
Optimizing Heterogeneous NoC Design
Yaniv Ben-Itzhak1 Israel Cidon2 Avinoam Kolodny2

Electrical Engineering Department

Technion – Israel Institute of Technology

Haifa, Israel

1yanivbi@tx.technion.ac.il 2{cidon, kolodny}@ee.technion.ac.il

ABSTRACT
We develop a novel design methodology that optimizes capacity
of each link in a NoC and the numbers of virtual channels (VCs)
at each router port for a given set of flows and latency constraints.
In order to lower computation costs associated with a simulated
annealing search in the design space, we utilize an approximate
analysis of the NoC performance thus replacing the need for a
NoC simulation. Therefore, computation time and resources are
dramatically reduced. The area saving achieved by our
heterogeneous NoC design is demonstrated by several use-cases.
The heterogeneous NoC design process is applied to SoCs
running multimedia benchmarks, and to Chip-Multi-Processor
(CMP) running PARSEC benchmark programs.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids Language

General Terms
Algorithms, Performance, Design

Keywords
NoC design, Heterogeneous NoC

1. INTRODUCTION
SoC and CMP designs use Networks-on-Chip (NoC) to support a
variety of inter module communications bandwidth and latency
requirements. The NoC traffic requirements are usually
heterogeneous, both in terms of module-to-module bandwidth and
delays. In the case of SoC, there is typically a priory specification
describing the traffic and timing requirements at design time. In
CMPs, the traffic requirements depend on particular executed
software. However, certain parts of the NoC, depending on
network topology and chip layout, always tend to be heavily
loaded. Figure 1 presents two well-known examples which
demonstrate that heterogeneous traffic loads are common:
uniform traffic pattern over a mesh NoC [10, 22] (Figure 1(a)) and
CMP with a tiled cache in the middle architecture (which employs
banked DNUCA connected by a NoC [3]) (Figure 1(b)). These
two examples exhibit higher loads over NoC routers in the center
as compared to NoC routers in the periphery.

The problem of heterogeneous traffic loads is usually solved by a
load distribution method, such as dynamic routing [19, 21, 20].

However, these solutions require additional logic, which
consumes area and power. Therefore, fixed shortest-path routing
is typically preferred in order to minimize NoC area and
communication power dissipation [8, 23, 9, 25, 18]. With simple
routing schemes, such as dimension-order routing, different links
in the NoC must carry significantly different data rates and
number of flows. Hence, heterogeneous NoCs have been proposed
[13, 15, 12, 22, 2, 17].

As the traffic requirements are heterogeneous, one should also
expect that the optimal area/power NoC to support these
requirements will also be heterogeneous in terms of link
capacities and a number of virtual channels (VCs) for each
unidirectional port. The allocation of capacity and the number of
VCs should be affected by different latency requirements for
different data flows while considering the sharing of network
resources by different flows. Furthermore, the use of such
heterogeneous NoC resources results in fewer restrictions on
mapping optimizations as compared with homogeneous NoCs,
where capacities and virtual channels are uniform for all links and
routers. Hence, our approach facilitates more efficient design.

This paper explores optimal link capacity and VCs allocation for
heterogeneous NoCs under end-to-end latency constraints. Some
of previous works focused on either non-uniform number of VCs
allocation (with uniform link capacities) [13, 15] or non-uniform
link capacities allocation (with uniform number of VCs) [12].
Others focused on NoCs composed of a small set of predefined
routers with fixed bandwidth and a number of VCs for all ports
[22, 2, 17]. We argue that efficient NoC design should consist of
heterogeneous routers, such that each unidirectional port of each
router is automatically generated with its own required capacity
and number of VCs. Unlike [13, 15] which are based on
heuristics, we use optimization method in order to obtain the
optimal NoC design.

Figure 1. Heterogeneous traffic loads examples (The link

thickness corresponds to its load). (a) Uniform traffic pattern;

(b) CMP with tiled cache in the middle. Both result in higher

loads at center as compared to periphery of the NoC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SLIP’12, June 3, 2012, San Francisco, CA, USA.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

Figure 2. Reasoning for using our heterogeneous NoC design

(The link thickness corresponds to its capacity). (a) Uniform

approach (Homogeneous NoC); (b) Non-uniform capacity

approach; (c) Non-uniform VCs approach; (d) Our approach.

Figure 2(a) presents a simple design example in which three equal
rate flows are transmitted over a shared link. This design uses
uniform capacity and a uniform number of VCs for all links.
Previous works have used two resource allocation strategies to
achieve better performance. First, the non-uniform link capacities
approach [12] is presented in Figure 2(b). This approach uses
three VCs in every link, even though it is required only for the
shared link. Second, the non-uniform number of VCs approach
[13, 15] is presented in Figure 2(c). This approach uses high
capacity for all links, even though it is required only for the
shared link. Therefore, both of these existing approaches allocate
excess resources which increase the area and the power
consumption of the NoC. Our novel heterogeneous NoC design
methodology allocates non-uniform links capacities as well as a
non-uniform number of VCs (Figure 2(d)). Therefore, unlike
previous approaches, the allocation of unnecessary VCs and
capacity over ports is avoided in the new approach thus saving a
considerable amount of area and power.

We substantiate our approach by presenting the correlation
between link capacities and number of VCs in optimized designs

(Section 4.1). Hence, one cannot attain optimal NoC design by

using previous methods separately (e.g., a non-uniform link-
capacities design followed by a non-uniform number of VCs
design).

We use a heterogeneous NoC router architecture, which is an
extension of the XShare NoC router architecture presented in [11].
We extended this architecture such that it supports different link
capacities and different number of VCs for each unidirectional
port. To the best of our knowledge, this is the first description of

such heterogeneous NoC routers. Section 2.1 provides the detailed

architecture of our heterogeneous NoC routes. Since ORION2

[14] supports only homogeneous NoC routers, we modify it in
order to evaluate the area of a given heterogeneous NoC router

(Section 2.2). We also point out the benefits of heterogeneous

NoC routers (Section 2.3).

We present an allocation scheme which minimizes the total area
of VCs and the capacity of links required to meet the end-to-end
latency constraints of each flow. Our allocation scheme is based
on simulated annealing, customized to support the use of
constraints and the optimization of two parameters (i.e. link
capacities and number of VCs). Furthermore, we use the network
latencies as constraints rather than using the end-to-end latency
constraints. Consider the case of an allocation with saturated
sources such that the corresponding end-to-end latencies are equal
to infinite. Whenever the optimizer compares two saturated NoC
allocations, it cannot get useful indication as to which allocation is
better. Therefore, in order to improve the optimization progress,
we calculate the network latency constraints based on the given
end-to-end latency constraints. In this way, the optimizer can also
get a useful indication even for saturated NoC allocations. More

details about the design process can be found in section 3.2.

In order to reduce the computational time and resources, we
employ an approximate analysis of the NoC delay [4] in the inner
optimization loop. Usually, the design process heavily relies on
extensive performance simulations, where each intermediate NoC
configuration is tested in terms of meeting the requirements in a
long ‘change and test’ search sequence. The use of detailed
simulations makes the task of searching for efficient link
capacities and virtual channels allocation computationally
intensive and does not scale well with the size of the problem.
Therefore, the use of costly simulations [5] is left only for the
final verification and fine-tuning of the system.

In section 4, we present several heterogeneous NoC designs and
demonstrate the area savings achieved by it. We present a

synthetic heterogeneous NoC example in section 4.1. This

example demonstrates the correlation between link capacities and
number of VCs and justifies the optimization of both in order to
achieve an optimal design. It also demonstrates that there is a
possible trade-off between the total capacity of links and the total
number of VCs, which actually offers more than one optimal
heterogeneous NoC design. We apply the heterogeneous NoC
design methodology to several examples of SoCs running

multimedia benchmarks in section 4.2 and demonstrate the area

savings of heterogeneous NoC design compared to homogeneous
design. Furthermore, we demonstrate that heterogeneous NoC
design is also justified for Chip-Multi-Processor (CMP) in section

 4.3, by presenting an optimal design for CMP running PARSEC

benchmark programs.

2. HETEROGENEOUS NOC ROUTER
Heterogeneous NoC consists of routers which support different
link capacities and different numbers of VCs for each
unidirectional link. To the best of our knowledge, there is neither
a detailed implementation of heterogeneous NoC architecture nor
a method for calculating the area of such routers. Therefore, we
define a new architecture for heterogeneous NoC routers which is
an extension of the architecture of XShare NoC router [11]

(Section 2.1). Furthermore, we present the area evaluation of such

NoC router which is a modification of ORION2 [14] (Section

 2.2). We also point out the benefits of heterogeneous NoCs

(Section 2.3).

2.1 Architecture of Heterogeneous NoC

Router
Our heterogeneous NoC router is an extension of XShare
architecture [11]. XShare is a homogenous NoC router
architecture which allows two flits to be concurrently transferred
over a single channel. Therefore, the size of each flit is at most
half of the link width. The two flits are combined together and
sent over the link as a single bigger flit. The input buffer is
modified in order to divide the incoming combined flit into the
two original flits. This modification is accomplished by adding
MUX/DEMUX logic to the input buffer. Next, the in-port arbiter
chooses which of its VCs can bid for the out-port, according to the
arbitration policy of the NoC router (e.g., round-robin or winner-
takes-all). Each out-port requires additional logic in order to
support concurrent transfer of two flits. Each one of the out-port
arbiters chooses one of the in-ports to be served. Afterwards, the
out-port combines the two chosen flits into a bigger flit and sends
it over the outgress link and so on and so forth.

As opposed to XShare, our NoC router architecture is
heterogeneous. Therefore, we extend the XShare architecture to
support non-uniform link capacities and non-uniform number of
VCs per unidirectional port. Figure 3 depicts the architecture of
our heterogeneous NoC router. In order to support different
number of VCs for each unidirectional port, we use Vi:1 in-port
arbiter for each in-port i (with Vi VCs). All VCs have the same
number of buffers. In order to support different link capacities, we
use different link-widths while keeping the NoC router`s
frequency fixed. The link-width of link o, ��������ℎ	, is
determined by the number of flits which can be concurrently
transmitted over the link, �
.

��������ℎ	 = �	 ∙ ������� (1)

Therefore, we use no simultaneous out-port arbiters for each
outgress link o. The concurrent transmitted flits can be either of
different ingress VCs or of the same VC. It depends on the
number of VCs over the outgress link o and on the current traffic
pattern towards the outgress link. The capacity of link o is:

��������
 = ��������ℎ	 ∙ ��������	 (2)

According to equations (1) and (2), the capacity granularity of the
allocation process is determined by the product of the NoC`s
frequency and the flit size. In order to support the connectivity of
ingress and outgress ports, the crossbar consists of different
ingress and outgress link widths. It allows combining flits from
several ingress ports with low capacity into an outgress port with
high capacity. Inversely, it also allows concurrent transfer of flits
from an ingress port with high capacity to several outgress ports
with low capacity.

2.2 Area Modeling
In this section, we discuss our area estimation for the above-
described heterogeneous NoC router architecture. Previous works
on power and area modeling for NoC routers mainly focused on
homogeneous NoC routers. In particular, ORION2 [14] only
supports homogeneous NoC router. Therefore, we modify
ORION2 to support the area evaluation of the heterogeneous NoC
architecture presented above. Our starting point is the equations of
ORION2. Next, we modify them to support different in-port and
out-port arbiter sizes, and heterogeneous crossbar. Furthermore,
we add area estimation for the required additional MUX/DEMUX
logic of the input and the output ports for supporting simultaneous

Figure 3. Our heterogeneous NoC architecture.

transmission of flits over a link [11].

Our work targets total NoC area minimization for given source-
destination flows. In general, NoC power consumption is
proportional to the NoC routers` area and load. Since, the load of
the NoC routers depends on the given flow pattern, the power
consumption in our work is mostly correlated to the NoC routers`
area. Hence, the minimization of NoC area also leads to reduction
of the NoC power consumption.

2.3 Benefits of Heterogeneous NoC Router
Heterogeneous NoC routers require additional MUX/DEMUX
logic and simultaneous out-port arbiters in order to support a
variable number of VCs and variable link capacities, respectively

(Section 2.1). Our area evaluations show that these additional

logics are almost negligible. The area difference between a
homogeneous NoC router and the most possibly heterogeneous
NoC router is only 3.5% given an equal sum of link capacity and a
total number of VCs. Hence, by using heterogeneous NoC design,
a given area budget of a NoC router can be utilized in a much
better way, which results in better performance per area compared
to homogeneous NoCs. Moreover, the use of heterogeneous
routers can reduce the total NoC area without violating any
performance constraints. This is accomplished by avoiding the
allocation of unnecessary VCs and capacity over certain ports
which would be allocated in a homogeneous design because of

performance restriction of other ports. In section 4, we

demonstrate the area savings which can be achieved by our novel
heterogeneous NoC design.

3. DESIGN PROCESS
Our goal is to minimize the NoC area by an optimal allocation of
link capacities and a number of VCs for each unidirectional port

of each router under end-to-end latency constraints of each flow.
In this work we focus on minimizing the total NoC area, which in
turn also reduces the NoC power consumption.

The NoC consists of heterogeneous NoC routers as described in

section 2.1. The total NoC area (both links and routers) is

calculated by taking into account the capacity and the number of

VCs of each unidirectional link (Section 2.2).

3.1 Optimization Problem Definition
For given source-destination flows, each flow f with its packet
generation rate, ����, and its end-to-end latency constraint,

�� �	!	"#$%&'"$���. We minimize the total NoC area by allocating
capacity and number of VCs for each unidirectional port. The
parameters and variables we use are listed in TABLE I.

TABLE I. PARAMETERS AND VARIABLES DEFINITIONS

Notation Definition

�� ���� The end-to-end latency of flow f.

�� �	!	"#$%&'"$���
The end-to-end latency constraint of flow f.
(The time from the generation of the packet

until its arrival to the destination).

�"�$(%)!	"#$%&'"$���		
The network latency constraint of flow f.
(The time from the injection of the packet

into the NoC until its arrival to the
destination).

����		 The packet generation rate of flow f.

The definition of the optimization problem is:

*���+���: -.���	/.�	0���

��12���	�.:	�� ���� ≤ �� �	!	"#$%&'"$���; ∀� ∈ ��.78
(3)

3.2 The Optimization Method
The design space for allocating link capacities and number of VCs
for each unidirectional port is extremely large. Therefore, we use
the simulated annealing algorithm [16], which targets large search
space and copes with local minima. Moreover, simulated
annealing algorithm is also suitable for extreme large problem
instances (e.g. 1000+ tiles). Generally, simulated annealing
algorithm minimizes a general function without constraints.
Therefore, we modify the basic algorithm to support the use of
constraints by updating the current allocation with a new lower
area allocation only if it meets the end-to-end latency constraints
of all flows. Furthermore, we minimize the total NoC area by
allocating both capacity and the number of VCs. Therefore, at
each iteration we use a candidate allocation generator function.
This function randomly changes either the capacity or the number
of VCs of an arbitrary port as long as this change yields a legal
allocation (i.e. non-negative capacity and positive number of VCs
for all links). As mentioned above, the capacity is changed
according to its granularity which depends on the product of the
NoC`s frequency and the flit size. The number of VCs is changed
by one at each iteration.

There are several techniques to support faster convergence for
large scale NoCs (e.g. 1000+ tiles). One can use progressive
capacity and number of VCs granularities, such that the
granularities are relatively high (i.e., high change of
capacity/number of VCs) at the first iterations of the

Figure 4. Rationale for using network latencies constraints

instead of end-to-end latencies constraints.

optimization and get lower as the optimization is progressing.
Moreover, several random unidirectional ports can be changed at
each iteration. The number of changed ports per iteration is
getting lower as the optimization progress. By using such
techniques, the optimization progress would be faster and support
optimal NoC design even for extreme large problem instances.

3.3 End-to-End Latency Constraints Support
The optimization process dramatically slows down when the
network approaches saturation. Consider the case shown in Figure
4(a), in which the current resource allocation causes saturation.
The optimization algorithm compares the infinite end-to-end
latency of the current NoC allocation to the end-to-end latency of
a new saturated NoC allocation (by modifying either the capacity
or the number of VCs of an arbitrary link). Since the network is
saturated, the optimization most times does not get a useful
indication as to which allocation is better. However, in contrast to
the end-to-end latency, the network latency is always finite. In
particular, network latencies are meaningful even when the
network is saturated (Figure 4(b)). Hence, the using of network
latency constraints (instead of end-to-end latency constraints)
provides meaningful information to the optimization process even
at saturated network cases.

To that end, for each flow f, we calculate the required network
latencies constraints based on the given end-to-end latency
constraints. We decompose the end-to-end latency constraint into
the source queuing time and the corresponding network latency
constraint by solving the following equation:

9�:�∙$;<=>?@AB?;C=@DE;=�:�F
 GHI9�:�∙$;<=>?@A

B?;C=@DE;=�:�J
+ �"�$(%)!	"#$%&'"$��� = �� �	!	"#$%&'"$��� (4)

We approximate the source queuing time by using the queuing
latency of M/D/1 queue model (the first expression of equation
(4)) [12]. The service time of the source queue is equal to the

corresponding network latency constraint, �"�$(%)!	"#$%&'"$���.

4. RESULTS
In this section, we present several heterogeneous NoC designs. In
particular, we demonstrate the area savings that can be achieved
by our novel heterogeneous NoC design without violating any
performance constraints. We assume 45nm process technology
and evaluate the total NoC area (both links and routers) of a given

NoC design according to the description in section 2.2.

We execute the modified simulated annealing algorithm in two
phases. In the first phase of the optimization process, we use the
delay analysis methodology for the heterogeneous NoCs
presented in [4] in order to evaluate the flows` latencies of an
arbitrary allocation. The usage of the analytical delay model
dramatically saves run-time and resources during the design
process. Next, we use the optimized allocation achieved in the
first phase as an initial allocation for the second phase. In this
phase, we use HNOCS (Heterogeneous NoC Simulator) in order
to validate and refine the optimized allocation. HNOCS is an
OMNeT++ based heterogeneous NoC simulator [24, 1, 5]. It
supports any heterogeneous NoC configuration in terms of any
link capacity and any number of VCs. HNOCS executes
wormhole switching with VCs and deterministic XY routing.

The following heterogeneous NoCs are designed with capacity
granularity of one GBps, defined by NoC frequency of 250 MHz

and flit size of four bytes (Section 2.1). One can round the link

capacities of the following optimized heterogeneous NoC designs
in order to support design which uses higher capacity changes.

4.1 Synthetic Example
We present a synthetic heterogeneous NoC design example,
which demonstrates the area savings achieved by heterogeneous
NoC design. Furthermore, we demonstrate that heterogeneous
NoC design can offer more than one optimal design, and also the
correlation between the links` capacities and number of VCs.

Figure 5 presents a 2x4 NoC with two flows. The packet
generation rates of the flows are six and eight GBps. We execute
our heterogeneous NoC design process with end-to-end latency
constraint of 0.4 µsec for each flow.

Figure 5(a) presents the minimal homogeneous NoC, which meets
the flows` end-to-end latency constraints, and its area
(Considering only active links. The full homogenous NoC area is
much higher: 83776µm2). The capacity and the number of VCs
(19 GBps and two VCs) of all links are determined by the link
from core 1 to core 2, since it is common for both flows.

The heterogeneous NoC design has two different options, which
result in almost the same area. In both options, the area is
approximately 25% less than the area used by the homogeneous
NoC design (active links only). On one hand, while the first
option (Figure 5(b)) allocates a single VC, the second option
(Figure 5(c)) allocates two VCs for the link between core 1 and 2.
On the other hand, the total capacity allocated by the first option
is higher compared to the second option. In fact, these two options
demonstrate a trade-off and correlation between total number of
VCs and capacity (79GBps and 5VCs versus 77GBps and 6VCs).

The first option (Figure 5(b)) incurs longer path-acquisition
latency over the link between core 1 and 2, since it allocates a
single VC over it. Therefore, in order to meet the end-to-end
latency constraints, the links should have higher link capacities
compared to the second option (Figure 5(c)). This is necessary to
decrease the transfer latency of the flows and compensate for the
path-acquisition latency. The second option, on the contrary,
results in instantaneous path-acquisition latency over the link
between core 1 and 2 (the link has two VCs). Therefore, it allows
the use of links with lower capacities compared to the first option
while maintaining the same end-to-end latency constraints.

4.2 Heterogeneous NoC-Based SoC Design
In this section, we present a heterogeneous NoC design for SoC.
We use the SoC applications presented in [6]. We execute our

Figure 5. Different options for NoC design. (a) Homogeneous

NoC design; (b) Heterogeneous NoC design (first option); (c)

Heterogeneous NoC design (second option). Both

heterogeneous NoC designs offer area savings of 25%.

heterogeneous NoC design process with end-to-end latency
constraint of 0.4 µsec for each flow. We manually map the SoC
application into the NoC, and the results are averaged for several
mappings. Figure 6 presents a comparison between the total NoC
area consumed by our heterogeneous NoC design and the total
NoC area consumed by a homogeneous NoC design.

Figure 6. Area comparison of NoC-based SoC designs for the

SoC applications presented in [6]. The heterogeneous NoC

design offers area savings 55% to 70%.

The heterogeneous NoC design results in area savings of 55% to
70% compared to homogeneous NoC design. In homogeneous
NoC design, the capacity and the number of VCs of each
unidirectional port are determined by the link with the tighter
constraint. Therefore, unnecessary capacities and VCs resources
are allocated in homogeneous NoC design. However, in
heterogeneous NoC design, the capacity and number of VCs for
each unidirectional port is allocated according to its own
constraint. Hence, unnecessary resource allocation is avoided,
which allows major area (and power consumption) savings.

4.3 Heterogeneous NoC-Based CMP Design
In this section, we demonstrate that heterogeneous NoC design is
also justified for CMPs. We present a heterogeneous NoC design
for tiled CMP running PARSEC benchmarks [7]. To that end, we
use HNOCS in the inner loop of the optimization. HNOCS is
extended to provide functionality of core with L1 cache, L2
shared cache and DRAM controller. Figure 7 presents a 4x4 NoC-
based CMP which consists of these modules. We assume 64KB
L1 cache and 4MB L2 shared caches, both with 64 bytes cache
lines and associativity of 64 lines per set. We apply L2 cache
access traces of the PARSEC benchmarks to this model.

Since the benchmarks consist of several different phases, we use
the benchmarks` run-time as constraints for our optimization
rather than using the end-to-end latencies of each memory
transaction. The run-time constraint for each benchmark is
determined by the run-time over a base-line homogeneous NoC,
which consists of links with capacity of 22 GBps and two VCs.

First, we design different optimized heterogeneous NoCs for
different random thread allocation cases of PARSEC benchmarks.
To that end, we modified the simulated annealing algorithm. For
each candidate allocation, the optimization evaluates the run-time
of each benchmark. Next, based on these optimized heterogeneous
NoCs, we design a general optimized heterogeneous NoC which
supports the execution of any thread allocation of any benchmark
over the CMP.

Figure 7 presents this optimized heterogeneous NoC. It can be
seen that there are mainly three different types of links. The run-
time is mostly determined by the time to handle a miss read. Thus,
the links with highest capacity are the links connecting the DRAM
controllers and the L2 caches. These links (marked in dotted blue)
have 22 GBps and two VCs. In order to allow fast block
replacements during miss handles in the L2 caches, the links
which connect the L2 caches to the DRAM controllers (dashed
green) have 12 GBps and two VCs. All other links (solid red)
which connect the cores to the L2 caches, are actually handle
much lower load. Thus, they have three GBps and a single VC.
Our optimized heterogeneous NoC area consumes only 20% of
the homogeneous base-line NoC area.

4.4 Design Progress and Scalability
In this section, we discuss about the design progress by presenting
the NoC area versus the number of iterations of the heterogeneous
NoC design process. We describe the generation of a modified
initial homogeneous NoC allocation to the optimization method,
which decreases the required number of iterations of the design.
Next, we demonstrate how to achieve scalability by using the

progressive techniques presented in section 3.2.

In order to reduce the required iterations of our design method, we
use a modified homogeneous NoC as our initial allocation for the
optimization method, such that number of VCs of each
unidirectional port is equal to the maximum number of flows that

Figure 7. The optimized heterogeneous NoC for CMP

executing any thread allocation of any PARSEC benchmarks

[7]. Dotted (Blue) links connects DRAM controllers to L2

caches and have capacity of 22 GBps and two VCs. Dashed

(Green) links connects L2 caches to DRAM controllers and

have capacity of 12 GBps and two VCs. All other links (Solid

red) have three GBps and single VC.

transmitted over it. For instance, there is only a single flow over
the ports that connect cores 0 to 1, 2 to 6 and 3 to 7, in the

synthetic NoC example presented in section 4.1 (Figure 5).

Therefore, the initial NoC of our optimization method is similar to
the homogeneous NoC (Figure 5(a)) except that the
aforementioned ports have a single VC rather than two VCs.

Figure 8 presents the design progress versus number of iterations

for the synthetic example (Section 4.1). It can be seen that the

NoC area is exponentially reduced with the number of iterations.
We achieve area reduction of 12% by using the modified initial
homogenous NoC allocation. After only 30 iterations we get area
reduction of 18% and after 90 iterations we get final area
reduction of 25%. Hence, we achieve 72% of the total area
savings (area reduction of 18% out of 25%), after only 33% of the
required iterations.

Figure 8. The design progress of the synthetic example design

which presented in section 4.1 by NoC area versus number of

iterations. Area reductions of 12% by using the modified

initial homogenous NoC allocation, 18% after 30 iterations,

and 25% after 90 iterations.

We demonstrate the scalability of our NoC design by using the

two progressive techniques presented in section 3.2: progressive

capacity granularity (start with high capacity steps, which get
lower with the optimization progress) and progressive number of
links per iteration (start to change a high number of links per
iteration, which gets lower with the optimization progress). We

apply the CMP NoC design method presented in section 4.3, to

the CMP topologies presented in Figure 9. The CMPs consists of
four up to 25 tiles. Figure 10 presents the number of required
iterations needed in order to achieve the optimal CMP NoC design
for optimization without any progressive technique, with
progressive capacity granularity technique, and with progressive
number of links per iteration technique. The progressive
techniques might require more iterations for small scale NoCs
(e.g., 3x2 CMP with progressive number of links per iteration
technique). However, for large scale NoCs, the progressive
techniques offer significant reduction of the total required
iterations. Hence, these kinds of techniques allow the design of
large scale NoCs with a reasonable number of iterations.

Figure 11 presents the design progress with progressive number of
links per iteration technique versus number of iterations for the

heterogeneous NoC-based CMP design presented in section 4.3.

We present both the area reduction and the number of changed

Figure 10. The required number of iterations needed to

achieve optimal CMP NoC design (of the CMPs presented in

Figure 9), for optimization without progressive technique,

with progressive capacity granularity technique, and with

progressive number of links per iteration technique.

Figure 11. The heterogeneous NoC-based 4x4 CMP design

(presented in section 4.3) using progressive number of links per

iteration technique. NoC area and number of chanaged links

per iteration versus number of iterations.

links versus number of iterations. The heterogeneous NoC-based
CMP design achieves area reduction of 60% (compared to the
modified homogeneous NoC) after 33% of the required iterations,
and final area reduction of 80%.

5. SUMMARY
A novel design methodology of heterogeneous NoC with different
link capacities and different number of VCs has been presented.
To that end, a heterogeneous NoC router architecture and a proper
area evaluation have been proposed. In order to minimize the NoC
area, an optimization procedure based on modified simulated
annealing has been presented. Furthermore, a novel technique for
an efficient support of end-to-end latency constraints in simulated
annealing has been used in the optimization procedure. Scalability
issues of our optimization method have been discussed and
several techniques have been proposed. Heterogeneous NoC
example which demonstrates a trade-off (and correlation) between
link capacities and a number of VCs has been evaluated. The area
savings achieved by our design have been demonstrated by SoCs
running multimedia benchmarks, and by CMPs running PARSEC
benchmarks. The design progress has been demonstrated for a
synthetic NoC example and for a CMP design.

Figure 9. The CMP NoC designs presented in Figure 10.

6. REFERENCES
[1] http://webee.technion.ac.il/matrics/software.html.

[2] A. Bakhoda, J. Kim, and T. Aamodt. Throughput-effective
on-chip networks for manycore accelerators. In Proceedings
of the 2010 43rd Annual IEEE/ACM International

Symposium on Microarchitecture, pages 421–432. IEEE
Computer Society, 2010.

[3] B. Beckmann and D. Wood. Managing wire delay in large
chip-multiprocessor caches. In Proceedings of the 37th
annual IEEE/ACM International Symposium on

Microarchitecture, pages 319–330. IEEE Computer Society,
2004.

[4] Y. Ben-Itzhak, I. Cidon, and A. Kolodny. Delay analysis of
wormhole based heterogeneous NoC. In Proceedings of the
fifth ACM/IEEE international symposium on Networks-on-

Chip (NOCS 2011), 2011.

[5] Y. Ben-Itzhak, E. Zahavi, I. Cidon, and A. Kolodny.
HNOCS: Modular Open-Source Simulator for
Heterogeneous NoCs. To be published in: SAMOS 2012,:

International Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS XII).
IEEE, 2012.

[6] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar,
S. Stergiou, L. Benini, and G. De Micheli. NoC synthesis
flow for customized domain specific multiprocessor systems-
on-chip. IEEE Transactions on Parallel and Distributed
Systems, 16(2):113–129, 2005.

[7] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th international
conference on Parallel architectures and compilation

techniques, pages 72–81. ACM, 2008.

[8] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNoC:
QoS architecture and design process for network on chip.
Journal of Systems Architecture, 50(2-3):105–128, 2004.

[9] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and
L. Benini. Xpipes: a latency insensitive parameterized
network-on-chip architecture for multiprocessor SoCs. In
Computer Design, 2003. Proceedings. 21st International

Conference on, pages 536–539. IEEE, 2003.

[10] W. Dally and B. Towles. Principles and practices of
interconnection networks. Morgan Kaufmann, 2004.

[11] R. Das, S. Eachempati, A. Mishra, V. Narayanan, and
C. Das. Design and evaluation of a hierarchical on-chip
interconnect for next-generation CMPs. In High
Performance Computer Architecture, 2009. HPCA 2009.

IEEE 15th International Symposium on, pages 175–186.
IEEE.

[12] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, and
A. Kolodny. Network delays and link capacities in
application-specific wormhole NoCs. VLSI Design, 2007.

[13] T. Huang, U. Ogras, and R. Marculescu. Virtual channels
planning for networks-on-chip. In Quality Electronic Design,

2007. ISQED’07. 8th International Symposium on, pages
879–884. IEEE, 2007.

[14] A. Kahng, B. Li, L. Peh, and K. Samadi. Orion 2.0: A fast
and accurate noc power and area model for early-stage
design space exploration. In Design, Automation & Test in

Europe Conference & Exhibition, 2009. DATE’09., pages
423–428. IEEE, 2009.

[15] A. Kahng, B. Lin, K. Samadi, and R. Ramanujam. Trace-
driven optimization of networks-on-chip configurations. In
Design Automation Conference (DAC), 2010 47th

ACM/IEEE, pages 437–442. IEEE, 2010.

[16] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by
simulated annealing. science, 220(4598):671, 1983.

[17] M. Kreutz, C. Marcon, L. Carro, F. Wagner, and A. Susin.
Design space exploration comparing homogeneous and
heterogeneous network-on-chip architectures. In Proceedings
of the 18th annual symposium on Integrated circuits and

system design, pages 190–195. ACM, 2005.

[18] D. Lattard, E. Beigné, F. Clermidy, Y. Durand, R. Lemaire,
P. Vivet, and F. Berens. A reconfigurable baseband platform
based on an asynchronous network-on-chip. Solid-State
Circuits, IEEE Journal of, 43(1):223–235, 2008.

[19] M. Li, Q. Zeng, and W. Jone. DyXY: a proximity
congestion-aware deadlock-free dynamic routing method for
network on chip. In Proceedings of the 43rd annual Design
Automation Conference, pages 849–852. ACM, 2006.

[20] P. Lotfi-Kamran, M. Daneshtalab, C. Lucas, and Z. Navabi.
BARP-a dynamic routing protocol for balanced distribution
of traffic in NoCs. In Proceedings of the conference on
Design, automation and test in Europe, pages 1408–1413.
ACM, 2008.

[21] T. Mak, P. Sedcole, P. Cheung, W. Luk, and K. Lam. A
hybrid analog-digital routing network for NoC dynamic
routing. In Proceedings of the First International Symposium
on Networks-on-Chip, pages 173–182. IEEE Computer
Society, 2007.

[22] A. Mishra, N. Vijaykrishnan, and C. Das. A case for
heterogeneous on-chip interconnects for CMPs. In
Proceeding of the 38th annual international symposium on

Computer architecture, pages 389–400. ACM, 2011.

[23] F. Moraes, N. Calazans, A. Mello, L. Moller, and L. Ost.
HERMES: an infrastructure for low area overhead packet-
switching networks on chip. Integration, the VLSI Journal,
38(1):69–93, 2004.

[24] A. Varga et al. The OMNeT++ discrete event simulation
system. In Proceedings of the European Simulation
Multiconference (ESM’2001), pages 319–324, 2001.

[25] C. Zeferino and A. Susin. SoCIN: a parametric and scalable
network-on-chip. In Integrated Circuits and Systems Design,
2003. SBCCI 2003. Proceedings. 16th Symposium on, pages
169–174. IEEE, 2003.

