

pars
er perl

vo
rte

x
bzip

mes
a

eq
uac

ke wup

Ave
rag

e

pe
rc

en
ta

ge
 o

f w
rit

es Trace cache
Samplig Filter

Figure 8. Percentage of writes with zero Trace
utilization (TU).

An important indicator for the quality of a trace is
the proportion between its “live” time and its “decay”
time as was defined in [8][14]. A “live” time of a trace
is measured from the time it was saved in the trace
cache till the last time it was used. The “decay” time of
a trace is measured from the last time it was used, until
its eviction from the trace cache. Since the decay time
is considered to be a waste of resources, we try to
reduce it. Figure 9. shows the impact of the sampling
technique on the lifetime of traces. While in the regular
trace cache the average “live” time of a trace is only
32%, after applying our new sampling technique, about
75% of the time, a trace is “live”. For small trace
caches the utilization of the area is very important and
so it can explain why we see a vast improvement in
performance due to our technique.

 Precentage of Time traces are live in the cache

0%

20%

40%

60%

80%

100%

120%

gzip vp
r

gcc
166

pars
er perl

vo
rte

x
bzip

mes
a

eq
uac

ke wup

Ave
rag

e

liv
e

No-Filter
Sampling Filter

Figure 9. Percentage of time traces are live in
the cache.

So far we saw that the sampling technique improves
both the trace utilization and the “live” time of traces

within the cache. Table 4. shows that the proposed
sampling technique also improves the overall
utilization of the entire trace cache (TCU). This result
has significance of its own. Several works have
proposed to use hardware to optimize frequent code on
the fly [10][15]. By increasing the TCU, the sampling
filter ensures that optimized code will be reused many
times prior to its replacement. Therefore, costly
hardware optimization can be applied on traces that are
inserted to the trace cache because the number of
insertions is low and the utilization rate is high. The
trace cache utilization rate increased 21.2 times for a
Sampling Filter configuration over the regular trace
cache (see Table 3.2).

Table 4. TCU of a regular trace cache, a SF
system and their ratio.

BENCHMARK

REGULAR
TRACE
CACHE

SAMPLING
FILTER

RATIO

gzip 5.13 160.69 31.3
vpr 2.45 41.65 17.0
gcc166 10.37 191.43 18.5
parser 2.84 51.13 18.0
perlbmk 1.19 36.84 31.0
vortex 0.57 14.4 25.3
bzip 28.1 435 15.5
mesa 0.59 15.02 25.5
equake 1.97 39.77 20.2
wupwise 0.9 162.39 180.4

Average 5 115 21.2

3.3. Power consideration in Sampling Filter

So far we focused on the performance aspects of the
Sampling Filter technique. This subsection extends the
discussion to power considerations and shows that the
sampling technique is also advantageous in terms of
power. The main reasons for that are the significant
reduction in power that is used to write inefficient
traces to the cache, and the better utilization of the
trace cache that leads to fewer builds from the
instruction cache. In Table 5. the number of writes per
100 committed instructions is presented for a regular
trace cache and a Sampling Filter organization. On
average, the sampling filter organization has 29 times
fewer writes to the cache than a regular trace cache.

Table 5. Number of writes per 100 committed
instructions in a regular trace cache, SF
system and their ratio.

BENCHMARK

REGULAR
TRACE
CACHE

SAMPLING
FILTER

RATIO

Gzip 2.25 0.08 28.14
vpr 3.47 0.18 18.82
gcc166 0.71 0.04 18.79
parser 3.22 0.18 18.28
perl 0.79 0.03 26.51
vortex 5.76 0.26 22.19
bzip 0.44 0.03 15.73
mesa 5.37 0.24 22.56
equacke 3.58 0.16 22.74
wup 3.48 0.04 96.00
Average 2.91 0.12 28.98

Figure 10. shows the fetch stage energy of three
equal area trace configurations: a regular trace cache,
the FTC_MTC organization and the Sampling Filter
organization as well as the 16KB instruction cache.
All the results are normalized so the energy
consumption of a regular 8KB instruction cache is
always 1. It is clear from the figure that increasing the
size of the instruction cache increases the energy
consumption while using a small (and therefore power
efficient) trace cache reduces the energy consumption.
This is true even though our model assumes a parallel
access to the trace cache and the instruction cache,
because a successful access to the trace cache
terminates the build from the instruction cache.
Therefore, in comparison to the instruction cache
model, using a small trace cache adds cheap accesses
to the trace cache and eliminates more expensive
accesses to the instruction cache. The regular trace
cache reduces the energy consumption by 17% while
the FTC_MTC organization reduces it only by 4.8% as
this organization involves accessing both the filter and
the main trace caches in parallel. On the other hand,
the Sampling Filter reduces the fetch stage power by
27% over a regular 8KB instruction cache. This is due
to the improvement in the hit rate, which reduces the
number of accesses to the L1 instruction cache and to
the massive reduction in writes to the cache.

Normalized fetch stage Energy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

gzip

vp
r

gcc
16

6

pars
er perl

vo
rte

x
bzip

mes
a

eq
ua

ck
e

wup

Ave
rag

e

no
rm

al
iz

ed
 e

ne
rg

y

16KBI
Trace cache
FTC_MTC
Sampling

Figure 10. Normalized (I8KB is 1) fetch stage
energy of the different fetch engines.

3.4. Trace and Instruction cache decoupling

The purpose of the sampling filter is to reduce the
percentage of low utilization rate traces. By reducing
the number of writes to the trace cache the sampling
filter also accomplishes a reduction in the overall miss
rate at the Level 1 caches hierarchy (Trace cache and
Instruction cache together). The backing instruction
cache is important because it provides the instructions
to build a trace upon a trace cache miss. Accessing the
Level 2 cache to build traces would reduce the
performance because of the L2 longer access time.
After the trace is built the code is present in the trace
cache as well as in the instruction cache. Thus, the
code is duplicated and the Level 1 memory is not used
efficiently. If the trace is repeatedly rebuilt then it will
continue to be duplicated in both the trace cache and
the instruction cache. The ability of the Level 1
backing instruction cache to provide a high percentage
of the trace misses is essential for maintaining a high
instruction bandwidth. The sampling filter decouples
the Trace Cache and the Instruction Cache by
prolonging the lifetime of traces in the trace cache. At
first, the basic blocks of a trace that was inserted to the
trace cache are present in the instruction cache as well.
But, those basic blocks are gradually replaced by the
LRU replacement policy of the instruction cache,
because the trace cache holds and serves them
repeatedly over time. Consequently, duplication among
the caches is reduced, and the overall instruction
supply out of L1 caches is improved. In order to
demonstrate the decoupling effect, we conduct a new
set of experiments on a system with a small 4KB
backing instruction cache. Figure 3.8 shows the
instruction cache miss rate for various sampling rates.
The miss rate is presented only for benchmarks that
have an instruction cache miss rate higher than 0.5%.
As the sampling rate decreases the decoupling effect is
stronger and so the instruction cache miss rate
decreases.

 Instruction cache miss rate

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

vpr gcc166 perl vor mesa equ

m
is

s
ra

te

No filter
S.R. 1/2
S.R. 1/5
S.R. 1/10
S.R. 1/25
S.R. 1/50
S.R. 1/100

Figure 11. Add/change instruction supply in
L1.

The impact on the IPC is presented in Figure 3.9.
The Average IPC over all the benchmarks is improved
by 12.1% for a sampling rate of 1/100. The sampling
filter improves the perlbmk benchmark by 43% over
the “regular” trace cache (sampling rate of 1/100) as
the Level 1 cache hierarchy is able to supply many
more instructions.

 IPC improvement

-10%

0%

10%

20%

30%

40%

50%

gz
ip vp

r

gcc
16

6 par pe
rl vo

r
bz

ip
mes

a
eq

u
wup

Avera
ge

IP
C

 im
pr

ov
em

en
t

S.R. 1/2
S.R. 1/5
S.R. 1/10
S.R. 1/25
S.R. 1/50
S.R. 1/100

Figure 12. IPC improvent for different
sampling rates

4. Combining the sampling filter with the
FTC-MTC organization.

The sampling filter is orthogonal to the FTC-MTC
principle, hence the two can be combined. By placing
the sampling filter in front of the FTC cache (see
Figure 13.), the utilization rate of traces in the FTC can
be improved. Moreover, by reducing the number of
writes to the FTC it can better monitor the behavior of
traces. The decision whether to discard the trace or
store it in the MTC is taken after a longer period and
thus the observation better reflects the nature of the
trace. Figure 14. and Figure 15. show the improvement
in IPC and the reduction in 2ED of several filter
organizations over a regular trace cache respectively.
The combination of the sampling filter with the FTC-

MTC organization improves the IPC by 9.5% and the
2ED by 16.2% while the sampling filter improves the

IPC and 2ED only by 6.7% and by 10%, respectively.
The combination of the sampling filter with the FTC-
MTC organization outperforms both the sampling filter
and the FTC-MTC organization, applied separately.

The Hit rate and Coverage of different trace cache
organizations are presented in Figure 4.4 and Figure
 4.5 respectively. The combination of the sampling
filter with the FTC-MTC organization increases the
average hit rate by 17% over a regular trace cache
(from 66% to 77.2%) while the sampling filter
increases the hit rate only by 9.9% (from 66% to
72.5%). The coverage shows the same tendency, the
coverage of the sampling filter is improved by 17.2%
(from 56.5% to 66.3%) and the combination of the
sampling filter and FTC-MTC organization improves
the coverage by 24.2% (from 56.5% to 70.2%) over a
regular trace cache.

Level2
cache

Level1

Instruction
Cache

To Execution
Engine

Sampling filter

memory

Instruction buffer

FTC MTC
hit

Level2
cache

Level1

Instruction
Cache

To Execution
Engine

Sampling filterSampling filter

memory

Instruction buffer

FTC MTC
hit

Figure 13. Sampling Filter with FTC-MTC.

IPC improvement

-5%
0%
5%

10%
15%
20%
25%
30%
35%
40%

gzip

vp
r

gcc
16

6

pars
er perl

vo
rte

x
bzip

mes
a

eq
ua

ck
e

wup

Ave
rag

e

%
 im

pr
ov

em
en

t FTC_MTC
Sampling
SF + FTC_MTC

Figure 14. IPC improvement of different filters
organization over a regular trace cache.

EDD reduction

-10%

0%

10%

20%

30%

40%

50%

60%

gzip

vp
r

gcc
16

6

pars
er perl

vo
rte

x
bzip

mes
a

eq
ua

ck
e

wup

Ave
rag

e

%
 re

du
ct

io
n

FTC_MTC
Sampling
SF + FTC_MTC

Figure 15. EDD reduction of different filters
organization over a regular trace cache.

 Trace cache hit rate

30%

40%

50%

60%

70%

80%

90%

100%

110%

gzip vp
r

gcc
16

6

pars
er perl

vo
rte

x
bzip

mes
a

eq
uac

ke wup

Avera
ge

hi
t r

at
e

Trace cache
FTC_MTC
Sampling Filter
SF+FTC_MTC

Figure 16. Trace cache hit rate achieved by
different organizatoin.

 Coverage

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

gzip vp
r

gcc
16

6

pars
er perl

vo
rte

x
bzip

mes
a

eq
uac

ke wup

Avera
ge

co
ve

ra
ge

Trace Cache
FTC_MTC
Sampling Filter
SF+FTC_MTC

Figure 17. Coverage achieved by different
trace cache organizations.

These results indicate that the ability of the FTC-
MTC organization to capture the “hot traces” in the
MTC is well complemented by the ability of the
Sampling Filter to reduce the number of “cold traces”
writes. Moreover, as the "hot traces" are better
preserved in the cache, the population of traces that is
built (and therefore is subject to filtering) is even
"colder" than before.

The effect on the live time of traces is presented in
Figure 18. The percentage of time traces are live in the
FTC-MTC organization is increased to 81% (the
sampling filter increases the live time to 75%). This
indicates that the small trace cache is now storing
mainly "hot traces" and that "cold traces" are
efficiently blocked.

Live time

0%

20%

40%

60%

80%

100%

120%

gzip

vp
r

gcc
16

6

pars
er perl

vo
rte

x
bzip

mes
a

eq
uac

ke

wup

Ave
rag

e

%
 li

ve

Trac cache
Sampling Filter
Sampling+FTC_MTC

Figure 18. Live time of traces in a regular trace
cache, the sampling filter and the sampling
filter with the FTC-MTC organization.

5. Discussion and conclusions

In this paper we investigated the impact of filtering
on small trace caches and proposed a novel filter: the
sampling filter. Small trace caches are efficient in
terms of power and access time but suffer from low
utilization of the memory space. We showed that a
small trace cache combined with a larger backup
instruction cache can be very power efficient in
comparison to a regular instruction cache because it
reduces the number of accesses to the more expensive
cache. In order to increase the effectiveness of small
trace caches, filtering mechanisms can be applied. The
sampling filter is a novel filter that is based on a
random sampling approach. Rather than inserting each
trace to the trace cache and then monitoring its
behavior, the sampling filter reduces the number of
writes to the trace cache. It exploits the fact that most
writes to the trace cache are of traces that are not used
prior their eviction. The traces that are executed many
times from the trace cache (and contribute most of the
committed instructions) are captured quickly by the
sampling filter and maintained in the cache more
efficiently by the LRU mechanism. The LRU
mechanism benefits from the longer time between
replacements as "cold traces" that are entered to the
cache can be replaced at the next replacement (as time
pass they become least recently used).

This paper showed that the sampling filter improves
the trace cache behavior in terms of coverage and hit

rate while the fetch stage power is reduced. The power
of the fetch stage is reduced as the number of writes to
the trace cache can be dramatically reduced while the
number of hits in the trace cache increases. The
coverage improvement can be especially beneficial for
systems that store instructions in the trace cache after
some processing, e.g. the Pentium 4 [6]. From a system
perspective, the IPC and 2ED are improved as well.

The sampling filter also improves the utilization of
the Level 1 caches hierarchy (instructions cache and
trace cache together) by decoupling the instruction
cache and the trace cache.

The combination of the FTC-MTC organization
with the sampling filter yields better results than each
of the filters alone. This leads us to believe that the
sampling filter random selection can be enhanced by a
mechanism that retains the "hot traces" in the cache
better than the LRU. Future research will focus on
implementing such mechanisms, while maintaining the
filter power efficiency. We also intend to present an
adaptive mechanism to optimize the sampling rate for
each program and trace cache size dynamically.

References

[1] Bryan Black, Bohuslav Rychlik, and John Paul Shen.

“The block-based trace cache”. Proceedings of the 26th
Annual Intl. Symposium on Computer Architecture,
May 1999.

[2] David Brooks, Pradip Bose, Stanley E. Schuster, Hans
Jacobson, Prabhakar N. Kudva, Alper Buyuktosunoglu,
John-David Wellman, Victor Zyuban, Manish Gupta,
and Peter W. Cook, "Power-Aware Microarchitecture:
Design and Modeling Challenges for Next-Generation
Microprocessors," IEEE Micro, November/December,
2000.

[3] David Brooks and Vivek Tiwari and Margaret
Martonosi, " Wattch: a framework for architectural-level
power analysis and optimizations", in ISCA 2000 pages
83-94.

[4] Douglas C. Burger and Todd M. Austin. The
SimpleScalar Tool Set, Version 2.0. University of
Wisconsin, Madison Tech. Report. June 1997.

[5] J. Henning. SPEC CPU2000: Measuring CPU
Performance in the New Millennium. IEEE Computer,
pp. 28-35, 2000.

[6] G. Hinton et al., “The microarchitecture of the Pentium
4 processor,” in Intel TechnologyJournal, 2001

[7] Q. Jacobson, E. Rotenberg, J. E. Smith, “ Path- Based
Next Trace Prediction,” in Proceedings of the 30th
International Symposium on Microarchitecture, pp. 14-
23, December 1997.

[8] S. Kaxiras, Z. Hu and M. Martonosi, "Cache Decay:
Exploiting Generational Behavior to Reduce Cache
Leakage Power", in Proc. of the Int'l Symposium on
Computer Architecture, 2001, pp.240--251.

[9] O. Kosyakovsky, A. Mendelson and A. Kolodny, “The
Use of Profile-based Trace Classification for Improving
the Power and Performance of Trace Cache Systems”,
in 4th Workshop on Feedback-Directed and Dynamic
Optimization, Dec. 2001.

[10] S. Patel and S. Lumetta, “rePlay: A Hardware
Framework for Dynamic Optimization”, in IEEE Trans.
on Computers, 50(6), pp 590-608, June 2001

[11] A. Peleg and U. Weiser. “Dynamic Flow Instruction
Cache Memory Organized Around Trace Segments
Independent of Virtual Address Line”, U.S. Patent
5,381,533, Jan. 1995.

[12] M. Postiff, G. Tyson and T. Mudge, “Performance
Limits of Trace Caches”, in Journal of Instruction-Level
Parallelism, vol. 1, Oct. 1999.

[13] A. Ramirez, J.L. Larriba-Pey, and M. Valero, “Trace
Cache Redundancy: Red and Blue Traces”, in Proc. 6th
Intern. Symp. on High-Performance Computer
Architecture, pp. 325-333, 2000.

[14] R. Rosner, A. Mendelson, and R. Ronen, “Filtering
Techniques to Improve Trace-Cache Efficiency”, in
Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, pages 37-
48, September 2001.

[15] Roni Rosner, Yoav Almog, Micha Moffie, Naftali
Schwartz, Avi Mendelson: "PARROT: Power
Awareness Through Selective Dynamically Optimized
Traces", in PACS 2003: 196-214

[16] E. Rotenberg, S. Bennett and J. Smith, “A Trace Cache
Microarchitecture and Evaluation”, in IEEE Trans. on
Computers, 48(2), pp 111–120, Feb. 1999

[17] E. Rotenberg, S. Bennett, and J. Smith, "Trace Cache: A
Low Latency Approach to High Bandwidth Instruction
Fetching", 29th International Symposium on
Microarchitecture (MICRO-29), Dec. 1996

[18] S.J.E. Wilton and N.P. Jouppi. “CACTI: An enhanced
cache access and cycle time model.” IEEE Journal of
Solid-State Circuits, Vol. 31(5):677-688, May 1996.

