
Avinoam Kolodny

Power Efficiency
by

System Management
and by

System Architecture

Electrical Engineering Department

Technion – Israel Institute of Technology

Perspective 1:
The Pain Principle

– Design Technology evolves by working on the most

painful problem of the day

3 3

 Abstraction Perspective 2:
Opposing Forces

Abstraction pulls up

– Necessary to handle

complexity

Physical issues pull

down like gravity

– Area

– Speed

– Power

System
 Level

POWER

AREA

SPEED

VLSI
Design

Perspective 3:
The Nature of Low-Power Design

• No critical root cause

– Power is cumulative

Perspective 3:
The Nature of Low-Power Design

• No critical root cause

– Power is cumulative

 Architecture

Logic

Circuit

 Layout

Application

• Most savings can be made
at the high levels

Three Types of Action for Low Power

• 1 Reduce waste of energy (system management)
• 2 (Optimal) Tradeoff power with delay
• 3 Redefine the computational task (system architecture)

* M. Horowitz et al., "Methods for true power minimization," ICCAD 2002 .

* Y. Aizik and A. Kolodny, VLSI Design, 2011.

Power

Delay

2

1

3

Changing view of VLSI systems

“Old” view:

• Speed and power are
dominated by ALU
operations

• Communication is
immediate

 7

The truth is actually somewhere in the middle…

… that’s why architecture is challenging!

“New” view:
• Speed and power are

dominated by
communication

• Computing operations
are fast and cheap

Why Views Are Changing?
(Technlology Scaling)

8

• For transistors, smaller is better!

– Speed

– Lower power

– Lower cost

• For wires, smaller is worse…

L

L

w

h

L

9

• Intel’s Pentium-M, low-power microprocessor designed in Haifa,

0.13 micron CMOS

• Bit-Transportation energy is larger than computation energy!!!

A case study - 2004

* N. Magen, A. Kolodny, U. Weiser and

 N. Shamir, “Interconnect-Related Energy

 dissipation in a Low-Power Microprocessor”,

 Proc. SLIP, 2004.

Interconnect

51 %

Gate

34 %

Diffusion

15 %

On-Chip Interconnect Bottleneck

10

Interconnect Delay

is dominant

Source: Bohr, IEDM 1995

Interconnect Power

is dominant

Interconnect

51%

Gate

34%

Diffusion

15%

 Source: Nir Magen et al., SLIP 2004.

(Data for Intel “Banias” centrino processor)

11

If Bits were Cars….

12

Fred Pollack’s Rule

Die Area (or Power)

Uniprocessor Performance

“Pollack’s

rule”

 Power-efficiency requires many parallel local computations
 Chip Multi Processors (CMP)

 Thread-Level Parallelism (TLP)

AREA (or POWER)

Uniprocessor Performance

Performance= 𝜶𝟏 𝑨𝒓𝒆𝒂

Po𝐰𝐞𝐫 = 𝜶𝟐 (𝑨𝒓𝒆𝒂)

* F. Pollack, MICRO 1999.

* S. Borkar, DAC 2007.

Processor System Evolution

CPU

Cache

Single

Core

CPU1

Cache

Dual Core

CPU2

Cache CPU1
Cache

Quad Core

CPU3
Cache

CPU2
Cache

CPU4
Cache

13

Performance= 𝜶𝟏 𝑨𝒓𝒆𝒂

Po𝐰𝐞𝐫 = 𝜶𝟐 (𝑨𝒓𝒆𝒂)

[Pollack]

Multi-Core as a ‘Hail Mary’

14

“….. the semiconductor industry threw the equivalent of a Hail Mary pass

 when it switched from making microprocessors run faster to putting more of them

 on a chip—doing so without any clear notion of how such devices would in general

 be programmed. The hope is that someone will be able to figure out how to do that,

 but at the moment, the ball is still in the air.”

 * Prof. David Patterson, IEEE Spectrum, July 2010

What do we know about

future systems?
R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

15

High Certainty

Totally unknown

Large

number of

modules
NoC

Interconnect

Applications

Power-aware

Highly

parallel

 Highly regular
 Classes of Replicated cores

 Standard modules (DSP, HW
accelerators, Cache banks, etc.)

 Network on Chip
 Power management

 Different clocks
 Different operating voltages * I. Walter et al., NoCArc 2010.

16

Processor Architectures:
Uni-core, symmetric multicore, Asymmetric

Uniprocessors

Symmetric CMP

Asymmetric

CMP Power Wall

POWER

PERFORMANCE

17

Serial and Parallel Phases in Programs

• Multithreaded programs
have serial as well as parallel phases

18

Amdahl’s Law
• Performance speedup is limited by serial code

• Speedup is limited by 1/f (f=fraction of serial code)

* G. Amdahl, AFIPS 1967.

Symmetric Multi-Core Performance Model
(Including interaction overheads)

 Symmetric CMP Performance Vs. Power

Symmetric Upper

Bound a =8

a =4

a =2

a =1

1

2

3

4

5

0 5 10 15 20 25

Relative Power

R
el

a
ti

v
e
 P

e
rf

o
rm

a
n

ce

Symmetric Upper Bound
Symmetric (a=8)
Symmetric (a=4)
Symmetric (a=2)
Symmetric (a=1)

Can we cross this barrier???

Core Area=1

Core Area=2

Core Area=4

Core Area=8

* T. Morad, U. Weiser, A. Kolodny, M. Valero and E. Ayguade,

 “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors,”

 IEEE Computer Architecture Letters, vol. 4, 2005.

(25% serial code)

Asymmetric (=Heterogeneous) Multi-Core
 • Large core area: βa – used for serial code

• Small cores of area: a

• Parallel phases execute on all cores

βa Serial

βa

a

Asymmetric Multi-Core Performance

ACCMP Performance Vs. Power

Symmetric Upper

Bound

a =1, β =4

a =0.33, β =6

1

2

3

4

5

0 5 10 15 20 25

Relative Power

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

Symmetric Upper Bound

Asymmetric (a=1, β=4)

Asymmetric (a=0.33, β=6)

* T. Morad, U. Weiser, A. Kolodny, M. Valero and E. Ayguade, IEEE Computer Architecture Letters, vol. 4, 2005.

* M. Hill and R. Marty, Computer, July 2008.

(25% serial code)

22

Synthetic Benchmark (Emulation)

Synthetic Benchmark Performance Vs. Power

A1

a =0.04, β =100 A2a =1, β =4

a =1.78, β =0.44

S3

S2
Measured

Symmetric Upper

Bound

S1
S4

1

2

3

4

5

6

0 5 10 15 20 25 30
Relative Power

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

Asymmetric (a=0.04, β=100)

Asymmetric (a=1, β=4)

Asymmetric (a=1.78, β=2.25)

Measured Symmetric Upper Bound

2.25

23

310.wupwise (SPEC-OMP test)

310.wupwise_m Test Input Results

a =0.25, β =16
a =1, β =4

A3
S5

Measured Symmetric

Upper Bound

1

2

3

4

0 2 4 6 8 10 12 14 16

Relative Power

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

Asymmetric (a=0.26, β=15.31)

Asymmetric (a=1, β=4)

Measured Symmetric Upper Bound

So:
Asymmetric Architecture

Can Improve Power Efficiency

24

How Much Parallelism Exists in
Real Programs?

25

A Useful Plot

for Multi-Threaded Systems

26

Number of Threads

Performance

?

Performance scalability study

• Use PARSEC

• Capture the parallelism limitation of the algorithm

• Use architecture model with no constraints

– No shared resources – cache, bandwidth

• Perfect memory system – 1 cycle latency

• Parallelism limiting factor:
 inter-thread synchronization

* O. Itzhak M.Sc. thesis., 2013.

Perfect parallelism scalability: blackscholes

Good parallelism scalability: fluidanimate

Poor parallelism scalability raytrace

Intermediate Conclusion:

31

Many multi-threaded applications are not
scalable: They cannot exploit a large number
of cores.

Typical System

32 32

Saving Power by System Management:
Symmetric System, Unrelated Threads

33

34

Accounting for Energy Spent

by Cores in a System

• Energy spent while doing useful work

• Energy spent while waiting for work

• Energy spent on unnecessary or redundant work

Wasteful Effects of Shared Resources
⬆ Energy, ⬇ Throughput)

• Threads may disturb each other as they need a shared

cache, memory bus, network bandwidth, disk,….

• Collisions: Requesting the same resource
Example: several cores share the same FPU.
– The requests are queued.
– The waiting cores waste energy.

• Destructive Interference: Causing more work to each other
Example: threads pollute each others’ cache
– Causes each thread to waste more energy to carry out the same

workload

35

Idea: Resource-Aware O.S. Scheduler
• Motivation

– Contention on resources (e.g. cache) wastes
energy and usually degrades performance

• Proposal

– Dynamically tune the workload, in order to
minimize the contention on shared resources, by
balancing the system.

36

36

Experiments
with a BW-hungry program

• Single task

– 5.58 sec, 132 Joules

• When run x4 times sequentially

– 22.3 sec, 526 Joules

• When run x4 times in parallel (4 core i5-2500)

– 27.86 sec (+25%), 1368 Joules (+160%) – over
sequential

38

Normalized Energy per Task of Four Identical
SPEC-CPU2006 benchmarks (baseline)

39

Looking into Memory Bus Usage

40

System Energy Per Task
for a bandwidth-hungry synthetic benchmark

41

Proposed Scheduler

43

Read performance counters relating to

the previous task

Calculate a new prediction

for the previous task

Candidate = next preferred task by CFS

Schedule

Candidate Thread

Can the

system meet the predicted

requirements of Candidate, or is

Candidate starving?

Schedule

Idle Thread

Context Switch

Yes

No

No

Yes

Are there more

Candidates?

The New Scheduler
with the BW-hungry program

• Single task
– 5.58 sec, 132 Joules

• When run x4 times sequentially
– 22.3 sec, 526 Joules

• When run x4 times in parallel (4 core i5-2500)
– 27.86 sec (+25%), 1368 Joules (+160%) – over sequential

• X4 Using the new scheduler with memory bandwidth
limitation enforcement
– 23.71 sec (+6%), 569 Joules (+8%) – over sequential

performance

• X4 Resource Aware Scheduler vs. Baseline scheduler
– 17.5% speedup, 58% energy reduction

44

System Energy Per Task (our
scheduler)

45

Improvements in SPEC-CPU2006
Benchmarks

46

-20%

0%

20%

40%

En
e

rg
y

an
d

 T
h

ro
u

gh
p

u
t

Im
p

ro
ve

m
e

n
ts Chip Energy Savings

System Energy Savings

Speedup

55%

So:
Waste of power at the system level

can be reduced by system management

47

Back to System Architecture

48

Cache Machines

• Many cores (each may have its private L1) behind a shared cache

49

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C

C

C

C

Cache

To Memory

C

C

C

C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

Threads

Performance

Cache Non Effective point (CNE)

 Simulation results from the PARSEC workloads kit

Poor Parallelism in Some MT Benchmarks

Canneal

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number Of Threads

P
e

rf
o

rm
a

n
c

e
 (

G
O

P
S

)

0

10

20

30

40

50

60

70

80

90

100

C
a

c
h

e
 H

it
 R

a
te

 (
%

)

Simulation

Analytical Model

Cache Hit Rate

50 * O. Itzhak M.Sc. thesis., 2013.

Multi-Thread Machines (e.g. GPGPU)

• Memory latency shielded by multiple thread execution

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

To Memory

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

Threads Architectural States

B
a
n

d
w

id
th

L
im

it
a
ti

o
n

s

Threads

Performance
Max performance

execution
Memory access

51

A Unified Machine Model

• Use both cache and many threads to shield memory access
– The uniform framework renders the comparison meaningful

– We derive simple, parameterized equations for performance, power, BW,..

52

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

Cache

To Memory

Threads Architectural States

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C

C

C

C

C C

C C

C C

C C

C

C

C

C

Unified Machine Performance

• 3 regions: Cache efficiency region, The Valley, MT efficiency region

53

Threads

P
e
rf

o
rm

a
n

c
e

C
a

c
h

e

re

g
io

n

MT region The Valley

* Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson and U. Weiser, Many-Core vs. Many-Thread

Machines: Stay Away From the Valley", IEEE Computer Architecture Letters, Volume 8, Issue 1, Jan. 2009

Validation of the model 1

55

Blackscholes

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number Of Threads

P
er

fo
rm

an
ce

 (G
O

P
S

)

0

10

20

30

40

50

60

70

80

90

100

C
ac

h
e

H
it

R
at

e
(%

)

Analytical Model

Simulation

Cache Hit Rate

Performance for Different compute/mem ratio

0

100

200

300

400

500

600

700

800

900

1000

1100

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

1
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

1
5
0
0
0

1
6
0
0
0

1
7
0
0
0

1
8
0
0
0

1
9
0
0
0

2
0
0
0
0

Number Of Threads

G
O

P
S

pure compute

mem inst =1%

mem inst =5%

mem inst =10%

mem inst =20%

mem inst =30%

Performance depends on

the fraction of memory instructions

57

Perf^2/Power

0

1

2

3

4

5

6

7

8

9

10

11

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

1
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

1
5
0
0
0

1
6
0
0
0

1
7
0
0
0

1
8
0
0
0

1
9
0
0
0

2
0
0
0
0

Number Of Threads

P
e
rf

/P
o

w
e
r pure compute

mem inst =1%

mem inst =5%

mem inst =10%

mem inst =20%

mem inst =30%

Performance/Power 1/(Energy Per Instruction)

58

Perf^2/Power

0

1

2

3

4

5

6

7

8

9

10

11

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

1
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

1
5
0
0
0

1
6
0
0
0

1
7
0
0
0

1
8
0
0
0

1
9
0
0
0

2
0
0
0
0

Number Of Threads

P
e
rf

/P
o

w
e
r pure compute

mem inst =1%

mem inst =5%

mem inst =10%

mem inst =20%

mem inst =30%

Perf^2/Power

0

1

2

3

4

5

6

7

8

9

10

11

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

1
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

1
5
0
0
0

1
6
0
0
0

1
7
0
0
0

1
8
0
0
0

1
9
0
0
0

2
0
0
0
0

Number Of Threads

P
e
rf

/P
o

w
e
r pure compute

mem inst =1%

mem inst =5%

mem inst =10%

mem inst =20%

mem inst =30%

Let’s Look at Equi-Throughput Curves

• Reducing BW (i.e. power) can be achieved by climbing up a constant-
throughput-curve

• increase on-die-memory (e.g. innovative cache, new ideas….?)
60

 TP/BW

𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕

𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉

TP1

TP2
TP3

TP4

Proposal:
Memory-Intensive Architectures

• Embed memory in execution units

• Add computational capabilities in memory

61

Example of a
Memory-Intensive Architecture:
Continuous Flow Multithreading

(CFMT)

62

Thread A

Thread B

Fetch

Execute

Write back

Cache miss!!!

63

Switch on Event Multithreading
Example- processor pipeline

Thread C

P
ip

e
li

n
e
 s

ta
g

e
s

Using Multistate Pipeline Registers

64

T
h

re
a

d
 A

 P
ip

e
li

n
e

 r
e

g
is

te
r

R/W

R/W

R/W

R/W

R/W

Fetch

Decode 1

Decode 2

Address G

Mem access

Execute

Write back

R/W

Multistate

 Pipeline

 Register (MPR)

S. Kvatinsky et al., “Memristor-based Multithreading,” CAL 2013

MPR

MPR

MPR

MPR

MPR

MPR

Continues Flow MT (CFMT)
Example – processor’s pipeline

Thread A

Thread B
Fetch

Execute

Write back

Cache miss!!!

M
P

R
=

M
u
lt
is

ta
te

 P
ip

e
lin

e
 R

e
g
is

te
r

65

Thread C

P
ip

e
li

n
e
 s

ta
g

e
s

CFMT – A Novel µArchitecture

• The simplicity of SoE MT

• Using novel memory structure - MPR

• No pipeline flush:

– Enhance performance

– Reduce power

66

S. Kvatinsky et al., “Memristor-based Multithreading,” CAL 2013

2X performance improvement

CFMT Performance Analysis

• 2X theoretical performance speedup

• Simulations show similar improvements

67

,

(),

ideal m m

ideal s m

CPI P r MR n

n

unsaturated
CPI

CPI P r MR n saturation

rm = 0.2

Pm = 200 cycles

Ps = 20 cycles

CPIideal = 1

MR = 0.25

Memristor Technology:
Enabler for Memory-Intensive Architecture

68

What is a Memristor?

2-terminal resistive nonvolatile device

Device’s resistivity depends on past

electrical current (based on resistance switching effects)

Device is constructed of 2 metal layers with

oxide in between (e.g. TiO2)

RON

ROFF

Voltage [V]

C
u

rr
e

n
t

[m
A

]

69

//upload.wikimedia.org/wikipedia/commons/b/ba/Memristor-Symbol.svg

Memristor Microarchitecture “Vision”

Layers of memory cells above logic

70

Advantages of Memristors

Large amount of memory cells

Very close to logic

Non volatile
No need for power to “stay alive”

Small size

Fast

No leakage

71

Sea of Memory Cells - Ideas
 - Conventional vs. Out of the box

 New types of caches

 Increase on-die prediction structures

 Continues Flow Multithreading (improved SoE MT)

 Instruction queues

 Instruction reuse (memorization)

 Enhance Multithreading architecture (Graphics like)

 Computation at the memory level

72

Summary

• System Level and Physical issues are converging
– On-chip distances dominate everything

• Lots of opportunities to save power at system level

• In a given architecture:
system management challenge

• In future systems:
system architecture challenge

73

Thanks
This talk is based on joint work with

many students and collaborators:

 Nir Magen

 Oved Itzhak

 Shahar Kvatinsky

 Tomer Morad

 Yaniv Ben-Itzhak

 Yoni Aizik

 Yuval Nacson

 Zigi Walter

 Zvika Guz

74

 Avi Mendelson

 Idit Keidar

 Uri Weiser

 Yoav Etzion

