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Perspective 1:  
The Pain Principle 

– Design Technology evolves by working on the most 

painful problem of the day 
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 Abstraction Perspective 2:  
Opposing Forces 

Abstraction pulls up 

– Necessary to handle 

complexity 

Physical issues pull 

down like gravity 

– Area 

– Speed 

– Power 
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Perspective 3: 
The Nature of Low-Power Design 

• No critical root cause 

– Power is cumulative 

 

 

 



Perspective 3: 
The Nature of Low-Power Design 

• No critical root cause 

– Power is cumulative 

 

 

 Architecture 

Logic 

Circuit 

 Layout 

Application 

• Most savings can be made 
at the high levels 



Three Types of Action for Low Power 

• 1 Reduce waste of energy (system management) 
• 2 (Optimal) Tradeoff power with delay 
• 3 Redefine the computational task ( system architecture)   

* M. Horowitz et al., "Methods for true power minimization," ICCAD 2002 . 

 
* Y. Aizik and A. Kolodny,  VLSI Design, 2011. 
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Changing view of VLSI systems 

“Old” view:  

• Speed and power are 
dominated by ALU 
operations  

• Communication is 
immediate  
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The truth is actually somewhere in the middle… 

… that’s why architecture is challenging!  

 

“New” view: 
• Speed and power are 

dominated by 
communication 
 

• Computing operations 
are fast and cheap 

      
 



Why Views Are Changing? 
( Technlology Scaling ) 
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• For transistors, smaller is better! 
 

– Speed 

– Lower power 

– Lower cost 
 

• For wires, smaller is worse… 

L 
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• Intel’s Pentium-M, low-power microprocessor designed in Haifa, 

0.13 micron CMOS 

• Bit-Transportation energy is larger than computation energy!!! 

 

  

A case study - 2004 

* N. Magen, A. Kolodny, U. Weiser and 

 N. Shamir,  “Interconnect-Related Energy    

 dissipation in a Low-Power Microprocessor”,   

  Proc. SLIP, 2004.  

Interconnect 

51 % 

Gate 

34 % 

Diffusion 

15 % 



On-Chip Interconnect Bottleneck 
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Interconnect Delay 

is dominant 

Source: Bohr, IEDM  1995 

Interconnect Power  

is dominant 

Interconnect

51%

Gate

34%

Diffusion

15%

 Source: Nir Magen et al., SLIP 2004. 

(Data for Intel “Banias” centrino processor) 
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If Bits were Cars…. 
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Fred Pollack’s Rule 

Die Area (or Power) 

Uniprocessor Performance 

“Pollack’s 

rule” 

 Power-efficiency requires many parallel local computations 
 Chip Multi Processors (CMP) 

 Thread-Level Parallelism (TLP) 
 

 

 

AREA (or POWER) 

Uniprocessor Performance 

Performance= 𝜶𝟏 𝑨𝒓𝒆𝒂   

Po𝐰𝐞𝐫 = 𝜶𝟐 (𝑨𝒓𝒆𝒂) 

* F. Pollack, MICRO 1999. 

* S. Borkar, DAC 2007. 



Processor System Evolution 

CPU 

Cache 

Single 

Core 

CPU1 

Cache 

Dual Core 

CPU2 

Cache CPU1 
Cache 

Quad Core 

CPU3 
Cache 

CPU2 
Cache 

CPU4 
Cache 
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Performance= 𝜶𝟏 𝑨𝒓𝒆𝒂   

Po𝐰𝐞𝐫 = 𝜶𝟐 (𝑨𝒓𝒆𝒂) 

[Pollack] 



Multi-Core as a ‘Hail Mary’ 
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“….. the semiconductor industry threw the equivalent of a Hail Mary pass 

 when it switched from making microprocessors run faster to putting more of them 

 on a chip—doing so without any clear notion of how such devices would in general 

 be programmed. The hope is that someone will be able to figure out how to do that, 

 but at the moment, the ball is still in the air.” 

 

 * Prof. David Patterson, IEEE Spectrum, July 2010 



What do we know about 

future systems? 
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High Certainty 

Totally unknown 

Large 

number of 

modules 
NoC 

Interconnect 

Applications 

Power-aware 

Highly 

parallel 

 Highly regular 
 Classes of Replicated cores 

 Standard modules (DSP, HW 
accelerators, Cache banks, etc.) 

 Network on Chip 
 Power management 

 Different clocks 
 Different operating voltages * I. Walter et al., NoCArc 2010. 
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Processor Architectures: 
Uni-core, symmetric multicore, Asymmetric 

Uniprocessors 

Symmetric CMP 

Asymmetric  

CMP Power Wall 

POWER 

PERFORMANCE 
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Serial and Parallel Phases in Programs 

• Multithreaded programs  
have serial as well as parallel phases 
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Amdahl’s Law 
• Performance speedup is limited by serial code 

• Speedup is limited by 1/f  (f=fraction of serial code) 

* G. Amdahl,  AFIPS 1967. 



Symmetric Multi-Core Performance Model 
(Including interaction overheads) 

 Symmetric CMP Performance Vs. Power
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Can we cross this barrier??? 

Core Area=1 
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Core Area=4 

Core Area=8 

*  T. Morad, U. Weiser,  A. Kolodny, M. Valero and E. Ayguade,   

 “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip  Multiprocessors,”  

  IEEE Computer Architecture Letters, vol. 4,  2005. 

(25% serial code) 



Asymmetric (=Heterogeneous) Multi-Core 
 • Large core area: βa – used for serial code  

• Small cores of area: a 

• Parallel phases execute on all cores 

βa Serial 

βa 

a 



Asymmetric Multi-Core Performance 

ACCMP Performance Vs. Power

Symmetric Upper 
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*  T. Morad, U. Weiser,  A. Kolodny, M. Valero and E. Ayguade, IEEE Computer Architecture Letters, vol. 4,  2005. 

*  M. Hill and R. Marty, Computer, July 2008. 

(25% serial code) 
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Synthetic Benchmark (Emulation) 

Synthetic Benchmark Performance Vs. Power
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310.wupwise (SPEC-OMP test) 

310.wupwise_m Test Input Results

a =0.25, β =16
a =1, β =4
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So: 
Asymmetric Architecture  

Can Improve Power Efficiency 
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How Much Parallelism Exists in  
Real Programs? 
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A Useful Plot  

for Multi-Threaded Systems 
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Number of Threads 

Performance 

? 



Performance scalability study 

• Use PARSEC 

• Capture the parallelism limitation of the algorithm 

• Use architecture model with no constraints 

– No shared resources – cache, bandwidth 

• Perfect memory system – 1 cycle latency 

• Parallelism limiting factor: 
 inter-thread synchronization 

* O. Itzhak M.Sc. thesis., 2013.  



Perfect parallelism scalability: blackscholes 



Good parallelism scalability: fluidanimate 

 



 

Poor parallelism scalability raytrace 
  



Intermediate Conclusion: 
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Many multi-threaded applications are not 
scalable: They cannot exploit a large number 
of cores. 



Typical System 
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Saving Power by System Management: 
Symmetric System, Unrelated Threads 

33 
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Accounting for Energy Spent 

by Cores in a System 

• Energy spent while doing useful work 

• Energy spent while waiting for work  

• Energy spent on unnecessary or redundant work 



Wasteful Effects of Shared Resources 
⬆ Energy, ⬇ Throughput) 

 
• Threads may disturb each other as they need a shared 

cache, memory bus, network bandwidth, disk,…. 
 

• Collisions: Requesting  the same resource  
Example: several cores share the same FPU. 
– The requests are queued. 
– The waiting cores waste energy. 

 

• Destructive Interference: Causing more work to each other 
Example: threads pollute each others’ cache 
– Causes each thread to waste more energy to carry out the same 

workload 
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Idea: Resource-Aware O.S. Scheduler 
• Motivation 

– Contention on resources (e.g. cache) wastes 
energy and usually degrades performance 

• Proposal 

– Dynamically tune the workload, in order to 
minimize the contention on shared resources, by 
balancing the system. 

36 
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Experiments  
with a BW-hungry program 

• Single task  

– 5.58 sec, 132 Joules 

• When run x4 times sequentially 

– 22.3 sec, 526 Joules 

• When run x4 times in parallel (4 core i5-2500) 

– 27.86 sec (+25%), 1368 Joules (+160%) – over 
sequential 

38 



Normalized Energy per Task of Four Identical 
SPEC-CPU2006 benchmarks (baseline) 
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Looking into Memory Bus Usage 

40 



System Energy Per Task  
for a bandwidth-hungry synthetic benchmark 
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Proposed Scheduler 
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Read performance counters relating to 

the previous task 

Calculate a new prediction  

for the previous task 

Candidate = next preferred task by CFS 

Schedule 

Candidate Thread 

  

Can the  

system meet the predicted 

requirements of Candidate, or is 

Candidate starving? 

Schedule 

Idle Thread 

Context Switch 

Yes 

No 

No 

Yes 

Are there more 

Candidates? 



The New Scheduler 
with the BW-hungry program 

• Single task  
– 5.58 sec, 132 Joules 

• When run x4 times sequentially 
– 22.3 sec, 526 Joules 

• When run x4 times in parallel (4 core i5-2500) 
– 27.86 sec (+25%), 1368 Joules (+160%) – over sequential 

• X4 Using the new scheduler with memory bandwidth 
limitation enforcement 
– 23.71 sec (+6%), 569 Joules (+8%) – over sequential 

performance 

• X4 Resource Aware Scheduler vs. Baseline scheduler  
– 17.5% speedup, 58% energy reduction 

44 



System Energy Per Task (our 
scheduler) 
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Improvements in SPEC-CPU2006 
Benchmarks 
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So: 
Waste of power at the system level  

can be reduced by system management 
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Back to System Architecture 
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Cache Machines 

• Many cores (each may have its private L1) behind a shared cache 
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 Simulation results from the PARSEC workloads kit  

Poor Parallelism in Some MT Benchmarks 
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Multi-Thread Machines (e.g. GPGPU) 

• Memory latency shielded by multiple thread execution 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

To Memory 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

C C 

 

Threads Architectural States 

B
a
n

d
w

id
th

 

L
im

it
a
ti

o
n

s
 

# Threads 

Performance 
Max performance  

execution 
Memory access 

51 



A Unified Machine Model 

• Use both cache and many threads to shield memory access 
– The uniform framework renders the comparison meaningful 

– We derive simple, parameterized equations for performance, power, BW,.. 
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Unified Machine Performance 

• 3 regions: Cache efficiency region, The Valley, MT efficiency region 
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* Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson and U. Weiser, Many-Core vs. Many-Thread 

Machines: Stay Away From the Valley", IEEE Computer Architecture Letters, Volume 8,  Issue 1,  Jan. 2009 



Validation of the model 1 
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Blackscholes
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Performance for Different compute/mem ratio
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Performance/Power 1/(Energy Per Instruction) 
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Let’s Look at Equi-Throughput Curves 

• Reducing BW (i.e. power) can be achieved by climbing up a constant-
throughput-curve 

•  increase on-die-memory (e.g. innovative cache, new ideas….?) 
60 

            TP/BW 
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Proposal:  
Memory-Intensive Architectures 

• Embed memory in execution units 

• Add computational capabilities in memory 
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Example of a  
Memory-Intensive Architecture:  
Continuous Flow Multithreading 

(CFMT) 
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Thread A 

Thread B 

Fetch 

Execute 

Write back 

Cache miss!!! 
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Switch on Event Multithreading 
Example- processor pipeline  
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Using Multistate Pipeline Registers 
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S. Kvatinsky et al., “Memristor-based Multithreading,” CAL 2013 
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Continues Flow MT (CFMT) 
Example – processor’s pipeline  
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CFMT – A Novel µArchitecture 

• The simplicity of SoE MT 

• Using novel memory structure - MPR 

• No pipeline flush: 

– Enhance performance 

– Reduce power 
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S. Kvatinsky et al., “Memristor-based Multithreading,” CAL 2013 

2X performance improvement 



CFMT Performance Analysis 

• 2X theoretical performance speedup 

• Simulations show similar improvements 
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Memristor Technology:  
Enabler for Memory-Intensive Architecture 
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What is a Memristor? 

2-terminal resistive nonvolatile device 

 

 

Device’s resistivity depends on past  

electrical current (based on resistance switching effects) 

Device is constructed of 2 metal layers with  

oxide in between (e.g. TiO2) 

RON 
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//upload.wikimedia.org/wikipedia/commons/b/ba/Memristor-Symbol.svg


Memristor Microarchitecture “Vision”  

Layers of memory cells above logic 
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Advantages of Memristors 
 

Large amount of memory cells 

Very close to logic 

Non volatile 
No need for power to “stay alive” 

Small size 

Fast 

No leakage 
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Sea of Memory Cells - Ideas  
 - Conventional vs. Out of the box  

 New types of caches  

 Increase on-die prediction structures 

 Continues Flow Multithreading (improved SoE MT)  

 Instruction queues 

 Instruction reuse (memorization) 

 Enhance Multithreading architecture (Graphics like) 

 Computation at the memory level 
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Summary 

• System Level and Physical issues are converging 
–  On-chip distances dominate everything 

 

• Lots of opportunities to save power at system level 
 

• In a given architecture:  
system management challenge 

• In future systems:  
system architecture challenge 
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