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ABSTRACT 
We develop a novel design methodology that optimizes capacity 
of each link in a NoC and the numbers of virtual channels (VCs) 
at each router port for a given set of flows and latency constraints. 
In order to lower computation costs associated with a simulated 
annealing search in the design space, we utilize an approximate 
analysis of the NoC performance thus replacing the need for a 
NoC simulation. Therefore, computation time and resources are 
dramatically reduced. The area saving achieved by our 
heterogeneous NoC design is demonstrated by several use-cases. 
The heterogeneous NoC design process is applied to SoCs 
running multimedia benchmarks, and to Chip-Multi-Processor 
(CMP) running PARSEC benchmark programs. 

Categories and Subject Descriptors 
B.8.2 [Performance and Reliability]: Performance Analysis and 
Design Aids Language  

General Terms 
Algorithms, Performance, Design 

Keywords 
NoC design, Heterogeneous NoC 

1. INTRODUCTION 
SoC and CMP designs use Networks-on-Chip (NoC) to support a 
variety of inter module communications bandwidth and latency 
requirements. The NoC traffic requirements are usually 
heterogeneous, both in terms of module-to-module bandwidth and 
delays. In the case of SoC, there is typically a priory specification 
describing the traffic and timing requirements at design time. In 
CMPs, the traffic requirements depend on particular executed 
software. However, certain parts of the NoC, depending on 
network topology and chip layout, always tend to be heavily 
loaded. Figure 1 presents two well-known examples which 
demonstrate that heterogeneous traffic loads are common: 
uniform traffic pattern over a mesh NoC [10, 22] (Figure 1(a)) and 
CMP with a tiled cache in the middle architecture (which employs 
banked DNUCA connected by a NoC [3]) (Figure 1(b)). These 
two examples exhibit higher loads over NoC routers in the center 
as compared to NoC routers in the periphery.  

The problem of heterogeneous traffic loads is usually solved by a 
load distribution method, such as dynamic routing [19, 21, 20]. 

However, these solutions require additional logic, which 
consumes area and power. Therefore, fixed shortest-path routing 
is typically preferred in order to minimize NoC area and 
communication power dissipation [8, 23, 9, 25, 18]. With simple 
routing schemes, such as dimension-order routing, different links 
in the NoC must carry significantly different data rates and 
number of flows. Hence, heterogeneous NoCs have been proposed 
[13, 15, 12, 22, 2, 17].  

As the traffic requirements are heterogeneous, one should also 
expect that the optimal area/power NoC to support these 
requirements will also be heterogeneous in terms of link 
capacities and a number of virtual channels (VCs) for each 
unidirectional port. The allocation of capacity and the number of 
VCs should be affected by different latency requirements for 
different data flows while considering the sharing of network 
resources by different flows. Furthermore, the use of such 
heterogeneous NoC resources results in fewer restrictions on 
mapping optimizations as compared with homogeneous NoCs, 
where capacities and virtual channels are uniform for all links and 
routers. Hence, our approach facilitates more efficient design.  

This paper explores optimal link capacity and VCs allocation for 
heterogeneous NoCs under end-to-end latency constraints. Some 
of previous works focused on either non-uniform number of VCs 
allocation (with uniform link capacities) [13, 15] or non-uniform 
link capacities allocation (with uniform number of VCs) [12]. 
Others focused on NoCs composed of a small set of predefined 
routers with fixed bandwidth and a number of VCs for all ports 
[22, 2, 17]. We argue that efficient NoC design should consist of 
heterogeneous routers, such that each unidirectional port of each 
router is automatically generated with its own required capacity 
and number of VCs. Unlike [13, 15] which are based on 
heuristics, we use optimization method in order to obtain the 
optimal NoC design.  

 

Figure 1. Heterogeneous traffic loads examples (The link 

thickness corresponds to its load). (a) Uniform traffic pattern; 

(b) CMP with tiled cache in the middle. Both result in higher 

loads at center as compared to periphery of the NoC. 
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Figure 2. Reasoning for using our heterogeneous NoC design 

(The link thickness corresponds to its capacity). (a) Uniform 

approach (Homogeneous NoC); (b) Non-uniform capacity 

approach; (c) Non-uniform VCs approach; (d) Our approach. 

Figure 2(a) presents a simple design example in which three equal 
rate flows are transmitted over a shared link. This design uses 
uniform capacity and a uniform number of VCs for all links. 
Previous works have used two resource allocation strategies to 
achieve better performance. First, the non-uniform link capacities 
approach [12] is presented in Figure 2(b). This approach uses 
three VCs in every link, even though it is required only for the 
shared link. Second, the non-uniform number of VCs approach 
[13, 15] is presented in Figure 2(c). This approach uses high 
capacity for all links, even though it is required only for the 
shared link. Therefore, both of these existing approaches allocate 
excess resources which increase the area and the power 
consumption of the NoC. Our novel heterogeneous NoC design 
methodology allocates non-uniform links capacities as well as a 
non-uniform number of VCs (Figure 2(d)). Therefore, unlike 
previous approaches, the allocation of unnecessary VCs and 
capacity over ports is avoided in the new approach thus saving a 
considerable amount of area and power.  

We substantiate our approach by presenting the correlation 
between link capacities and number of VCs in optimized designs 

(Section  4.1). Hence, one cannot attain optimal NoC design by 

using previous methods separately (e.g., a non-uniform link-
capacities design followed by a non-uniform number of VCs 
design). 

We use a heterogeneous NoC router architecture, which is an 
extension of the XShare NoC router architecture presented in [11]. 
We extended this architecture such that it supports different link 
capacities and different number of VCs for each unidirectional 
port. To the best of our knowledge, this is the first description of 

such heterogeneous NoC routers. Section  2.1 provides the detailed 

architecture of our heterogeneous NoC routes. Since ORION2 

[14] supports only homogeneous NoC routers, we modify it in 
order to evaluate the area of a given heterogeneous NoC router 

(Section  2.2). We also point out the benefits of heterogeneous 

NoC routers (Section  2.3).  

We present an allocation scheme which minimizes the total area 
of VCs and the capacity of links required to meet the end-to-end 
latency constraints of each flow. Our allocation scheme is based 
on simulated annealing, customized to support the use of 
constraints and the optimization of two parameters (i.e. link 
capacities and number of VCs). Furthermore, we use the network 
latencies as constraints rather than using the end-to-end latency 
constraints. Consider the case of an allocation with saturated 
sources such that the corresponding end-to-end latencies are equal 
to infinite. Whenever the optimizer compares two saturated NoC 
allocations, it cannot get useful indication as to which allocation is 
better. Therefore, in order to improve the optimization progress, 
we calculate the network latency constraints based on the given 
end-to-end latency constraints. In this way, the optimizer can also 
get a useful indication even for saturated NoC allocations. More 

details about the design process can be found in section  3.2. 

In order to reduce the computational time and resources, we 
employ an approximate analysis of the NoC delay [4] in the inner 
optimization loop. Usually, the design process heavily relies on 
extensive performance simulations, where each intermediate NoC 
configuration is tested in terms of meeting the requirements in a 
long ‘change and test’ search sequence. The use of detailed 
simulations makes the task of searching for efficient link 
capacities and virtual channels allocation computationally 
intensive and does not scale well with the size of the problem. 
Therefore, the use of costly simulations [5] is left only for the 
final verification and fine-tuning of the system.  

In section 4, we present several heterogeneous NoC designs and 
demonstrate the area savings achieved by it. We present a 

synthetic heterogeneous NoC example in section  4.1. This 

example demonstrates the correlation between link capacities and 
number of VCs and justifies the optimization of both in order to 
achieve an optimal design. It also demonstrates that there is a 
possible trade-off between the total capacity of links and the total 
number of VCs, which actually offers more than one optimal 
heterogeneous NoC design. We apply the heterogeneous NoC 
design methodology to several examples of SoCs running 

multimedia benchmarks in section  4.2 and demonstrate the area 

savings of heterogeneous NoC design compared to homogeneous 
design. Furthermore, we demonstrate that heterogeneous NoC 
design is also justified for Chip-Multi-Processor (CMP) in section 

 4.3, by presenting an optimal design for CMP running PARSEC 

benchmark programs.   

2. HETEROGENEOUS NOC ROUTER 
Heterogeneous NoC consists of routers which support different 
link capacities and different numbers of VCs for each 
unidirectional link. To the best of our knowledge, there is neither 
a detailed implementation of heterogeneous NoC architecture nor 
a method for calculating the area of such routers. Therefore, we 
define a new architecture for heterogeneous NoC routers which is 
an extension of the architecture of XShare NoC router [11] 

(Section  2.1). Furthermore, we present the area evaluation of such 

NoC router which is a modification of ORION2 [14] (Section 

 2.2). We also point out the benefits of heterogeneous NoCs 

(Section  2.3). 



2.1 Architecture of Heterogeneous NoC 

Router  
Our heterogeneous NoC router is an extension of XShare 
architecture [11]. XShare is a homogenous NoC router 
architecture which allows two flits to be concurrently transferred 
over a single channel. Therefore, the size of each flit is at most 
half of the link width. The two flits are combined together and 
sent over the link as a single bigger flit. The input buffer is 
modified in order to divide the incoming combined flit into the 
two original flits. This modification is accomplished by adding 
MUX/DEMUX logic to the input buffer. Next, the in-port arbiter 
chooses which of its VCs can bid for the out-port, according to the 
arbitration policy of the NoC router (e.g., round-robin or winner-
takes-all). Each out-port requires additional logic in order to 
support concurrent transfer of two flits. Each one of the out-port 
arbiters chooses one of the in-ports to be served. Afterwards, the 
out-port combines the two chosen flits into a bigger flit and sends 
it over the outgress link and so on and so forth. 

As opposed to XShare, our NoC router architecture is 
heterogeneous. Therefore, we extend the XShare architecture to 
support non-uniform link capacities and non-uniform number of 
VCs per unidirectional port. Figure 3 depicts the architecture of 
our heterogeneous NoC router. In order to support different 
number of VCs for each unidirectional port, we use Vi:1 in-port 
arbiter for each in-port i (with Vi VCs). All VCs have the same 
number of buffers. In order to support different link capacities, we 
use different link-widths while keeping the NoC router`s 
frequency fixed. The link-width of link o, ��������ℎ	, is 
determined by the number of flits which can be concurrently 
transmitted over the link, �
. 

��������ℎ	 = �	 ∙ ������� (1) 

Therefore, we use no simultaneous out-port arbiters for each 
outgress link o. The concurrent transmitted flits can be either of 
different ingress VCs or of the same VC. It depends on the 
number of VCs over the outgress link o and on the current traffic 
pattern towards the outgress link. The capacity of link o is: 

��������
 = ��������ℎ	 ∙ ��������	 (2) 

According to equations (1) and (2), the capacity granularity of the 
allocation process is determined by the product of the NoC`s 
frequency and the flit size. In order to support the connectivity of 
ingress and outgress ports, the crossbar consists of different 
ingress and outgress link widths. It allows combining flits from 
several ingress ports with low capacity into an outgress port with 
high capacity. Inversely, it also allows concurrent transfer of flits 
from an ingress port with high capacity to several outgress ports 
with low capacity.  

2.2 Area Modeling  
In this section, we discuss our area estimation for the above-
described heterogeneous NoC router architecture. Previous works 
on power and area modeling for NoC routers mainly focused on 
homogeneous NoC routers. In particular, ORION2 [14] only 
supports homogeneous NoC router. Therefore, we modify 
ORION2 to support the area evaluation of the heterogeneous NoC 
architecture presented above. Our starting point is the equations of 
ORION2. Next, we modify them to support different in-port and 
out-port arbiter sizes, and heterogeneous crossbar. Furthermore, 
we add area estimation for the required additional MUX/DEMUX 
logic of the input and the output ports for supporting simultaneous   

 

Figure 3. Our heterogeneous NoC architecture. 

transmission of flits over a link [11].  

Our work targets total NoC area minimization for given source-
destination flows. In general, NoC power consumption is 
proportional to the NoC routers` area and load. Since, the load of 
the NoC routers depends on the given flow pattern, the power 
consumption in our work is mostly correlated to the NoC routers` 
area. Hence, the minimization of NoC area also leads to reduction 
of the NoC power consumption.  

2.3 Benefits of Heterogeneous NoC Router 
Heterogeneous NoC routers require additional MUX/DEMUX 
logic and simultaneous out-port arbiters in order to support a 
variable number of VCs and variable link capacities, respectively 

(Section  2.1). Our area evaluations show that these additional 

logics are almost negligible. The area difference between a 
homogeneous NoC router and the most possibly heterogeneous 
NoC router is only 3.5% given an equal sum of link capacity and a 
total number of VCs. Hence, by using heterogeneous NoC design,  
a given area budget of a NoC router can be utilized in a much 
better way, which results in better performance per area compared 
to homogeneous NoCs. Moreover, the use of heterogeneous 
routers can reduce the total NoC area without violating any 
performance constraints. This is accomplished by avoiding the 
allocation of unnecessary VCs and capacity over certain ports 
which would be allocated in a homogeneous design because of 

performance restriction of other ports. In section  4, we 

demonstrate the area savings which can be achieved by our novel 
heterogeneous NoC design.  

3. DESIGN PROCESS 
Our goal is to minimize the NoC area by an optimal allocation of 
link capacities and a number of VCs for each unidirectional port 



of each router under end-to-end latency constraints of each flow. 
In this work we focus on minimizing the total NoC area, which in 
turn also reduces the NoC power consumption.  

The NoC consists of heterogeneous NoC routers as described in 

section  2.1. The total NoC area (both links and routers) is 

calculated by taking into account the capacity and the number of 

VCs of each unidirectional link (Section  2.2). 

3.1 Optimization Problem Definition  
For given source-destination flows, each flow f with its packet 
generation rate, ����, and its end-to-end latency constraint, 

�� �	!	"#$%&'"$���. We minimize the total NoC area by allocating 
capacity and number of VCs for each unidirectional port. The 
parameters and variables we use are listed in TABLE I. 

TABLE I. PARAMETERS AND VARIABLES DEFINITIONS 

Notation Definition 

�� ����  The end-to-end latency of flow f. 

�� �	!	"#$%&'"$��� 
The end-to-end latency constraint of flow f.  
(The time from the generation of the packet 

until its arrival to the destination). 

�"�$(	%)!	"#$%&'"$���		
The network latency constraint of flow f. 
(The time from the injection of the packet 

into the NoC until its arrival to the 
destination). 

����		 The packet generation rate of flow f. 

 
The definition of the optimization problem is: 

*���+���: -.���	/.�	0���  

��12���	�.:	�� ���� ≤ �� �	!	"#$%&'"$���; ∀� ∈ ��.78 
(3) 

3.2 The Optimization Method  
The design space for allocating link capacities and number of VCs 
for each unidirectional port is extremely large. Therefore, we use 
the simulated annealing algorithm [16], which targets large search 
space and copes with local minima. Moreover, simulated 
annealing algorithm is also suitable for extreme large problem 
instances (e.g. 1000+ tiles). Generally, simulated annealing 
algorithm minimizes a general function without constraints. 
Therefore, we modify the basic algorithm to support the use of 
constraints by updating the current allocation with a new lower 
area allocation only if it meets the end-to-end latency constraints 
of all flows. Furthermore, we minimize the total NoC area by 
allocating both capacity and the number of VCs. Therefore, at 
each iteration we use a candidate allocation generator function. 
This function randomly changes either the capacity or the number 
of VCs of an arbitrary port as long as this change yields a legal 
allocation (i.e. non-negative capacity and positive number of VCs 
for all links). As mentioned above, the capacity is changed 
according to its granularity which depends on the product of the 
NoC`s frequency and the flit size. The number of VCs is changed 
by one at each iteration.  

There are several techniques to support faster convergence for 
large scale NoCs (e.g. 1000+ tiles). One can use progressive 
capacity and number of VCs granularities, such that the 
granularities are relatively high (i.e., high change of 
capacity/number   of   VCs)   at    the    first    iterations    of     the  

 

Figure 4. Rationale for using network latencies constraints 

instead of end-to-end latencies constraints.  

optimization and get lower as the optimization is progressing. 
Moreover, several random unidirectional ports can be changed at 
each iteration. The number of changed ports per iteration is 
getting lower as the optimization progress. By using such 
techniques, the optimization progress would be faster and support 
optimal NoC design even for extreme large problem instances. 

3.3 End-to-End Latency Constraints Support 
The optimization process dramatically slows down when the 
network approaches saturation. Consider the case shown in Figure 
4(a), in which the current resource allocation causes saturation. 
The optimization algorithm compares the infinite end-to-end 
latency of the current NoC allocation to the end-to-end latency of 
a new saturated NoC allocation (by modifying either the capacity 
or the number of VCs of an arbitrary link). Since the network is 
saturated, the optimization most times does not get a useful 
indication as to which allocation is better. However, in contrast to 
the end-to-end latency, the network latency is always finite. In 
particular, network latencies are meaningful even when the 
network is saturated (Figure 4(b)). Hence, the using of network 
latency constraints (instead of end-to-end latency constraints) 
provides meaningful information to the optimization process even 
at saturated network cases. 

To that end, for each flow f, we calculate the required network 
latencies constraints based on the given end-to-end latency 
constraints. We decompose the end-to-end latency constraint into 
the source queuing time and the corresponding network latency 
constraint by solving the following equation: 

9�:�∙$;<=>?@AB?;C=@DE;=�:�F
 GHI9�:�∙$;<=>?@A

B?;C=@DE;=�:�J
+ �"�$(	%)!	"#$%&'"$��� = �� �	!	"#$%&'"$���  (4) 

We approximate the source queuing time by using the queuing 
latency of M/D/1 queue model (the first expression of equation 
(4)) [12]. The service time of the source queue is equal to the 

corresponding network latency constraint, �"�$(	%)!	"#$%&'"$���.   

4. RESULTS 
In this section, we present several heterogeneous NoC designs. In 
particular, we demonstrate the area savings that can be achieved 
by our novel heterogeneous NoC design without violating any 
performance constraints. We assume 45nm process technology 
and evaluate the total NoC area (both links and routers) of a given 

NoC design according to the description in section  2.2.  



We execute the modified simulated annealing algorithm in two 
phases. In the first phase of the optimization process, we use the 
delay analysis methodology for the heterogeneous NoCs 
presented in [4] in order to evaluate the flows` latencies of an 
arbitrary allocation. The usage of the analytical delay model 
dramatically saves run-time and resources during the design 
process. Next, we use the optimized allocation achieved in the 
first phase as an initial allocation for the second phase. In this 
phase, we use HNOCS (Heterogeneous NoC Simulator) in order 
to validate and refine the optimized allocation. HNOCS is an 
OMNeT++ based heterogeneous NoC simulator [24, 1, 5]. It 
supports any heterogeneous NoC configuration in terms of any 
link capacity and any number of VCs. HNOCS executes 
wormhole switching with VCs and deterministic XY routing.   

The following heterogeneous NoCs are designed with capacity 
granularity of one GBps, defined by NoC frequency of 250 MHz 

and flit size of four bytes (Section  2.1). One can round the link 

capacities of the following optimized heterogeneous NoC designs 
in order to support design which uses higher capacity changes.   

4.1 Synthetic Example 
We present a synthetic heterogeneous NoC design example, 
which demonstrates the area savings achieved by heterogeneous 
NoC design. Furthermore, we demonstrate that heterogeneous 
NoC design can offer more than one optimal design, and also the 
correlation between the links` capacities and number of VCs.  

Figure 5 presents a 2x4 NoC with two flows. The packet 
generation rates of the flows are six and eight GBps. We execute 
our heterogeneous NoC design process with end-to-end latency 
constraint of 0.4 µsec for each flow.  

Figure 5(a) presents the minimal homogeneous NoC, which meets 
the flows` end-to-end latency constraints, and its area 
(Considering only active links. The full homogenous NoC area is 
much higher: 83776µm2). The capacity and the number of VCs 
(19 GBps and two VCs) of all links are determined by the link 
from core 1 to core 2, since it is common for both flows.  

The heterogeneous NoC design has two different options, which 
result in almost the same area. In both options, the area is 
approximately 25% less than the area used by the homogeneous 
NoC design (active links only). On one hand, while the first 
option (Figure 5(b)) allocates a single VC, the second option 
(Figure 5(c)) allocates two VCs for the link between core 1 and 2. 
On the other hand, the total capacity allocated by the first option 
is higher compared to the second option. In fact, these two options 
demonstrate a trade-off and correlation between total number of 
VCs and capacity (79GBps and 5VCs versus 77GBps and 6VCs).  

The first option (Figure 5(b)) incurs longer path-acquisition 
latency over the link between core 1 and 2, since it allocates a 
single VC over it. Therefore, in order to meet the end-to-end 
latency constraints, the links should have higher link capacities 
compared to the second option (Figure 5(c)). This is necessary to 
decrease the transfer latency of the flows and compensate for the 
path-acquisition latency. The second option, on the contrary, 
results in instantaneous path-acquisition latency over the link 
between core 1 and 2 (the link has two VCs). Therefore, it allows 
the use of links with lower capacities compared to the first option 
while maintaining the same end-to-end latency constraints.  

4.2 Heterogeneous NoC-Based SoC Design 
In this section, we present a heterogeneous NoC design for SoC. 
We  use  the SoC  applications  presented  in  [6]. We execute  our  

 

Figure 5. Different options for NoC design. (a) Homogeneous 

NoC design; (b) Heterogeneous NoC design (first option); (c) 

Heterogeneous NoC design (second option). Both 

heterogeneous NoC designs offer area savings of 25%.  

heterogeneous NoC design process with end-to-end latency 
constraint of 0.4 µsec for each flow. We manually map the SoC 
application into the NoC, and the results are averaged for several 
mappings. Figure 6 presents a comparison between the total NoC 
area consumed by our heterogeneous NoC design and the total 
NoC area consumed by a homogeneous NoC design.  

 

Figure 6. Area comparison of NoC-based SoC designs for the 

SoC applications presented in [6]. The heterogeneous NoC 

design offers area savings 55% to 70%. 



The heterogeneous NoC design results in area savings of 55% to 
70% compared to homogeneous NoC design. In homogeneous 
NoC design, the capacity and the number of VCs of each 
unidirectional port are determined by the link with the tighter 
constraint. Therefore, unnecessary capacities and VCs resources 
are    allocated   in    homogeneous   NoC   design.    However,   in 
heterogeneous NoC design, the capacity and number of VCs for 
each unidirectional port is allocated according to its own 
constraint. Hence, unnecessary resource allocation is avoided, 
which allows major area (and power consumption) savings.  

4.3  Heterogeneous NoC-Based CMP Design  
In this section, we demonstrate that heterogeneous NoC design is 
also justified for CMPs. We present a heterogeneous NoC design 
for tiled CMP running PARSEC benchmarks [7]. To that end, we 
use HNOCS in the inner loop of the optimization. HNOCS is 
extended   to  provide   functionality  of  core  with  L1 cache,   L2  
shared cache and DRAM controller. Figure 7 presents a 4x4 NoC-
based CMP which consists of these modules. We assume 64KB 
L1 cache and 4MB L2 shared caches, both with 64 bytes cache 
lines and associativity of 64 lines per set. We apply L2 cache 
access traces of the PARSEC benchmarks to this model.  

Since the benchmarks consist of several different phases, we use 
the benchmarks` run-time as constraints for our optimization 
rather than using the end-to-end latencies of each memory 
transaction. The run-time constraint for each benchmark is 
determined by the run-time over a base-line homogeneous NoC, 
which consists of links with capacity of 22 GBps and two VCs. 

First, we design different optimized heterogeneous NoCs for 
different random thread allocation cases of PARSEC benchmarks. 
To that end, we modified the simulated annealing algorithm. For 
each candidate allocation, the optimization evaluates the run-time 
of each benchmark. Next, based on these optimized heterogeneous 
NoCs, we design a general optimized heterogeneous NoC which 
supports the execution of any thread allocation of any benchmark 
over the CMP.  

Figure 7 presents this optimized heterogeneous NoC. It can be 
seen that there are mainly three different types of links. The run-
time is mostly determined by the time to handle a miss read. Thus, 
the links with highest capacity are the links connecting the DRAM 
controllers and the L2 caches. These links (marked in dotted blue) 
have 22 GBps and two VCs. In order to allow fast block 
replacements during miss handles in the L2 caches, the links 
which connect the L2 caches to the DRAM controllers (dashed 
green) have 12 GBps and two VCs. All other links (solid red) 
which connect the cores to the L2 caches, are actually handle 
much lower load. Thus, they have three GBps and a single VC. 
Our optimized heterogeneous NoC area consumes only 20% of 
the homogeneous base-line NoC area.  

4.4 Design Progress and Scalability  
In this section, we discuss about the design progress by presenting 
the NoC area versus the number of iterations of the heterogeneous 
NoC design process. We describe the generation of a modified 
initial homogeneous NoC allocation to the optimization method, 
which decreases the required number of iterations of the design. 
Next, we demonstrate how to achieve scalability by using the 

progressive techniques presented in section  3.2.  

In order to reduce the required iterations of our design method, we 
use a modified homogeneous NoC as our initial allocation for the 
optimization method, such that number of VCs of each 
unidirectional port is equal  to the maximum  number of flows that  

 
 
 

 

Figure 7. The optimized heterogeneous NoC for CMP 

executing any thread allocation of any PARSEC benchmarks 

[7]. Dotted (Blue) links connects DRAM controllers to L2 

caches and have capacity of 22 GBps and two VCs. Dashed 

(Green) links connects L2 caches to DRAM controllers and 

have capacity of 12 GBps and two VCs. All other links (Solid 

red) have three GBps and single VC. 

transmitted over it. For instance, there is only a single flow over 
the ports that connect cores 0 to 1, 2 to 6 and 3 to 7, in the 

synthetic NoC example presented in section  4.1 (Figure 5). 

Therefore, the initial NoC of our optimization method is similar to 
the homogeneous NoC (Figure 5(a)) except that the 
aforementioned ports have a single VC rather than two VCs.  

Figure 8 presents the design progress versus number of iterations 

for the synthetic example (Section  4.1). It can be seen that the 

NoC area is exponentially reduced with the number of iterations. 
We achieve area reduction of 12% by using the modified initial 
homogenous NoC allocation. After only 30 iterations we get area 
reduction of 18% and after 90 iterations we get final area 
reduction of 25%. Hence, we achieve 72% of the total area 
savings (area reduction of 18% out of 25%), after only 33% of the 
required iterations.  

 

Figure 8. The design progress of the synthetic example design 

which presented in section     4.1 by NoC area versus number of 

iterations. Area reductions of 12% by using the modified 

initial homogenous NoC allocation, 18% after 30 iterations, 

and 25% after 90 iterations.  



We demonstrate the scalability of our NoC design by using the 

two progressive techniques presented in section  3.2: progressive 

capacity granularity (start with high capacity steps, which get 
lower with the optimization progress) and progressive number of 
links per iteration (start to change a high number of links per 
iteration, which gets lower with the optimization progress). We 

apply the CMP NoC design method presented in section  4.3, to 

the CMP topologies presented in Figure 9. The CMPs consists of 
four up to 25 tiles. Figure 10 presents the number of required 
iterations needed in order to achieve the optimal CMP NoC design 
for optimization without any progressive technique, with 
progressive capacity granularity technique, and with progressive 
number of links per iteration technique. The progressive 
techniques might require more iterations for small scale NoCs 
(e.g., 3x2 CMP with progressive number of links per iteration 
technique). However, for large scale NoCs, the progressive 
techniques offer significant reduction of the total required 
iterations. Hence, these kinds of techniques allow the design of 
large scale NoCs with a reasonable number of iterations. 

Figure 11 presents the design progress with progressive number of 
links per iteration technique versus number of iterations for the 

heterogeneous NoC-based CMP design presented in section  4.3. 

We present both the area  reduction  and  the number of  changed  

 

Figure 10. The required number of iterations needed to 

achieve optimal CMP NoC design (of the CMPs presented in 

Figure 9), for optimization without progressive technique, 

with progressive capacity granularity technique, and with 

progressive number of links per iteration technique.   

 

Figure 11. The heterogeneous NoC-based 4x4 CMP design 

(presented in section     4.3) using progressive number of links per 

iteration technique. NoC area and number of chanaged links 

per iteration versus number of iterations. 

links versus number of iterations. The heterogeneous NoC-based 
CMP design achieves area reduction of 60% (compared to the 
modified homogeneous NoC) after 33% of the required iterations, 
and final area reduction of 80%.   

5. SUMMARY 
A novel design methodology of heterogeneous NoC with different 
link capacities and different number of VCs has been presented. 
To that end, a heterogeneous NoC router architecture and a proper 
area evaluation have been proposed. In order to minimize the NoC 
area, an optimization procedure based on modified simulated 
annealing has been presented. Furthermore, a novel technique for 
an efficient support of end-to-end latency constraints in simulated 
annealing has been used in the optimization procedure. Scalability 
issues of our optimization method have been discussed and 
several techniques have been proposed. Heterogeneous NoC 
example which demonstrates a trade-off (and correlation) between 
link capacities and a number of VCs has been evaluated. The area 
savings achieved by our design have been demonstrated by SoCs 
running multimedia benchmarks, and by CMPs running PARSEC 
benchmarks. The design progress has been demonstrated for a 
synthetic NoC example and for a CMP design.   

 

Figure 9. The CMP NoC designs presented in Figure 10.   
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