
Author's Accepted Manuscript

Timing-constrained Power Minimization in
VLSI Circuits by Simultaneous Multilayer Wire
Spacing

Konstantin Moiseev, Shmuel Wimer, Avinoam
Kolodny

PII: S0167-9260(14)00016-9
DOI: http://dx.doi.org/10.1016/j.vlsi.2014.03.002
Reference: VLSI1060

To appear in: INTEGRATION, the VLSI journal

Cite this article as: Konstantin Moiseev, Shmuel Wimer, Avinoam Kolodny,
Timing-constrained Power Minimization in VLSI Circuits by Simultaneous
Multilayer Wire Spacing, INTEGRATION, the VLSI journal, http://dx.doi.org/
10.1016/j.vlsi.2014.03.002

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/vlsi

http://dx.doi.org/10.1016/j.vlsi.2014.03.002
http://dx.doi.org/10.1016/j.vlsi.2014.03.002
http://dx.doi.org/10.1016/j.vlsi.2014.03.002
http://dx.doi.org/10.1016/j.vlsi.2014.03.002
http://dx.doi.org/10.1016/j.vlsi.2014.03.002
http://dx.doi.org/10.1016/j.vlsi.2014.03.002
http://dx.doi.org/10.1016/j.vlsi.2014.03.002

1

Timing-constrained Power Minimization in VLSI Circuits by Simultaneous Multilayer Wire
Spacing

Konstantin Moiseeva*, Shmuel Wimerb, Avinoam Kolodnyc
aIntel Israel (74) Ltd., Technology and Manufacturing Group, Haifa 31015, Israel
bBar-Ilan University, Engineering Faculty, Ramat-Gan 52900, Israel and with Technion,
Electrical Engineering Faculty, Haifa 32000, Israel
cTechnion, Electrical Engineering Faculty, Haifa 32000, Israel
*Corresponding author. Tel.: +972 4865 1537.
Email: kostya.moiseev@gmail.com

Email: konstantin.moiseev@intel.com

Abstract

Reduction of interconnect delay and interconnect power has become a primary design challenge in recent CMOS
technology generations. Spacing between wires can be modified so that line-to-line capacitances will be optimized
for minimal power under timing constraints. In this paper, we present a novel algorithm for simultaneous
multilayer interconnect spacing that minimizes the total dynamic power dissipation caused by an interconnect,
while maximum delay constraints are satisfied. A multi-dimensional visibility graph is used to represent the
problem, and a layout partitioning technique is applied to solve the problem efficiently. The algorithm was
evaluated on an industrial microprocessor designed using the 32 nanometer technology, and it achieved a 5-12%
reduction in interconnect switching power.

Highlights

• Multi-layer interconnect power optimization under timing constraints is described.

• Related global optimization problem is formulated.

• An algorithm for solving optimization problem is described and implemented.

• A mathematical relation to similar optimization problems is developed.

• 5–12% dynamic interconnect power reduction on industrial cases is demonstrated.

Keywords

Interconnect sizing and spacing, power-delay optimization, constrained optimization

2

I. Introduction

Minimization of power dissipation has become a primary design challenge due to a combination of
technology scaling, the prevalence of mobile battery-operated electronic products, and growing
awareness of environmental heating. To develop power-efficient VLSI products, the power
optimization is applied at all design stages, starting from the architecture through the circuit
implementation and down to the layout design. Meanwhile, the circuit performance remains an
important design objective, so that the power optimization must not ignore the timing requirements
imposed on the circuits. Any power optimization must therefore be timing-constrained.

One of the largest contributions to power dissipation in CMOS VLSI processors is incurred by the
charging and discharging of the interconnect capacitances [3]. The relative contribution of the line-to-
line capacitances within the same metal layer grows with the technology progression due to the
nonuniform scaling [7], as the aspect ratio between the wire thickness and the width continuously
increases. Consequently, the cross-coupling capacitances between the adjacent wires that reside on the
same metal layer have a major effect on both the circuit timing and the power. The high-level metal
layers in the interconnect stack are the most important contributors to this capacitance.

The cross-coupling capacitances can be decreased and, therefore, the switching power can be
reduced by increasing the inter-wire spaces as long as the timing constraints are not violated and the
chip area is not increased, which is the goal of this paper. We claim that the inter-wire spacing has
become an important resource in the physical design: the large spaces should be allocated to those
wires that are more likely to switch rather than to wires that are typically inactive. Our technique is
designated for use in the late pre-tapeout design stages. We therefore assume that the interconnects
have been routed (manually or automatically), and their relative locations are not subject to change
(i.e., the layout topology is unchanged). The wire widths are assumed to have been set to satisfy the
signal delay and the other design goals such as reliability, and the shield wires have been employed to
eliminate the crosstalk noise on the sensitive nodes. Hence, our only purpose is to modify the wire-to-
wire capacitance densities across the whole layout so that the DFM rules and design timing constraints
are not violated. Figure 1 illustrates a layout before and after optimization. The inter-wire space is
reallocated according to the wire switching activity. The wires with higher switching activity are
allocated the larger spaces, while the wires with lower activities are allocated the smaller spaces.
Notwithstanding, the space reallocation must not violate the wire delay constraints. To preserve the
layout connectivity, the orthogonal wires located on the neighboring layers are shortened or prolonged
accordingly so that the vias can be landed safely. The creation of new jogs is avoided by using the
technique described in Section IV. Some design rule violations may still appear in the resulting layout.
The design rule violations are fixed manually at a later stage of the design.

Layout optimization by wire spacing has been discussed in the literature for yield improvement [4],
cross-coupling noise reduction [5, 6], timing optimization [8, 9, 10, 11, 33], power optimization [12],
and a combination of timing and power [1]. The authors of [6] employed a net-by-net heuristic for
crosstalk noise reduction, which may change the layout topology and yield non-optimal results. In [12],
the switching power of the wires bundled in a bus was heuristically optimized. In [5], all the wires in a
layer were simultaneously spaced for delay optimization, but the power was ignored because the power
was not a primary concern at that time. Net-by-net optimization is applicable for timing but less suited
for power because the interconnect power is accumulated from all of the wires, while timing
optimization concerns only the most critical wire delays. In [1], a combined power-delay optimization
was simultaneously performed for many wires using a Weighted Power-Delay Sum (WPDS). This
method still suffers from a major drawback: Although the method allows a tradeoff between the power
and the delay by setting their relative weights appropriately, the method does not guarantee the
satisfaction of the timing constraints. Displacement of a wire might violate the max delay constraint of
its neighbor. To circumvent these cases, such wires in [1] were not allowed to move at the expense of
some power reduction potential. The wire fixing is too conservative in many cases. Some relaxation
could still reduce the power without violating the max delay constraints. This paper takes full

3

advantage of such relaxation, where the wires are allowed to be displaced as far as permitted by the
timing constraints.

Another limitation in the previous work is that either they aim to optimize a single net with all of its
interconnecting wires residing on the various layers, or their scope is limited to simultaneous
optimization of all of the wires residing on same layer. Those solutions were iteratively employed net-
by-net or layer-by-layer, which yielded sub-optimal solutions. All of these studies rely on the convexity
of the delay and the power. However, working net by net does not guarantee that the global minimum
will be reached, as stated in [28]. The illustrative example shown in Figure 2 demonstrates that in the
presence of constraints (solid curve), the one-wire-at-a-time downhill approach does not always
converge to the global minimum. The optimization path (the staircase line) can leave the region
dominated by the global optimum *P (dashed in the picture); to reach the optimum point from the
feasible region boundary, locally non-optimal moves are required (the dashed arrow). In this paper, we
show that the multi-layer multi-net power minimization problem under the delay constraints is convex,
and we propose an optimization algorithm that considers all the nets and layers simultaneously,
guaranteeing an optimal solution.

The rest of this paper is organized as follows. In the next section, we present the layout model and
define the power-delay optimization problem. In section III, we solve the problem and present an
implementation of the algorithm. Practical considerations of the power-delay optimization are
discussed in Sections IV and V. Examples and experimental results are shown in Section VI. Section
VII concludes the paper. The relationship between our method and the WPDS optimization of [1] is
discussed in the Appendix.

II. INTERCONNECT MODELING AND PROBLEM DEFINITION

The following notation is used for describing the problem:

N - Total number of routed nets

L - Total number of metal layers

lN - Total number of wires residing at layer l

lA - Width of total routing area at layer l

iσ - The ith net

iQ - Total number of effective loads (pins) of the ith net

iW - Total number of wire segments belonging to the ith net

l
iI - The ith wire residing on layer l

1

N

i
i

M Q
=

=∑ - Total number of effective loads (pins)

l
ijd - Length of the common span of wires i and j residing on layer l where they are visible to each

other.

l
ijs -Spacing between wires i and j residing on layer l

4

The high-metal layers in modern VLSI circuits (e.g., metal 5 and above) are used for long distance
interconnect routing, typically spanning distances from hundreds to thousands of microns across the
chip. A schematic example of this type of interconnect is shown in Figure 3, where all the wire
segments are numbered.

Because the signal connect devices lie underneath the stack of metal layers, a small portion of the
routing takes place on the lower metal layers (e.g., metal 1 up to metal 4) that are not considered in this
work due to their minor impact. Still, the models of the effective driver and the effective receiver load
consider the local routing, so that the resistance of these wires is included in the driver model, and their
capacitance is included in the load model. In the following text, we assume that all layout changes are
performed on the global metal layers, with no effect on the interconnects or the cells in the low metal
layers, so that their contributions to the total power and delay remain unchanged.

Let nets 1, Nσ σ be given. Each net is assigned an activity factor iα , quantifying the amount of the

signal switching relative to the clock signal. This factor can range from 0iα = if the signal never

switches (e.g., the shields or the power delivery wires) to 1iα = if the switch toggles twice in every
cycle (e.g., clocks). The signal activity factors used in this paper have been obtained by an industrial
power simulator that calculates its average activity based on different scenarios [13, 14], so that the
power calculations reflect the realistic operation of the circuit.

The multilayer structure of global interconnects can be represented as a collection of planes, each of
which includes all wire segments routed on the corresponding metal layer l , 1 l L≤ ≤ . Routing areas

lA within each layer are bounded by a fixed grid of the power supply wires. These wires serve as
“walls” of the routing area, as shown in Figure 4.

In modern VLSI technologies, the routing layers contain the wires that are either vertical or
horizontal with only a few, usually very small, jogs. The influence of the jogs on the power and the
delay is negligible, and we therefore ignore the jogs in the analysis.

The multilayer interconnect structures shown in Figures 3 and 4 are represented by a multilayer
visibility graph (,)G V E as follows. For each wire l

iI we associate a vertex l
iv V∈ . The vertices 0

lv
and 1l

l
Nv + correspond to the “wall” wires in the layer l . There are two types of edges in the graph. Two

vertices l
iv and l

ju that correspond to wires l
iI and l

jI , which are visible to each other, define a

visibility edge. Two vertices, 1l
iv and 2l

ju , with 1 2l l≠ and that are physically connected to each other

define a connectivity edge. A similar visibility graph structure is described in [34] in the context of a
layout migration. An example of a multilayer visibility graph is shown in Figure 5. The relative
locations of wires are maintained using the visibility graph. Because wires in both the vertical and
horizontal directions can move simultaneously, the visibility relationships between the wires may
change because, as the spaces between wires residing on some layer change, the wires residing in the
neighboring layers are stretched or contracted. However, these changes are usually very small in
comparison to the wire lengths, so corresponding changes in the cross coupling capacitances, the
ground capacitances and the resistances can be neglected.

Different models exist for the cross-coupling capacitance between two adjacent wires [2, 15, 16].

The coupling capacitance per unit length ()l
ijg s

between the adjacent wires monotonically decreases

with l
ijs . The nominal line-to-line capacitance associated with l

iI and l
jI is

()l l l
ij ij ijc d g sκ= ⋅

.
 (2)

The only assumption made about g is that it is a convex function, which conforms with the

commonly used model () ()1l l
ij ijg s s

γ
= , where 1γ ≥ . If wires l

iI and l
jI are not visible to each

5

other, then 0l
ijd = and the cross capacitance is negligible. We also set 0l

ijd = for the case where l
iI

and l
jI

belong to the same net.

The cross coupling capacitance between two neighbors also depends on their mutual switching
activity [17, 18], known as the Miller Coupling Factor (MCF). Their simultaneous switching in
opposite directions consumes four times the power consumed by a single logical transition of one of
the wires. Simultaneous switching in the same direction consumes no power. The average factor per
wire is therefore 1 (averaging 4/2, 1 and 0). Assuming equal probability for those switching patterns, it
is legitimate to assume MCF=1 when considering the cross coupling capacitance contribution to the
switching power.

Under this assumption, the power contributed by each cross capacitance is proportional to the
product of its nominal value by the sum of the activity factors of neighbor wires. Therefore, the
contribution of each cross capacitance to the total power can be divided between two neighboring
wires, as shown below.

The dynamic power corresponding to wire l
iI is expressed by:

()2

2 2

a ll
i i dd i i

a ll self cross
i i dd i i dd

P V f C C

C V f C V f P P

α

α α

= + =

= + = +
, (3)

where iα is the activity factor of the net to which l
iI belongs, ddV is the voltage swing, and f is the

clock frequency. a
iC is the total wire self capacitance contributed by the capacitors formed between l

iI
and the layers above and below. ll

iC is the total effective cross-capacitance formed by l
iI and its visible

wires. The corresponding power portions are denoted selfP and crossP 1. We assume that the widths of
the wires are not subject to change in the spacing optimization. Adding wire widths as optimization
variables could further reduce the power at the expense of complicating the solution. In full-custom
design practice, wire widths are set very early in the design flow according to the signal propagation
delay specifications and are not changed in the late stages where spacing optimization is applied. We
also assume that, although below and above layers are not ground planes, their influence on the cross
capacitance changes is negligible on average because the wires on these layers are perpendicular to
those in the layer of interest. Thus, both selfP and crossP are used in the total power calculations, but
only crossP in (3) is of interest for the power minimization by the wire spacing. The same holds for
delay calculations, which are shown below.

It follows from (2) that the power contributed by the cross-capacitances of l
iI is:

()
1,

'
lN

crossl l l
i i ij ij

j j i
P k d g sα

= ≠

= ∑ (4)

where the coefficient 'k incorporates the supply voltage, the clock frequency and the technology-
dependent constants. The total power contributed by all of the wires routed on all of the metal layers is
then expressed by:

() ()
1

1 1 1
'

l lN NL
cross l l

ij i j ij
l i j i

P k d g sα α
−

= = = +

= +∑∑ ∑ (5)

Cross coupling capacitance affects delay as well. A net is represented as a rooted interconnect tree,
as illustrated in Figure 6. The interconnect tree comprises three types of wire segments: a wire

1 Instead of breakdown to self and cross capacitance, it is possible to consider a single total capacitance as a function of spaces

to neighbors.

6

connected to the near-end driver at the root, wires connected to the receiving gates at the far-end
leaves, and wires corresponding to the internal nodes of the tree. Denote by pW the number of wire

segments of net pσ . Let pQ of those, denoted by kIrcv , be connected at the far end, and let el
kC ,

1 pk Q≤ ≤ , be their corresponding effective loads. Idrv is connected to the driver, and the rest are

internal wires kIint , 1 1p pk W Q≤ ≤ − − . For the sake of the calculations, the wire segments are

divided into smaller pieces with homogeneous adjacencies on their two sides. The visibility between
the same two wires may define several capacitors in the case where the common span of the two wires
experiences interference from small wire segments between them. We denote by ,i j kC − the k − th

capacitance between iI and jI . For example, on the left side of Figure 7, wire segment 9 is divided

into four parts, forming five cross coupling capacitances: one with segment 11 denoted 9 11C − , two

with segment 8 denoted 9 8,1C − and 9 8.2C − , and two 9 10,1C − and 9 10,2C − with segment 10. Each wire

segment or part of a segment is modeled as a π -load. The decoupled line-to-line capacitance is
counted along with the self-capacitance of the segment. The right side of Figure 7 illustrates the
modeling of the driver-receiver path for a single net, comprising segments 2, 9, and 6.

We use the Elmore delay estimation to calculate net delays. Although it is not accurate, its high
fidelity property has previously been shown to allow its use in optimization algorithms [30 , 31]. By
Elmore’s model, the delay of an interconnect path is a convex function of the spaces to visible wires
along its traversal from driver to receiver, given by the linear sum of the RC delays occurring along the
driver to receiver path.

The Elmore delay expression depends on the various spaces to the visible wires. Let s denote the

vector of the involved spaces. The delay from the driver to the receiver el
kC is expressed by:

()kT h= s , (6)

where h is a convex function in each one of the spaces. In the above discussion, we disregarded via
resistances. Including via resistances in the Elmore delay formula does not change the functional form
of the delay dependence on the cross-capacitance. Therefore, via resistances are neglected for the sake
of expression simplicity.

The delay expression also holds for the more accurate models, such as those proposed in [15]. We
experimented with those models and found that the convexity assumption does hold. Only the
convexity of ()h s is required for the proposed algorithm to work. While MCF=1 is used for power,

MCF=2 is used for delay calculations, representing the worst-case coupling scenario. Modern timing
analysis tools are able to calculate the individual MCF for each net. The technique presented is general
and allows the definition of an individual MCF for each net segment. The uniform MCF factor of 2 is
used for simplicity and also because this factor represents the worst-case coupling. Thus, the convex
function in (6) already includes this factor. Finding the spaces ijs that minimize the total power in (5) is

subject to a number of constraints, listed below.

First, DFM rules impose limits on the allowed distance between two wires. Thus, each space ijs
should satisfy a minimum spacing rule associated with every layer,

min
l l
ijs s≥ . (7)

Second, the circuit timing requirements should not be violated. If jD is the required signal arrival

time at the receiver j ,1 j M≤ ≤ , then

j jT D≤ , (8)

7

Third, the wire position cannot exceed the location of the fixed wall boundaries. Let us denote by

lΩ the set of all paths in the visibility graph between the vertices corresponding to the wall wires at

layer l consisting of visibility edges only—without the loss of generality, paths of the vertically routed
layers extending between the source and the target vertices corresponding to the left and right walls,
respectively. Similarly, the paths of the horizontally routed layers extend between the source and the

target vertices corresponding to the bottom and top walls, respectively). Let ()1 2 3 4
, , , ,...i i i iw s w sω =

be a path of alternating widths and spaces corresponding to a path in G . Then:

, , 1
i
j

i j l
w
s

w s A l L
ω
ω

ω
∈
∈

+ ≤ ∀ ∈Ω ∀ ≤ ≤∑ , (9)

The set of constraints (9) is impractical because of the very large size, resolved by introducing new
variables. Let us denote by l

ix the coordinates of the centerlines of wires l
iI . The relationship between

variables l
ix and l

ijs is expressed by

 () 2l l l l l
ij j i i js x x w w= − − + (10)

Taking into account that the wall wire coordinates are 0 0lx = and 1l

l
N lx A+ = and their widths are

zero, the constraints (7) can be rewritten as:

() min2 ,

 1 , 0 , 1 0

l l l l l
j i i j

l ij

x x w w s

l L i j N d

− − + ≥

∀ ≤ ≤ ≤ ≤ + ∧ >
 (11)

Equation (11) also contains boundary constraints. Indeed, summing the constraints (11) on some
path lω∈Ω , we obtain min

l
i

l l
l i

w

A w s
ω

ω
∈

− ≥ ⋅∑ , which is always true if the problem is feasible.

Using (5), (8) and (11), the optimization problem can be formulated as follows:

() min

minimize

s.t.
, 1

2 , 1 , 0 , 1 0

i

cross

x

j j

l l l l l
j i i j l ij

PODC (Power Optimization under Delay Constraints)

P

T D j M

x x w w s l L i j N d

≤ ≤ ≤

− − + ≥ ∀ ≤ ≤ ≤ ≤ + ∧ >

Program

Program PODC is closely related to the Weighted Power Delay Sum (WPDS) optimization problem
 [1, 25]:

()

1

min

minimize

s.t.

2 , 1 , 0 , 1 0

i

M
cross

i ix i

l l l l l
j i i j l ij

WPDS

P kT

x x w w s l L i j N d

=

+

− − + ≥ ∀ ≤ ≤ ≤ ≤ + ∧ >

∑

Program

In both PODC and WPDS, the delays iT are calculated according to the Elmore delay model presented

earlier. The coefficients ik are non-negative numbers representing delay criticalities. , 1ik i M≤ ≤ are

8

set in advance. The WPDS optimizes the power contributed by cross-capacitances, weighted by the net
delays. While the PODC can be used for design tuning when the exact delay constraints for each net
are known, WPDS can be useful in the early design stage when specific delay requirements are not yet
available.

The relationship between the PODC and the WPDS is discussed in the Appendix. The following
sections are dedicated to solving the PODC problem.

III. ALGORITHM FOR SOLUTION OF THE OPTIMAL SPACING PROBLEM
Theorem. Program PODC is convex.

Proof. Both the objective function and the delay inequality constraints are convex in ijs by their

definitions. The transformation in (10) is linear; therefore, the transformation preserves convexity [20].
The location constraints are linear in x and are thus convex. Consequently, the optimization problem
is convex.

The convexity of the PODC allows us to apply Newton's method directly, provided that a step of the
cost reduction does not fall out of the feasibility region. To ensure that a step of the cost reduction does
not fall out of the feasibility region, we use the interior-point method [20, 27]. For our optimization
problem, we introduce an additional variable 0η > and form the following log-barrier function:

() ()

()

min
 1
0 , 1,

1

; log 2

log

l

l l l l l
j i i j

l L
i j N i j

j j
j M

LB x x w w s

D T

η η

η

≤ ≤
≤ ≤ + ≠

≤ ≤

 = − − − + − −

−

∑

∑

x (12)

To apply the log-barrier approach, assume that the initial design is at a feasible point. Such a point
always exists because usually the design process is iterative so that at the end of each iteration, all
timing constraints are satisfied.

The domain of function (12) is the set of points that satisfy the inequality constraints of the PODC
strictly. The logarithmic barrier grows without bound if any of the inequality constraints approaches
equality. The new objective function is obtained by

() () ()' ; ;cross crossP P LBη η= +x x x (13)

and the new optimization problem becomes the following unconstrained program:

{ ()

()

1
0 , 1,

m in
1

m in log 2

log

l

cross l l l l
j i i j

l L
i j N i j

l
j j

j M

P O D C - L B

P x x w w

s D T

η
≤ ≤
≤ ≤ + ≠

≤ ≤

 − − − +

 − + −

∑

∑

P rogra m

The PODC-LB program is only an approximation of the PODC program, and its quality improves as
the parameter η decreases [20]. Denote by *()ηx the solution of PODC –LB for a givenη . One can

show that *()ηx converges to solution *x of the PODC problem as 0η → [20]. The solution of the
PODC is obtained by solving a sequence of PODC-LB problems with decreasing values of η (in every

9

iteration η is multiplied by some 0 1τ< <). Each iteration starts at the solution of the problem for the
previous value of η . Figure 8 shows the pseudocode of the procedure.

PODC-LB is an unconstrained convex optimization problem, solved by Newton's method as follows.
Given the initial feasible point x , a direction of a step is calculated by

2 1'() '()cross cross
N P P−∆ = −∇ ⋅∇x x x . The location is obtained by Δ Nt= + ⋅x x x , where t is a

step size calculated for every iteration by line search along direction∆x . Although Newton’s method
is known for its fast convergence, the calculation and storage of the Hessian 2 '()crossP∇ x and its
inverse is not always possible for real cases involving thousands of variables. Even if the Hessian of
the original functions 2 ()crossP∇ x is sparse, the log-barrier operation usually causes the Hessian to be
dense, which makes the calculation of its inverse impossible. Therefore, we use the L-BFGS quasi-
Newton method [21] that has, on the one hand, a super-linear rate of convergence and on the other
hand, does not require the calculation of the full Hessian inverse. According to this method, the inverse
of the original Hessian matrix is replaced by the inverse of the Hessian approximation matrix, which is
recalculated in every iteration based on its value from the previous iteration. Denoting the gradient
change 1'() '()cross cross

k kP P+∇ −∇x x by ∆g and the variable vector change 1k k+ −x x by ∆x , the

inverse of the Hessian approximation matrix in the 1k + − iteration is calculated by

1

T T T

k kT T T+

 ∆ ⋅∆ ∆ ⋅∆ ∆ ⋅∆
= − − + ∆ ∆ ∆ ∆ ∆ ∆

x g g x x xH I H I
g x g x g x

 (14)

Notice that the calculation of 1k+H involves only scalar products of vectors or matrices by vector

multiplications. The value of 0H is chosen to be as close as possible to the original Hessian inverse.
The choice of

0

T

T

∆ ∆
=
∆ ∆

g xH I
x x

 (15)

is reported to be the most successful in practice [22] and is therefore used in our implementation.

The storage required for kH may still be expensive for real design cases. Instead of storing the full

matrix kH , we save only a few pairs of { };∆ ∆x g from the most recent iterations. These pairs are

used to construct the inverse Hessian approximation. The curvature information from earlier iterations
that is less relevant to the Hessian behavior in the current iteration is discarded. The optimization
procedure based on this method is processed as follows. At each iteration, the initial matrix 0

kH is first

calculated by (15) based on the most recent values of ∆x and ∆g . Then, the product of the inverse

Hessian approximation by the gradient vector '()cross
k kP∇H x is calculated from 0

kH by a recursive

procedure using pairs of { };∆ ∆x g stored for the last m iterations. Now, the new location is calculated

by 1 '()cross
k k k kt P+ = − ⋅ ∇x x H x . Finally, new values of 1k+∆x and 1k+∆g are calculated and

replace the least recent pair { }1 1,k m k m− + − +∆ ∆x g . The algorithm for solving the PODC-LB is shown

in Figure 9.

To evaluate the memory and run-time complexity, let us denote by ,maxlN the maximum number of

wire segments routed at one routing layer. Because each layer of the visibility graph is a planar graph,
the number of location constraints (equal to number of spaces) sN can be bounded by ,max3 6lN − ,

according to the Euler-Poincaré characteristic. Thus, the total number of location constraints is

10

bounded by (),max ,max ,max3 6 ()l l lLN L N O LN= − = . The total number of delay constraints is

bounded by the number of output pins, which is equal to the number of wire segments in the worst case

and, therefore, also (),maxlO LN . The L-BFGS method requires storing only m pairs of { };∆ ∆x g ,

as well as the visibility graph and coefficients for the objective function and the constraints calculation,

which altogether sums to (),maxlO mLN . The run-time complexity depends on the number of internal

and external iterations and on the complexity of a single L-BGFS iteration. The latter is dominated by
step 5 in Figure 9. It is shown in [22] that step 5 can be performed with

(),max ,max ,max4 l l lmLN LN O mLN+ = multiplications. Assume that the number of iterations of the

L-BFGS algorithm (i.e., internal iterations) is intN . There is no closed form expression for intN .

However, L-BFGS has a super-linear rate of convergence, meaning that if intN is the number of

iterations and ε is the required accuracy, then ()int
int 1NN O ε= . Thus, the L-BFGS method requires

a much smaller number of iterations than the gradient descent method but is slower than the Newton

method. The desired accuracy of the log-barrier method is achieved after
()

()
,maxlog

log 1
l initialLN εη

τ

iterations [20]. Thus, the run-time complexity of the algorithm is

()
(),max int

log
log 1

l initial
l

LN
O mLN N

εη
τ

, meaning that the algorithm storage is linear in the total

number of wire segments, and the run-time has an (log)O n n order of growth in the total number of
wire segments. The latter, however, is greatly affected by coefficient values, such as the required
accuracyε , the initial value of the log-barrier term multiplier initialη , its updateτ and the number of
vector pairs stored by L-BFGS algorithm m .

IV. PRACTICAL CONSIDERATIONS
In real designs, there are always special nets (such as clock network nets) that are not likely to be

moved. Other wires may be required to stay “frozen” for a variety of reasons (noise, delay, slope, etc.).
Others may be required to keep a predefined distance from their neighbors. The formulation of the
PODC as a convex optimization problem with constraints is very convenient for such practical cases.
All such cases can be handled by defining additional constraints on the wires. For example, if wire iI
must have a fixed location iX , then this limitation can be handled by defining two additional

constraints: 0i ix X− ≤ and 0i ix X− + ≤ , both of which are convex and can be incorporated in the
log-barrier function. Another example is the avoidance of jogs, i.e., when two wires should be kept
with a constant distance between them (in particular, zero). Jogs complicate the layout and introduce
extra delay and extra power that should be taken into account. Consider the layout in Figure 12(a). The
wire segments 1 and 3, as well as segments 4 and 5, represent pairs of segments of the same physical
wires. Because each wire segment is treated independently, the optimization can end with the segments
shifted relative to each other, which will result in adding jogs and the complication of the layout. To
avoid the jogs, such pairs of wires might be required to be treated as a single wire by the algorithm,
achieved by adding four linear constraints: 4 5 0x x− ≤ , 5 4 0x x− ≤ , 1 3 0x x− ≤ , 3 1 0x x− ≤ . In
general, any condition that is convex in the optimization variables (i.e., the wire coordinates) can easily
be handled by the algorithm.

11

V. LAYOUT SEPARATION
The optimization method described in the previous sections can be applied to a clip of the layout

bounded at all metal layers by fixed-position wires that are not allowed to move (“walls”), as shown in
Figure 4. The full layout of the VLSI circuit can consist of several such clips. The power grids or other
wires fixed in their place can serve as such wall wires. Each one of the clips can be optimized
independently, thus decreasing the number of optimization variables and constraints that must be
handled simultaneously. In the following text, we describe how such natural separation is found and
used in the optimization process.

We call two nets visible if they have visible wires on some of the routing layers. We build a net
visibility graph by assigning a vertex to each net and assigning an edge between each pair of nets so
that the nets are visible to each other. According to this definition, the layout of Figure 3 is represented
by a fully connected graph with three vertices and three edges because there are visible wire segments
between any two nets.

Denote by active vertex the vertex representing a net with at least one movable wire. An inactive
vertex is a vertex representing a net where all of its wires are fixed. Inactive vertices may represent
power grid nets, shield nets or nets that were selected by design engineers to remain in fixed positions.
Inactive vertices can form separation groups with respect to groups of active nets. For example, in
Figure 10 the inactive vertices (shown by the dashed boundary) separate the whole graph into three
groups of active vertices (shown by a solid boundary). Each one of the groups can be optimized
independently and does not affect the optimization accuracy of the other groups. The partitioning into
groups can easily be achieved by a Union-Find algorithm [23]. Assume that there are N active
vertices in the graph. Then, Algorithm 3 (Figure 11) finds independent groups as follows. First, the
individual group iG is assigned for each active vertex1 i N≤ ≤ . Then, vertices corresponding to the

visible nets are merged into single group. At the end of the algorithm, the remaining groups iG will
hold separated groups of vertices.

The layout separation can significantly improve the total algorithm runtime by optimizing the
separated parts in parallel. The natural separation formed by the power grid lines and other obstacles
might not be uniform to allow reasonable runtime gain; therefore, artificial separation might be needed,
where a minimal separating set of active nets is found and used for the separation of the rest of the
active nodes. An efficient algorithm for such a vertex separation is described in [24]. Our experiments
show that natural separation usually results in one very large group, including approximately 90% of
the segments and several small groups containing the other 10% of the segments. Such separation
cannot significantly improve run-time, so artificial separation was needed. Applying the algorithm
from [24], we succeeded in finding better partitions that resulted in three groups of ~30%, ~30% and
40% of the segments. Thus, theoretically, the performance could be improved ~3X.

VI. EXAMPLES AND EXPERIMENTAL RESULTS
Algorithms 1, 2 and 3 were implemented in C++ and tested on a Pentium M 1.7 GHz processor

system with 768 MB of memory. We first demonstrate the operation on the small example layout
depicted in Figure 12. The layout consists of two nets including 9 wire segments (all segments are
numbered) as shown in Figure 12(a). The dotted net has a driver at one end of wire 1 and receivers tied
at the ends of wires 2, 4 and 6; the plaid-patterned net has a driver at the end of wire 9 and a receiver
tied at the end of wire 7. The drivers are shown schematically, and in reality the drivers may be located
far from the end points of the global interconnects. The corresponding layouts of the individual layers
are shown in Figure 12 (b) and (c), and the multi-layer visibility graph is shown in Figure 12(d), where
dotted edges designate connectivity relationships, and visibility relationships are shown by solid edges.
The activity factors are 0.1 for the net with segments 1, 2, 3, 4, 5, 6 and 1 for the net with segments 7, 8
and 9. We performed two tests with this layout. These tests exemplify the difference between the
optimization with and without delay constrains and show how delay awareness affects the optimization
results. First, the required arrival times at receivers 2, 4, 6 and 7 were relaxed so that the optimization

12

was guided only by the layout topology (the mutual location constraints). In the second test, the
required time of receiver 6 was tightened. This tightening caused the corresponding delay constraint to
reach its bound and, as a result, prevented further movement of some wires. The optimization results
for both cases are presented in Table I, and the resulting layouts are shown in Figure 13. Power, delay
and coordinates are shown in relative units. In both cases, the optimization causes a significant
reduction in the interconnect power. In the second case, the optimization impact is smaller than in the
first case, and the slack at receiver 6 reaches zero.

Power reduction was applied to industrial test cases using clips of the real layout from the state-of-
the-art 32 nm processor design. The original layout was generated by Synopsys ICC, which is the
industry standard signoff P&R tool [29]. The layout completed the entire design flow and was in pre-
tapeout readiness when our algorithm was applied. The layout of the metal layers (5, 6, 7, 8) was
processed by the algorithm, while wire segments on the lower metal layers were modeled by modifying
the corresponding effective drivers and receivers. Two reasons for this choice of the layers for
processing exist. First, in the 32 nm process technology, the wires on the higher layers are allowed to
be spaced almost freely (with only min and max bounds), while the spacing of wires on the lower
layers is limited strictly to a predefined set of values (e.g., X, 2X and 3X, where X is the minimum
spacing rule). Second, according to the design methodology of a given industrial design, the lower
metal layers are enclosed in functional blocks only and are not available in the late project stages. In
the implementation, we used the capacitance models presented in [2], which are consistent with our
assumptions regarding cross-coupling capacitance. For the delay estimation, we used the Elmore delay
formulation with the π −models for the individual net segments. Although the Elmore delay is not
very accurate, it is computationally efficient, and its high fidelity property [30] allows its use as a delay
metric for the optimization algorithm. To cope with the inaccuracy of the Elmore delay, the Elmore
model was also used for constraint generation. In this way, both measured and required delays were
calculated consistently with each other, and as a result, the Elmore delay inaccuracy was not a concern.

The results for several layout clips are presented in Table II. The numbers representing the power
were calculated using an in-house power estimation tool and are given in relative units; the real
numbers cannot be revealed because of their sensitivity. The cross-coupling interconnect power is
reduced by 8% on average, varying among the test cases from 5% to 12.6%. Obviously, these values
and their variances reflect the density and quality of the initial design in the different layout clips, and
they demonstrate the practical potential benefit of the power-aware layout generation. To validate the
satisfaction of the timing constraints, an in-house timing tool was used. The graphs of the slack
distribution before and after optimization for one of blocks are shown in Figure 14. There are delay
violations in approximately 5% of the nets after the optimization. The delay violations can be explained
by the inaccuracy of the Elmore delay model. These violations can be fixed in a post-design stage by
applying other optimization methods such as gate sizing [32] or by manual work.

Table III represents a comparison of the method presented with the technique described in [1], i.e.,
layer-by-layer optimization. For comparison, we modified the algorithm so that, each time, only the
wires of a single layer are allowed to move. After optimizing the single layer, the delays were
measured, and the delay constraints for the following layer were modified correspondingly. As the
comparison shows, the simultaneous optimization of all layers resulted in 10%-40% better power
reduction results, which can be explained by the more successful exploitation of the available delay
slack. The layer-by-layer optimization is much faster.

VII. SUMMARY
Inter-wire spacing is a physical design resource that must be allocated judiciously in modern

technologies because spacing determines cross-capacitances between nets, and these capacitances
dominate interconnect power and delay. Previous power / delay or noise optimization techniques that
rely on wire spacing work iteratively, either layer-by-layer or net-by-net. Such methods cannot fully
exploit the whole optimization space and reach the global minimum because they do not take into
account all imposed constraints and the interdependencies among them.

In this paper, we demonstrated an efficient method for power reduction by the simultaneous spacing
of wires residing on different routing layers so that the net delay constraints were not violated. Our

13

method outperformed the existing techniques in the sense that it could reach the global minimum
power and satisfy various (delay and layout) constraints. This result is achieved by simultaneously
considering all of the nets being optimized and all of their wire segments. To reflect all relations
between the wire segments, layout constraints and delay constraints, we use a novel data abstraction
called the multi-layer visibility graph. An interior-point method (with the L-BFGS algorithm as an
inner iteration) was used to solve the optimization problem. To cope with the scale of the problem, we
applied layout partitioning based on a union-find algorithm. We demonstrated the effectiveness of the
algorithm on real industrial cases and achieved a 5-12% dynamic interconnect power reduction relative
to the initial layout that was generated by commercial tools by post-processing the layout and
reallocating the inter-wire spaces without increasing the total area.

The proposed method treats wire spaces as continuous variables. In the up-to-date technology
processes (28 nm and below), the design rules dictate the discrete locations and widths of wires so that
the inter-wire spaces are also discrete (mostly at the lower layers). The application of additional
methods is required to obtain discrete solutions from the continuous, such as the ILP (Integer Linear
Programming) or the dynamic programming. Both approaches are beyond the scope of this paper and a
matter for further research.

ACKNOWLEDGMENTS

The authors are thankful for the useful reviewers’ comments, which significantly helped to improve
the manuscript.

APPENDIX. DUAL PROBLEM AND RELATION TO WEIGHTED POWER-DELAY SUM (WPDS)
OPTIMIZATION PROBLEM

Here, we show the relationship between the PODC problem and the Weighted Power-Delay Sum
(WPDS) optimization problem described in [25], where the delay weighting was used for simultaneous
gate and wire sizing for power.

The WPDS problem was discussed thoroughly in [1]. As mentioned in section II, WPDS optimizes
the power contributed by the cross-capacitances, weighted by the net delays. In WPDS, the question of
how to set delay criticalities ik

optimally remained open in both [1] and [25]. The theorem below

provides an answer to that question by showing the relationship between WPDS and PODC solved in
Section 3.

Theorem. WPDS is the relaxation of PODC. The optimized delay criticality weights ik in WPDS are
equal to optimal values of the Lagrangian dual variables in the corresponding PODC.

Proof. We prove the theorem by relaxing PODC and solving the dual of the relaxed problem,
showing that this process obtains WPDS. We then compare WPDS to the solution of the dual of the
original PODC problem.

First, relax the original problem PODC. The simplest relaxation of the program PODC would be

() min

min

,1

2 , 1 , 0 , 1 0

cross

i i

l l l l l
j i i j l ij

P

T i M

x x w w s l L i j N d

δ≤ ≤ ≤

− − + ≥ ∀ ≤ ≤ ≤ ≤ + ∧ >

Program

s.t.

14

where iδ are optimization variables (the delay constraints can as well be written as i i iT D δ≤ + ,
which is equivalent). This formulation is equivalent to optimization with no delay constrains at all. To
reflect delay constrains in optimization, iδ can be incorporated into the objective function as follows:

()

1

min

min

s.t.
,1

2 , 1 , 0 , 1 0

M
cross

i i
i

i i

l l l l l
j i i j l ij

PODC-R

P

T i M

x x w w s l L i j N d

α β δ

δ

=

+ ⋅

≤ ≤ ≤

− − + ≥ ∀ ≤ ≤ ≤ ≤ + ∧ >

∑

Program

The optimization variables of the PODC-R are ix and iδ . The delay awareness is reflected by

including iδ in the objective function. The meaning of PODC-R is the optimization of the power under
delay constraints, without explicitly specifying the delay requirement for each receiver. The delay
criticality is defined by the relationship between the weights α and iβ . PODC-R is always feasible,
while PODC might be infeasible, following from the PODC-R convexity and from the satisfaction of
Slater’s condition [20] with respect to the delay constraints that non-negative numbers ,1i i Mλ ≤ ≤
(Lagrange multipliers) exist so that the solution of the program PODC-R is equivalent to the solution of
the following dual program PODC-RD:

()

()

1 1

min

min

s.t.

2 , 1 , 0 , 1 0

M M
cross

i i i i i
i i

l l l l l
j i i j l ij

PODC- RD

P T

x x w w s l L i j N d

α β δ λ δ
= =

+ ⋅ + −

− − + ≥ ≤ ≤ ≤ ≤ + ∧ >

∑ ∑

Program

Solving KKT conditions [20] for PODC-RD with respect to iδ obtains:

()
1 1

0

M M
cross

i i i i i
i i

i i i i

P Tα β δ λ δ

β λ λ β
= =

∂ + ⋅ + − = ∂
= − = ⇒ =

∑ ∑δ (16)

Substituting (16) into the objective function of PODC-RD and setting i iβ β α′ = transforms
PODC-RD into:

15

()

1

min

min

s.t.

2 , 1 , 0 , 1 0

M
cross

i i
i

l l l l l
j i i j l ij

PODC RD

P T

x x w w s l L i j N d

β
=

′−

 ′+

− − + ≥ ∀ ≤ ≤ ≤ ≤ + ∧ >

∑

Program

PODC-RD’ is clearly equivalent to the WPDS problem. Thus, we have shown that WPDS is the
relaxation of PODC. Now, solving KKT conditions for PODC-RD’ with respect to ix yields:

1 1
0

M M
cross cross

i i i i
i i

P T P Tβ β
= =

∂ ′ ′+ = ∇ + ∇ = ∂
∑ ∑x

(17)

Assume that *
iλ are values of dual variables for delay constraints in the optimal point of the PODC.

It is then equivalent to:

()

()

*

1

min

min

s.t.

2 , 1 , 0 , 1 0

M
cross

i i i
i

l l l l l
j i i j l ij

D-PODC

P T D

x x w w s l L i j N d

λ
=

+ ⋅ −

− − + ≥ ∀ ≤ ≤ ≤ ≤ + ∧ >

∑

Program

Solving KKT conditions for D-PODC with respect to ix results in:

()* *

1 1
0

M M
cross cross

i i i i i
i i

P T D P Tλ λ
= =

∂
+ ⋅ − = ∇ + ∇ = ∂
∑ ∑x

(18)

Comparing (17) and (18), to have the same solution, the criticality weights iβ must be equal to the

optimal Lagrange multipliers, *
iλ .

The above theorem can be used to set the delay criticality weights, ik . We use the PODC-LB interior
point approximation of PODC and the fact that WPDS is the relaxation of PODC.

The optimality condition for PODC-LB (the approximation of PODC) is ()*' 0crossP∇ =x , i.e.,

() ()
()

()

*
* *

min

*

*
1

2

0

cross i
l l l l l

i j j i i j

M
i

i i i

eP
x x w w s

T

T D

η

η
=

∇ − −
− − + −

∇
− =

−

∑∑

∑

x

x

x

(19)

Summation is performed only for 0ijd > , and ie is a i − th standard basis vector. In this sum, each

term appears twice – one time for the right side and one time for the left side of each of the inter-wire
spaces. The effect of the delay constraints is shown in the third term of (19). Denoting

() ()
*

*
0i

i iT x D
ηλ η = − >
−

 it turns into () ()* *

1

M

i i
i

T xλ η
=

∇∑ . Comparing to (18), we conclude that the

Lagrange dual variables at the optimum (serving also as the optimal delay weights in WPDS) can be

16

approximated by ()*
iλ η , which is inversely proportional to the wire delay slacks. In critical wires

where ()*
i iT x D≈ (small slack), *

iλ is large indeed, while for the less critical wires where

()*
i iT x D< (large slack), *

iλ is smaller indeed. In general, recalling that ()()* *
i i iD T xη λ= − ,

let 0
iT be the initial receiver delays in WPDS. Because WPDS is applied at the early design stages,

specific required times iD are yet unknown. Let D be a global required time (usually a fraction of the

clock period) that all wire delays are tuned to. Then, the delay weights for WPDS are set to:

0i
i

k
D T
η

=
−

, (20)

where η is proportionality coefficient. Thus, the WPDS problem is modified to:

()

0
1

min

 1

minimize

s.t.

2 , 1 , 0 , 1 0

M
cross i

i i

l l l l l
j i i j l ij

WPDS

TP
D T

x x w w s l L i j N d

η
=

−

+ −

− − + ≥ ∀ ≤ ≤ ≤ ≤ + ∧ >

∑

Program

In the early design stages, the WPDS can be used with the delay criticalities set proportionally to the
initial wire delay slacks. This process will not guarantee the satisfaction of the timing constraints after
the optimization but will push the optimization in the right direction. Then, in the later design states,
the transition to the PODC can be performed. Setting WPDS coefficients as in (20) (or a similar
expression providing the coefficients inversely proportional to net delay criticalities) through the
design lifetime will guarantee that such a transition will not result in large changes in the design and
will not harm the design stability and convergence.

REFERENCES

[1] K. Moiseev, A. Kolodny and S. Wimer, “Power-delay Optimization in VLSI Microprocessors by Wire Spacing”, TODAES,
vol. 14, issue 4, 2009

[2] F. Stellari and A.L. Lacaita, “New Formulas of Interconnect Capacitances Based on Results of Conformal Mapping
Method”, IEEE Transactions on Electron Devices, vol.47, no,1, January 2000

[3] N. Magen, A. Kolodny, U. Weiser and N. Shamir, “Interconnect power dissipation in a microprocessor”, proceedings of
2004 international workshop on System Level Interconnect Prediction, pp. 7-13, 2004

[4] V. K. R. Chiluvuri and I. Koren, “Layout-synthesis techniques for yield enhancement”, IEEE Transactions On
Semiconductor Manufactoring, Vol. 8, Issue 2, pp. 178-187, 1995

[5] K. Chanundhary, A. Onozawa and E. Kuh, “A spacing algorithm for performance enhancement and cross-talk reduction”,
Proceedings of IEEE / ACM International Conference on CAD, pp. 697-702, 1993

[6] P. Saxena and C. L. Liu, “An algorithm for crosstalk-driven wire perturbation”, IEEE Transactions on CAD of Integrated
Circuits and Systems, Vol. 19, No. 6, pp. 691-702, 2000

[7] International technology roadmap for semiconductors, 2009
[8] J. Cong, L. He, C. K. Koh and Z. Pan, “Interconnect Sizing and Spacing with Consideration of Coupling Capacitance”,

IEEE Transactions on CAD of Integrated Circuits and Systems, vol. 20, no. 9, pp. 1164-1169, 2001
[9] J. –A. He and H. Kobayashi, “Simultaneous wire sizing and wire spacing in post-layout performance optimization”,

Proceedings of ASP-DAC, pp. 378-378, 1998
[10] S. Wimer, S. Michaely, K. Moiseev and A. Kolodny, “Optimal Bus Sizing in Migration of Processor Design”, IEEE

Transactions on Circuits and Systems, vol. 53, no.5, pp. 1089-1100, 2006
[11] N. Hanchate and N. Ranganathan, “A linear time algorithm for wire sizing with simultaneous optimization of interconnect

delay and crosstalk noise”, Proceedings of the 19th International Conference on VLSI Design, pp. 283-290, 2006
[12] E. Macii, M. Poncino and S. Salerno, “Combining Wire Swapping and Spacing for Low-Power Deep-Submicron Buses”,

Proceedings of the 13th ACM Great Lakes Symposium on VLSI, pp. 198-202, 2003
[13] H. Bakoglu, Circuits, Interconnects and Packaging for VLSI. Addison-Wesley, 1990.
[14] D. Genossar and N, Shamir, “Intel ® Pentium ® M Processor Power Estimation, Budgeting, Optimization and Validation”,

Intel Technology Journal, vol. 7, pp. 43-50, 2003
[15] S.-C. Wong, G.-Y. Lee and D. – J. Ma, “Modeling of Interconnect Capacitance, Delay and Crosstalk in VLSI”, IEEE

Transactions on Semiconductor Manufactoring, vol. 13, no. 1, 2000
[16] C. P. Yuan and T. N. Trick, “A Simple Formula for the Estimation of the Capacitance of Two-Dimensional Interconnects in

VLSI Circuits”, IEEE Electronic Device Letters, Vol. 3, No. 12, pp. 391-393, 1982

17

[17] A. Kahng, S. Muddu and E. Sarto, “On Switch Factor Based Analysis of Coupled RC Interconnects”, Proc. Of IEEE
Design Automation Conference, pp. 79-84, 2000

[18] P. Gupta, A. Kahng and S. Muddu, “Quantifying Error in Dynamic Power Estimation of CMOS Circuits”, Analog
Integrated Circuits and Signals Porcessing, vol. 42, pp. 253-264, 2005

[19] C.- K. Cheng, J. lillis, S. Lin and N. Chang, Interconnect Analysis and Synthesis. Wiley-Interscience, 1999
[20] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[21] L. Luksan and J. Vlcek, “Efficient methods for large-scale unconstrained optimization”, Nonconvex Optimization and Its

Applications, vol. 83, pp. 185-210, 2006
[22] J. Nocedal and S. Wright, Numerical Optimization, Springer, 2006
[23] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, The MIT Press, 2005.
[24] J. Liu, “A Graph Partitioning Algorithm by Node Separators”, ACM Transactions on Mathematical Software, vol. 15, no. 3,

pp. 198-219, 1989
[25] J. Cong and C. Koh, “Simultaneous Driver and Wire Sizing for Performance and Power Optimization”, IEEE Transactions

on VLSI, vol. 2, no.4, 1994
[26] N. Gould, D. Orban and P. Toint, “Numerical methods for Large-Scale Nonlinear Optimization”, Acta Numerica, 14, pp.

299-361, 2005
[27] S. Sapatnekar, V. Rao, P. Vaidya and S.-M. Kang, “An Exact Solution to the Transistor Sizing Problem for CMOS Circuits

Using Convex Optimization”, IEEE Transactions on CAD of VLSI, vol. 12, no. 11, 1993
[28] R. Kay and L. Pillegi, “EWA: Efficient Wiring-Sizing Algorithm for Signal Nets and Clock Nets”, IEEE Transactions on

CAD of VLSI, vol. 17, no. 1, 1998
[29] IC Compiler – the next generation physical design system, Synopsys. Available online:

http://www.synopsys.com/Tools/Implementation/PhysicalImplementation/Documents/iccompiler_ds.pdf
[30] K.D. Boese, A.B. Kahng, B.A. McCoy and G. Robins, “Fidelity and Near Optimality of Elmore-Based Routing

Constructions”, proceedings of IEEE International Comference on Computer Design, pp. 81-84, 1993
[31] A.I. Abou-Seido, B. Nowak, C. Chu, “Fitted Elmore delay: a simple and accurate interconnect delay model”, IEEE

Transactions on VLSI, Vol. 12, No. 7, pp. 691-696, 2004
[32] C.-P. Chen, C.C.N Chu and D.F. Wong, “Fast and Exact Simultaneous Gate and Wire Sizing by Lagrangian Relaxation”,

IEEE Transactions on CAD, Issue 7, pp. 691-696, 1999
[33] K. Moiseev, S. Wimer and A. Kolodny, “On Optimal Ordering of Signals in Parallel Wire Bundles”, Integration – the VLSI

Journal, vol. 41(2), pp. 253-268, 2008
[34] E. Shapir, R.Y, Pinter and S. Wimer, “Cell-based Interconnect Migration by Hierarchical Optimization”, Integration – the

VLSI Journal, vol. 47, pp.161-174, 2014

18

Figures

AF = 0.01
AF = 0.5
AF = 0.1
AF = 0.05

AF = 0.01
AF = 0.5

AF = 0.1

AF = 0.05

Figure 1. Example of a layout with 4 nets routed on 3 metal layers before and after spacing optimization. The shaded rectangles
denote wires bounding routing regions that are not allowed to move, AF stands for activity factor. The wires are spaced
according to activitiy factors of the corresponding nets. For example, the wires of the net with AF = 0.5 are allocated larger
spaces than those with AF = 0.05.

19

Figure 2. An artificial example of the optimization process. The optimization process of the total power is shown on the power-
power plane, where

1P and
2P denote the power of two individual wires. The constraint is represented by the solid curve. The

iterative improvement of the local objectives (polygonal line) can lead to a sub-optimal point, so that to get to the global
optimum *P , one of the local objectives (

1P in this case) must be increased (dashed arrow).

Figure 3. Typical structure of global interconnect

20

2

3

1

4

6

5

7

Vss

Vdd

9

8 10

11

12

VddVss

14

13

Vss

Vdd

Figure 4. The wire segments from Figure 3 as a collection of three planes. On the right picture, both logic and power grid wires (walls) are shown. Power grid wires
are dashed and located at left and right (top and bottom) ends of each plane.

21

11

14
13

8
9

12

2

3

1

4

6

9

5

14

7

8

Metal 5

Metal 6

Metal 7

Effective
Driver /
receiver

12

11
10

13

1

3 2

4

7

5

10

6 wall
wall

wall

wall

wall

wall

Figure 5. Clip of the layout and corresponding multidimensional visibility graph below it. The solid arrows correspond to
visibility edges, the dashed arrows correspond to connectivity edges.

Figure 6. Interconnect tree representation for delay calculation.

22

Figure 7. RC tree model of the layout. The RC model on the right represents the relevant cross coupling capacitances shown in
the layout on the left.

 1 :

1. Set x
2. Set =
3. Repeat
4. Find x by solving PODC-LB for given starting at x
5. Stop if

current initial

initial

new current

Sequential Power Optimization under Delay Constrains

x
η η

η

=

Algorithm

6. Update x
7. Update , 0 1

current new

k
x

η ε

η η τ τ

<
=

= ⋅ < <

Figure 8. Algorithm for sequential solving of PODC

23

0

 2 : L-BFGS for

1. Set x from last interior point iteration
2. 0
3. Repeat
4. Calculate H according to (15)
5. Calculate iterati

current

o
k

Power Optimization under Delay constraints

x
k

=
=

Algorithm

{ }
{ }

1

1 1

1 1

vely '()
6. Update x '()
7. If
8. remove pair ,
9. Calculate and store ,
10. 1
11. Until '

cross
k k

cross
k k k k

k m k m

k k

cross

H P x
x t H P x

k m
x g

x g
k k

P ε

+

− + − +

+ +

∇
= + ⋅ ∇

>
∆ ∆

∆ ∆
= +

∇ <

Figure 9. Algorithm for solving of PODC-LB.

Figure 10. An example of the graph partitioning. The active vertices have a solid boundary, while the inactive vertices
(separating group) have a dashed boundary. The graph is separated into three groups.

Figure 11. The algorithm for separation of node visibility graph.

{ }

 3 : Separation of to independent groups

1. Assign ,1
2. Foreach 1
3. Foreach
4. If nets corresponding to vertices and are visible t

i i

i j

Node Visibility Graph

G v i N
i N
i j N

v v

= ≤ ≤
≤ ≤

< ≤

Algorithm

o each other
5. and
6. End
7. End
8. End

i jG GUnion

24

1 3

6

8

7

9

5
2

4

(a)

(b)

(c)

(d)

25

Figure 12. A small example of the layout for the multi-layer power optimization. A) The full layout including the two metal
layers, two nets and 9 wire segments. B) and C) Horizontal and vertical metal layers and the wires occupying them. D) The
multi-layer visibility graph corresponding to the layout from A). The visibility relationships are shown by solid edges, the
connectivity relationships are shown by dashed edges.

(a)

1 3

6

8

7

9

5

2

4

(b)

1 3

6

8

7

9

5

2

4

Figure 13. A) Layout after optimization without timing constraints. B) Layout after optimization with timing constraints. In the
second case delay constraint prevented wires 1, 3 and 6 from moving too close to the wall as well as wires 2 and 5 from getting
too close to each other.In both pictures the drivers are shown schematically. Notice that the real driver cells are not moved. The

end-point segments (denoted earlier by drvI and rcvI) can be fixed in place by adding additional constraints, however, this was

not applied in this experiment. Also, pairs of wires (1,3) and (4,5) were kept together to prevent jog creation.

26

Figure 14. The distribution of the delay violation in % of net delay before (black solid) and after (dashed) optimization. A
negative number signifies a delay violation, and a positive number indicates available slack. There are no delay violations in the
initial state. After optimization there are some delay violations (in approximately 5% of the nets). More nets have less available
slack than earlier.

27

Tables

Table 1 Optimization Results For The Small Example.

 Initial state Opt. without delay constraints Opt. with delay constraints
Wire
coordinates

1 8.50 12.18 10.89

2 5.50 7.46 6.69

3 8.50 12.43 11.25

4 11.50 13.47 10.95

5 11.50 9.50 10.21

6 2.50 1.56 2.42

7 2.50 3.71 3.07

8 5.50 6.53 6.23

9 14.50 13.25 13.85

Total power (Improvement %) 15.37 (0%) 10.00 (35%) 11.00 (28.4%)

Wire delay
data

Rcv. number Delay Delay Diff. vs.
initial

Req. time Delay Slack or
diff. vs.
initial

2 44 53 −9 – 47 −4

4 59 67 −8 – 62 −5

6 67 77 −10 70 70 0

7 43 31 +12 – 35 +4

28

Table 2 Optimization results for real industrial layout segments.

No. of

clip

Clip area

in mm2 (%

of total

area in

brackets)

Initial Power Final Power Improvement,

%

No. of

wires

(variables)

No. of

spaces

(location

constraints)

No. of

delay

constraints

Run-

time,

sec.

1 0.52

(4.6%)

863.8504589 817.119679 5.41% 4091 21518 1427 8.8

2 1.29

(11.3%)

2723.372233 2552.8175 6.26% 37177 110962 13860 523.8

3 0.60

(5.3%)

2068.078358 1974.36814 5.67% 14403 51166 2906 1039.9

4 1.46

(12.8%)

1685.869617 1550.59565 8.02% 13397 47450 4639 70.8

5 1.77

(15.6%)

3737.549076 3306.77984 11.53% 27639 96031 7003 449.0

6 1.33

(11.7%)

3531.584387 3331.86887 5.66% 25343 89996 7161 441.3

7 2.73

(23.9%)

2058.194188 1799.12777 12.59% 22669 79838 7169 292.7

8 1.68

(14.8%)

3084.118285 2827.55122 8.32% 25537 87810 7331 365.2

Total 11.38

(100%)

19752.6166 18160.2287 8.18% 170256 584771 51496 3191.5

Table 3 Comparison of new method with THE layer-by-layer optimization – power reduction in % and
run-time in sec.

Clip no. 1 2 3 4 5 6 7 8
Layer-by-layer Power

Reduction
4.9% 4.5% 5.05% 6.45% 8.67% 4.03% 11.3% 7.12%

Run time 5.4 327.8 565.3 28.9 241.1 311.2 105.9 189.0

New method Power
Reduction

5.41% 6.26% 5.67% 8.02% 11.53% 5.66% 12.59% 8.32%

Run time 8.8 523.8 1039.9 70.8 449.0 441.3 292.7 365.2

Improvement
in %

Power
Reduction

10.1% 39.1% 12.3% 24.3% 33.0% 40.4% 11.4% 16.8%

Run time −67% −59.7% −84% −145% −86.2% −41.8% −176% −93%

