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Abstract 

The lithography used for 32 nanometers and smaller VLSI process technologies restricts 

the interconnect widths and spaces to a very small set of admissible values. Until recently 

the sizes of interconnects were allowed to change continuously and the implied power-

delay optimal tradeoff could be formulated as a convex programming problem, for which 

classical search algorithms are applicable. Once the admissible geometries become 

discrete, continuous search techniques are inappropriate and new combinatorial 

optimization solutions are in order. A first step towards such solutions is to study the 

complexity of the problem, which this paper is aiming at. Though dynamic programming 

has been shown lately to solve the problem, we show that it is NP-complete. Two typical 

VLSI design scenarios are considered. The first trades off power and sum of delays (1L ), 

and is shown to be NP-complete by reduction of PARTITION. The second considers 

power and max delays (L∞ ), and is shown to be NP-complete by reduction of 

SUBSET_SUM. 
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1. Introduction 

The interconnecting wires in VLSI chips are routed in several metal layers stacked one 

above the other, where the wires are typically running in alternating orthogonal directions 

as shown in Fig. 1 [1]. Fig. 2 illustrates the connection of two circuits of the chip, one is 

called driver and the other is called receiver. The interconnecting wires at the near and far 

ends reside on a lower metal layer, but switch to upper layers along their way in order to 

achieve high electrical performance.   
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Power consumption and speed of VLSI systems and their tradeoff, aka power-delay 

tradeoff, are important design considerations in state-of-the art manufacturing 

technologies. The scale down of VLSI manufacturing technologies is lasting for more 

than four decades, obeying the well-known Moore’s Law [2], and this trend will continue 

for the next decade at least [3]. Though technology progression enables the integration of 

complex systems on silicon die, it makes the design effort for high performance chips 

more and more difficult. The lasting trend towards higher speed is increasing the power 

consumption, while recent demand for mobile products is driving reduction of power 

dissipation [3]. Unfortunately, power and speed are often in conflict with each other and 

their tradeoff is delicate and challenging. As a part of the VLSI design optimization 

techniques, interconnects are subject to small adjustments for setting their widths and 

spaces [4][5]. 

 

Physical connectivity must be maintained under any horizontal shift of vertical wires or 

vertical shift of horizontal wires. Shifting wires in one layer doesn’t affect the spacing 

and width of the orthogonal wires in the layers above it and below it. The length changes 

of wires in layers above and below of optimized layer is negligible for all practical cases 

[6]. Until recently the sizes of interconnects were allowed to change continuously and the 

implied power-delay optimal tradeoff could be formulated as a convex programming 

problem, for which classical search algorithms are applicable [7]. 

 

A new degree of optimization difficulty was introduced with the appearance of 

32nanometer and smaller process technologies [3], where the lithography restricts the 

admissible sizes and spaces of interconnects to very few values.  Once the admissible 

geometries and their distances of each other become discrete, continuous search 

techniques are inappropriate and new combinatorial optimization solutions are in order. 

The complexity of delay-area optimization has been discussed in [8] with regard of sizing 

the drive strength of logic cells.  Though dynamic programming has been shown lately to 

solve our interconnect problem [9], studying its complexity is important and discussed in 

the rest of the paper. Section 2 sets interconnect physical modeling and its related power 

and delay, where Section 3 proves the NP-completeness of their optimization. 
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2. Delay and Power Modeling of Interconnects in a Bundle 

Let 1, , nσ σ…  be n  signals of a wire bundle, and let1, , nI I… be their corresponding wires 

positioned between two shielding wires 0I and 1nI +  connected to ground, as shown in Fig. 

3. As shown in the figure, iR represents the power drive of a driver where a signal starts, 

while iC represents the capacitive load of the receiver at the terminating end of the signal. 

Let 1, , nw w… be wire widths and 0, , ns s… be the spaces between them. It is assumed that 

admissible wire widths and spaces are taken from finite, very small sets, representing 

gridded (discrete) design rules.   

{ }1,...,i qw W W∈ =W , { }1,...,i ps S S∈ =S                                                           (2.1) 

Sometimes, a mix of discrete values with continuous ranges is allowed, but design 

practice usually employs only a limited set of values, turning the problem into pure 

discrete. Lithography may sometimes prohibit certain width and space combinations by 

imposing interdependencies between the values in (2.1). We’ll ignore such restrictions as 

those don't affect the complexity of the problems. The area allocated for the wire bundle 

dictates a total width limitA , satisfying: 

1 0

n n

i ii i
w s A

= =
+ ≤∑ ∑                                                                                       (2.2) 

The delay of signal iσ can be approximated by Elmore model [10] as follows: 

( ) ( )( )1 1, , 1 1 ,   1i i i i i i i i i i i i i iD s w s w w w s s i nα β γ δ ε− −= + + + + + ≤ ≤             (2.3) 

The coefficients , , ,i i i iα β γ δ  and iε  capture process parameters, driver’s resistance and 

capacitive load, and interconnect length, which is fixed in this setting. The dynamic 

switching power iP  consumed by iσ is given by: 

( ) ( )1 1, , 1 1 ,   1i i i i i i i i iP s w s w s s i nκ η− −= + + ≤ ≤                                                       (2.4) 

The coefficients iκ  and iη  capture process parameters, signal activity factors and 

interconnect length. Signal activity factor is the amount of switching relative to the clock 

signal. It can range from zero if the signal never switches (e.g., shields or power delivery 

wires) to one if it toggles twice at every cycle (e.g., clocks). Signal activity factors are 
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derived from functional simulations which check the signal activity in representative 

scenarios, and then averaging those over all cases [11].  

 

Delay and power models in (2.3) and (2.4) are commonly used in the literature [6], and 

the parameters in their expressions are not subject to optimization. The total sum of 

delays, maximal delay and total interconnect power consumption are given respectively 

by: 

( ) ( )11
, , ,

nsum
i i i ii

D s w D s w s−=
=∑ ,                                                                  (2.5) 

( ) ( )1
1

, max , ,max
i i i i

i n
D s w D s w s−

≤ ≤
= , and                                                                            (2.6) 

( ) ( )11
, , ,

n

i i i ii
P s w P s w s−=

=∑ .                                                                                        (2.7) 

 

The total delay in (2.5) is in fact1L  metric, while the max delay in (2.6) is L∞  metric. Let 

iT be the required time of iσ and i i iT D∆ = − be its slack. It was shown in [5] that 

maximizing
1

n

ii=
∆∑  is equivalent to minimizing

1

n

ii
D

=∑ , and has the same solution. It 

was also shown that maximizing minimal i∆ is a similar problem to minimizing the 

maximal iD , since both are convex and same algorithm will solve both. Hence, without 

loss of generality we’ll consider just delays in the discussion. 

 

We show below that finding the minimum delays in (2.5) and (2.6) (or the power in (2.7)) 

such that the power in (2.7) (or delay in (2.5) and (2.6)) doesn’t exceed certain limit, is an 

NP-complete problem. In the proof we ignore the area constraint, since area constrained 

solution implies unconstrained solution, but not vive versa. This follows from the number 

of distinct possible areas, which is linearly bounded by | || |n W S . We could then invoke 

the algorithm of the area constrained problem for each possible area and obtain the 

solution of the unconstrained one. Hence latter problem is generally easier than the 

former one.  

 

3. NP Completeness of Power-Delay Optimization 
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Once all parameters of the bundle are set, namely, drivers, capacitive loads and activity 

factors, the optimal sizing problem is equivalent to the following. Let “base” power and 

delay be calculated for the setting in which all wire widths and spaces are at minimum, 

namely, 1w and 1s . We then seek an assignment of extra widths and spaces such that the 

total power (delay) is maximally reduced while total delay (power) change doesn’t 

exceed certain limit. In the sequel we show that a simpler decision sub-problem, called 

MIN_DLYPWR, is NP-complete. 

 

MIN_DLYPWR: 

Instance: A n -wire bundle with given drivers, capacitive loads and activity factors, 

whose wire widths and spaces are given in (2.1). 

Question: Is there a setting of the widths and spaces of wires in the bundle such that 

delay reduction from the base delay is Dδ  at least, while power increase from the base 

power is Pδ  at most?  

 

It follows from the delay and power equations given in (2.3) and (2.4), respectively, that 

both are monotonic decreasing in spacing. Wider wires always increase power, but may 

increase or decrease delay, depending on driver’s resistance. We prove that the 

MIN_DLYPWR problem is NP-complete by showing that any instance of the NP-

complete PARTITION problem [12] can be transformed in polynomial time into a special 

instance of MIN_DLYPWR, such that the answer to PARTITION is YES if and only if it 

is so for the special MIN_DLYPWR instance. The proof follows some ideas used in [8] 

which proves that the problem of trading off area and delay by cell resizing is NP-

complete. 

 

Theorem 1: MIN_DLYPWR in NP-complete. 

Proof: MIN_DLYPWR clearly belongs to NP, as given a guess of widths and spaces, one 

needs only to substitute those in the appropriate equations, which requires polynomial 

time. (Notice that in the presence of area constraint, the problem remains NP as a 

summation of wire widths and spaces answers whether the area constraint is met.)    An 

instance I  of a PARTITION problem attempts to answer whether for a given set 
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B whose elements have size ( )s b +∈Z  for anyb B∈ , there is a subset B B′ ⊆  

satisfying ( ) ( )
( )b B b B B

s b s b
′ ′∈ ∈ −

=∑ ∑ .  

 

MIN_DLYPWR instance ( )f I  is built as follows: 

1. For every element b B∈  of PARTITION we allocate a wire in the bundle.  

2. Drivers of wires have zero resistance (infinite current drive) and zero internal delay, 

hence they don’t affect signal delays (via interconnect capacitances). The coefficients 

, , , ,b b b b bα β δ ε η are set to 0. The coefficients bγ and bκ are set so that b bCγ =  

(capacitive load of wire b) and b bFκ =  (activity factor of wire b), yielding 

( )1, ,b b b b bD s w s wγ− = and ( )1, ,b b b b bP s w s wκ− = . 

3. We fix the allowable spaces to minimum value only, namely, { }1bs S∈ =S . It means 

that cross coupling capacitance does not affect this MIN_DLYPWR instance. 

4. Wire width has only two admissible values { }1 2 1 2, ,  bw W W W W∈ = <W . All wire 

widths are initially set to 1bw W= . 

5. The area limit A  of the bundle is sufficiently large to accommodate any width sizing, 

so it doesn’t affect this MIN_DLYPWR instance. 

6. Every signal corresponding to b B∈ is assigned with an activity 

factor ( ) ( )2 1bF s b W W= −  and a capacitive load ( ) ( )1 2 2 1bC s b WW W W= − . Under 

these assignments equations (2.5) and (2.7) turn into: 

( ) ( ) ( )1 2 2 11sum
b

b B

D w s b WW W W
∈

= −∑ .                                                        (3.1) 

( ) ( )2 1b
b B

P w s b W W
∈

= −∑ .                                                                         (3.2) 

7. We finally set the power increase upper bound and delay reduction lower bound to be 

equal to each other such that ( ) 2
b B

P D s bδ δ
∈

= =∑ . 

 

It is obvious that ( )f I  can be constructed in polynomial time. Assume that the answer to 

MIN_DLYPWR ( )f I problem is YES. Notice that because drivers’ resistance was set to 
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zero, delay is monotonic decreasing in wire width. Power is always monotonic increasing 

in wire widths. Hence there exists only a single value where they are equal to each other, 

the only value for which a YES answer holds for the MIN_DLYPWR problem. This 

value must be b bb B b B
P Dδ δ

′ ′∈ ∈
=∑ ∑ . By definition, a YES answer to MIN_DLYPWR 

implies a subset B B′ ⊆  of wires which have been upsized from 1W  to 2W , decreasing 

delay and increasing power such total delay decrease and total power increase satisfy 

bb B
D Dδ δ

′∈
≥∑  and bb B

P Pδ δ
′∈

≤∑ , respectively. It follows from (3.1) and (3.2), and 

the setting (7), that b bb B b B
P Dδ δ

′ ′∈ ∈
= =∑ ∑ ( ) 2

b B
s b

∈∑ . Calculation of delay reduction 

(power increase is similar) yields ( )( ) 2 bb B b B
s b Dδ

′∈ ∈
= =∑ ∑   

( ) ( ) ( )21 2 1 2 11 1
b B

W W s b WWW W
′∈

− − =∑ ( )
b B

s b
′∈∑ , which implies that ( ),B B B′ ′−  is a 

YES answer to PARTITION.  

 

Conversely, if B B′ ⊆  is a YES answer to PARTITION, we widen the wires 

corresponding to b B′∈ form 1W  to 2W . The delay given in (2.3) is thus reduced for each 

wire of B′  by ( ) ( )1 21 1b bD C W W s bδ = − = , while the power given in (2.5) is increased 

by ( ) ( )2 1b bP F W W s bδ = − = . Summing over all wires of B′  obtains a YES answer to 

MIN_DLYPWR ( )f I problem. ■ 

 

Consider now the problem of minimizing the power in (2.7) such that the maximal wire 

delay in (2.6) doesn’t exceed a certain value, a problem we call MIN_MAX_DLYPWR. 

In this case we’ll tradeoff power decrease for delay increase as follows. 

MIN_ MAX_ DLYPWR: 

Instance: same as in MIN_DLYPWR.  

Question: Is there a setting of the widths and spaces of wires in the bundle such that the 

power decrease from the base power is Pδ at least while delay increase ,  1iD i nδ ≤ ≤ , 

from the base delay is Dδ  at most? 

 

Theorem 2: MIN_MAX_DLYPWR is NP-complete. 
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Proof: MIN_MAX_DLYPWR clearly belongs to NP. We’ll reduce a well known NP-

complete problem called SUBSET_SUM [12] into MIN_MAX_DLYPWR. An instance  

I  of a SUBSET_SUM problem attempts to answer whether for a given set B whose 

elements have size ( )s b +∈Z for anyb B∈ , and a given numberM +∈Z , there is a subset 

B B′ ⊆ satisfying ( )
b B

s b M
′∈

=∑ . 

 

The base delay and power in this case are obtained by initially setting all wire widths 

to 2W , which results in maximum base power. Settings 1 to 5 of MIN_MAX_DLYPWR 

instance ( )f I   are similar to those in MIN_DLYPWR proof. It follows from 2 1W W>  

that the base delays are minimal and they increase whenever a wire is narrowed.  Setting 

6 of Theorem 1 is modified such that the capacitive load is set to  ( )1 2 2 1bC M WW W W= −  

for all wiresb B∈ . Under this assignment equation (2.6) turns into: 

( ) ( ){ }1 2 2 1max 1max
b

b B
D M w WW W W

∈
= − .                                                                   (3.3) 

Consequently wire narrowing from 2W  to 1W results in delay increase bD Mδ =  for 

every narrowed wire.  Finally, setting 7 of Theorem 1 is modified to P D Mδ δ= = . 

 

The theorem follows by similar arguments as in Theorem 1. Narrowing a wire b B∈  

from 2W  to 1W  adds ( )s b  to total power reduction at the expense of increasing signal’s 

delay byM . It follows immediately that P D Mδ δ= =  iff bb B
Pδ

′∈
=∑ { }max b

b B
D Mδ

′∈
= , 

and this holds iff the answer to SUBSET_SUM is YES. ■ 

 

It has been shown that the decision problems MIN_DLYPWR and 

MIN_MAX_DLYPWR are NP-complete, were area constraint has been dropped. In 

VLSI practice we are interested in the function describing the power-delay dependency 

(tradeoff function), where area is usually constrained. This is a convex function 

describing the minimum power (delay) that can be achieved for a delay (power) not 

exceeding certain value. A dynamic programming algorithm finding the power-delay 

tradeoff function for real industrial problems has been reported in [9]. This algorithm 



 9 

approximates the function to any desired accuracy0ε > , while its complexity is a 

polynomial in1 ε , the number n  of wires, the number of admissible wire widths | |W and 

spaces| |S . 

 

4. Conclusions 

In this paper we that few typical problem of power-delay optimization by interconnect 

resizing in VLSI design turn to be NP-complete once the design rules of process 

technology are discrete rather than continuous. The transition into discrete design rules is 

a must in nanometer-scale manufacturing process technologies and in the near future 

more and more design optimization problems may face similar problems. 
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Figure 1: The interconnecting metal layer regime in VLSI chips. Metal layers are stacked 
one above the other and directions of interconnects are alternating between adjacent 
layers. 
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Figure 2: Interconnecting circuits in VLSI chips. A driving circuit is connected at the 
near end of a network. The signal is propagating along metal wires to the receiving circuit 
connected at the far end of the network. 
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Figure 3: A fundamental model of interconnecting bus comprising parallel wires laid on 
the same layer between two shielding wires. 
 
 


