Research Topics

Power and Area Efficient Network on Chip (NoC):

- Network layer architecture
 - ✓ Topology
 - ✓ Routing
 - √ Congestion control
 - √ Specialized features for CMPs
- Data link and Physical layers
 - √ Fast/power-efficient on-chip communication links
- Circuit design for NoC components

QNoC: A Quality-of-Service Network-on-Chip Architecture

Avinoam Kolodny

VLSI Research Center Department of Electrical Engineering Technion—Israel Institute of Technology

Princeton University, 28 September 2005

The Team

Faculty:

Israel Cidon, Ran Ginosar, Idit Keidar, Avinoam Kolodny

Graduate Students:

Evgeny Bolotin, Zvika Guz, Zigi Walter, Arkadiy Morgenshtein, Reuven Dobkin, Tomer Morad, Avshalom Elyada

Grants

Semiconductors Research Corporation

ISRC consortium – Israel Government

• Intel Corp.

 $\widetilde{\mathbf{x}}$

Outline

- Research motivation
- QNoC Architecture principles
- System Design flow with QNoC
- Specific topics:
 - Wormhole delay model
 - Hot Spots
 - Fast serial asynchronous links
 - Routing in an irregular mesh

A possible paradigm shift in VLSI

- Efficient sharing of wires by packet switching
- Lower cost / lower risk / faster design
- Scalable with system size
- NoC is an infrastructure (e.g. power, clock)
- NoC is customized for each chip

Why Now?

3) Chip Multi-Processors

1) Sub-micron physical effects: Global interconnect delay, power, noise

Interconnect power problem in a uni-processor

Interconnect power grows to 65%-80% within 5 years

(using optimistic interconnect scaling assumptions for a

X

NoC scalability vs. alternatives

For Same Performance, compare the cost of:

Pointto-Point:

9

11

Asymptotic cost scalability

Power and Area required to provide same bandwidth versus number of system modules n

Arch	Total Area	Power Dissipation
NS-Bus	$O(n^3\sqrt{n})$	$O(n\sqrt{n})$
S-Bus	$O(n^2\sqrt{n})$	$O(n\sqrt{n})$
NoC	O(n)	O(n)
PTP	$O(n^2\sqrt{n})$	$O(n\sqrt{n})$

* E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, "Cost Considerations in Network-on-Chip", INTEGRATION – the VLSI journal, 2004)

Practical NoC Challenges

- Low cost:
 - Area (routers, interfaces and links)
 - Power (dynamic, leakage)
- Flexible standard interface
- Multiple levels of service (QoS)
- Low design effort

Outline

- Research motivation
- QNoC Architecture principles
- System Design flow with QNoC
- Specific topics:
 - Wormhole delay model
 - Hot Spots
 - Fast serial asynchronous links
 - Routing in an irregular mesh

 $\widetilde{\mathbf{v}}$

8

QNoC: Quality-of-service NoC architecture

- Grid topology
- Packet-switched
- XY Routing
- Service-levels
- Wormhole hop-to-hop flow-control

^{*} E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny., "QNoC: QoS architecture and design process for Network on Chip", JSA special issue on NoC, 2004.

13

QNoC topology and routing

- Grid topology matches planar technology
 - √ Variable capacity links!
 - ✓ Virtual channels
 - irregular mesh
- Fixed shortest path routing (X-Y)
 - √ Simple Router (no tables, simple logic)
 - ✓ No deadlock scenario
 - ✓ No retransmission
 - ✓ No reordering of messages
 - ✓ Power-efficient

Wormhole Routing

- Small number of buffers
- Low latency

 $\widetilde{\mathbf{x}}$

· Virtual Channels for concurrent flits transmission on the same link

Define Service Levels like:

- Signaling interrupts, signals.
- Real-Time audio, video.
- Read/Write (RD/WR) bus semantics
- Block-Transfer DMA semantics
- ✓ Different QoS (delay characteristics) for each Service Level

Router structure

QNoC router with multiple Virtual Channels

Simulation Model

- OPNET Models for QNoC:
- Any topology and traffic load
- Statistical traffic generation at source nodes
- Flit level simulations

Simulation example

Outline

- Research motivation
- **QNoC Architecture principles**
- **System Design flow with QNoC**
- Specific topics:
 - Wormhole delay model
 - Hot Spots

21

QNoC-based system Design Flow

QNoC Design Flow

- Too low capacity results in poor QoS
 - Too high capacity wastes power

Link capacity Allocation Problem

 $\forall link \ e: \sum_{i|e \in path(i)} f^i < C_e$

 $\forall flow i: T^i \leq T_{REO}^i$

Simulated mean packet delays in a 4-by-4 unoptimized network (uniform capacity in all links)

Capacity Allocation Algorithm

Greedy, iterative algorithm

For each source destination pair:

- ✓ Use delay model to identify most sensitive link
- ✓increase its capacity
- ✓ Repeat until delay requirements are met

Figure 3: capacity allocation algorithm

Capacity Allocation — Example#1

- A simple 4-by-4 system with uniform traffic pattern and uniform requirements
- "Classic" design: 74.4Gbit/sec
- Using the delay model and algorithm: 69Gbit/sec
- Total capacity reduced by 7%

Capacity Allocation – Example#2

A SoC-like system with specific traffic demands and delay requirements

"Classic" design: 41.8Gbit/sec

Using the algorithm: 28.7Gbit/sec

Total capacity reduced by 30%

Outline

- Research motivation
- QNoC Architecture principles
- System Design flow with QNoC
- Specific topics:
 - Wormhole delay model
 - Hot Spots
 - Fast serial asynchronous links
 - Routing in an irregular mesh

27

Need a static delay model

- An <u>analytical delay model</u> was developed for the link capacity allocation algorithm.
- Though many wormhole analysis models exists, they don't fit, because:
 - symmetrical communication demands are assumed
 - no virtual channels
 - identical link capacity is assumed in all links

29

Wormhole Delay Analysis

- Computed per flow
- Focus on long packets
- Packet transmission can be divided into two separate phases:
 - Path acquisition
 - Flits' transmission
- For simplicity, we assume "enough" virtual channels on every link
 - Path acquisition time is negligible

3

Flit Interleaving Delay

Approximation for single link interleaving delay

$$t_j^i = \frac{1}{\frac{1}{l} \cdot C_j - \Lambda_j^i}$$

- t_j^i the mean time to deliver a flit of flow i over link j (waiting for transmission and transmission times)
- C_j capacity of link j [bits per second]
- Λ_j^i the total flit injection rate of all flows sharing link j except flow i [flits/sec].

Flit Interleaving Delay

• Improved equation:

$$\begin{split} \tilde{t}_{j}^{i} &= t_{j}^{i} + \sum_{k|k \in \pi_{j}^{i}} \frac{\Lambda_{k}^{i} \cdot l}{C_{k}} \cdot \frac{t_{k}^{i}}{\textit{dist}^{i}(j,k)} \\ \text{Account for all subsequent hops} & \text{Link} & \text{Basic delay} \\ & \text{Load} & \text{weighted by} \end{split}$$

distance

• The total delay over each flow path is:

7

1

\tilde{

Wormhole Delay Analysis

Analytical model was validated using simulations

- Different link capacities
- Different communication demands

with HS traffic

Network Performance problem

• As HS module utilization grows, a large part of the system becomes clogged

Source Fairness problem

Modules' location greatly affects the resulting QoS

 e.g., At 90% utilization, a distant module experiences x10 the latency of a close one

37

HotSpot Flow-Control Basics

Hardware Efficient Routing in an irregular mesh

The Problem:

Simple Function (i.e. XY) cannot work in an irregular mesh

riigii speed asyriciii onous serial links Clock Domain 1 Clock Domain 2 SYNCHRONIZER SYNCHRONIZER **Asynchronous** Domain **ENCODER DECODER SERIALIZER DeSERIALIZER** SERIAL LINK Latch-Control **Traditional Routing Techniques** Two main methods:

1. Distributed Routing:

- Full Tables in routers
- Each entry stores output port per each destination

2. Source Routing:

- Full Tables in sources
- Each entry stores list of routing tags (for each hop) per each destination

Use Reduced Table!:

Stores only relevant destinations (PLA)

Efficient Routing: Solutions

- Distributed Routing (DR): Function + Reduced Routing
 - Turns Table (77) routing:

XY Deviation Table (XYDT) routing

- **Source Routing (SR):** Function + Reduced Source Routing
 - Source Routing for Deviation Points (SRDP)

Example:

Specific routers are *Deviation Points* XY function for all other routers

Scalability Results

Scaling of Savings:

Savings vs. network size 120000 100000 80000 60000 40000 20000 120 150 180 210 240 270 Network Size [Nodes]

Scaling of DR vs. SR

Results (random problem instances)

Few Holes: Low irregularity 34X savings by XYDT; 2X by SRDP

Many Holes: High irregularity 8X savings by XYDT; 2.5X by SRDP

Summary

- Develop the QNoC design paradigm:
 - Architecture
 - Links
 - Circuits
 - Design flows & tools
- Start to investigate NoC-based multiple-core processors, as a proof-of-concept.

 $\widetilde{\mathbf{x}}$ 47