
 1

Coping with the Complexity of Microprocessor

Design at Intel – A CAD History

Patrick Gelsinger, Desmond Kirkpatrick, Avinoam Kolodny and Gadi Singer

Abstract — Necessity has driven the evolution of microprocessor design practices and CAD tools at Intel Corporation, as the

transistor count has grown by a factor of about 4X each processor generation. In order to cope with the complexity of design tasks,

Intel's engineers were early adopters and adapters of innovative CAD research from universities. A unique partnership with Alberto’s

group in U.C. Berkeley during the 1980's has created one of the first industrial-strength synthesis-based design flows, which became the

prevalent paradigm for the whole electronic industry. This paradigm enabled the semiconductor foundry business model, facilitated the

proliferation of fab-less semiconductor companies all over the world, while enabling Intel designers to keep pace with Moore’s Law.

I. INTRODUCTION

 During the 1980's, Intel Corp. transformed itself from a

semiconductor company producing memory chips into a

computer company [1]. Intel's transformation was actually a

part of a revolution in the whole electronics industry: in the

beginning of the decade, microprocessors were considered as

toys; the computer industry was dominated by mainframes

and minicomputers made by vertically-integrated

companies. By the end of that decade, microprocessors

became the standard engines for computing platforms, and

the whole industry was restructured. Many more vendors

entered the industry, each specializing in different areas.

 These changes were fueled by the continuous scaling of

MOS technology, which followed Moore's law.

Interestingly, in his original 1965 paper [2], Gordon Moore

expressed a concern that the growth rate he predicted may

not be sustainable, because the requirement to define and

design products at such a rapidly-growing complexity may

not keep up with his predicted growth rate. However, the

highly competitive business environment drove to fully

exploit technology scaling. The number of available

transistors doubled with every generation of process

technology, which occurred roughly every two years. As

shown in Table I, major architecture changes

in microprocessors were occurring with a 4X increase of

transistor count, approximately every second process

generation. Intel‟s microprocessor design teams had to come

up with ways to keep pace with the size and scope of every

new project.
TABLE I: INTEL PROCESSORS 1971-1993

Processor Intro

Date

Process Transistors Freq

4004 1971 10 um 2,300 108KHz

8080 1974 6 um 6,000 2 MHz

8086 1978 3 um 29,000 10 MHz
80286 1982 1.5um 134,000 12 MHz
80386 1985 1.5 um 275,000 16 MHz

Intel486 DX 1989 1 um 1.2 M 33 MHz
Pentium 1993 0.8 um 3.1 M 60 MHz

This incredible growth rate could not be achieved by

hiring an exponentially-growing number of design

engineers. It was fulfilled by adopting new design

methodologies and by introducing innovative design

automation software at every processor generation. These

methodologies and tools always applied principles of raising

design abstraction, becoming increasingly precise in terms

of circuit and parasitic modeling while simultaneously using

ever-increasing levels of hierarchy, regularity, and automatic

synthesis. As a rule, whenever a task became too painful to

perform using the old methods, a new method and associated

tool were conceived for solving the problem. This way, tools

and design practices were evolving, always addressing the

most labor-intensive task at hand. Naturally, the evolution of

tools occurred bottom-up, from layout tools to circuit, logic,

and architecture. Typically, at each abstraction level the

verification problem was most painful, hence it was

addressed first. The synthesis problem at that level was

addressed much later.

This paper is about the co-evolution story of design

methodologies, practices and CAD tools in Intel's design

environment, as it had to cope with growing complexity

since the turbulent 80's and until recent years. It is

interesting to note that at the beginning of this process the

engineering culture was advocating a tall, thin designer.

Nowadays, VLSI engineers are highly specialized in

different areas of the design discipline, where specialized

tools are used in each area. This is similar to the restructuring

of the whole computer industry from vertical to horizontal.

In the 80‟s, the CAD industry itself was nascent at best.

While some areas like schematic or layout entry had solid

commercial offerings, the rapidly evolving complexity of

this young industry gave little hope from commercial tool

offerings at the time. Thus, most tools emerged from internal

development, external university research or often a

coevolving blend of internal work with external tools and

research. While there were a number of corporate university

relationships at the time, none was as significant as that of

Intel with U.C. Berkeley. In particular, Alberto and his

collaborative research team consisting of Prof. Robert

 2

Brayton, Prof. Richard Newton and many graduate students,

had developed a strong partnership with Intel and its

microprocessor teams. This long partnership with Intel

stands as one of the most fruitful relationships in EDA with

fundamental breakthroughs in multiple elements of

microprocessor logic, synthesis and layout. Many of these

early successes resulted in enormous benefit to Intel and

eventually made their way into the EDA industry as key

enablers of many EDA tools and today‟s fab-less /ASIC/SoC

semiconductor industry.

II. DESIGN ENVIRONMENT FOR THE EARLY X86 PROCESSORS

A. Inherited tools from memory chips

Intel's initial design environment was formed to serve the

needs of memory chips. During the 70's, the primary CAD

tools were layout capture and verification tools, used by

draftsmen to generate and check mask layouts. These tools

were put in place because the layouts were already too

complicated to develop and maintain on solely paper or

Mylar, hence polygon-based layout representations had to be

stored and handled by computerized tools, initially on

dedicated systems such as the Calma or Applicon.

Engineers were doing circuit and logic designs at the

transistor level, usually by hand, producing hand-drawn

schematics at the transistor level for the layout designers.

The engineers did most of their design work using pencil and

paper, but they also had circuit simulation tools derived from

the industry standard Spice [3] program, which originated

from Don Pederson‟s group at U.C. Berkeley, and later on

refined by Newton, Alberto and students (Intel‟s version was

known as ISPEC). It was possible to simulate and check

logic behavior and timing waveforms for small circuits, up to

a few hundred transistors.

As Intel started doing logic products, including the first

microprocessors (the Intel 4004, 8008, and 8080), design

engineers inherited all of those tools and methods which

were initially conceived for memory chip design. Some

engineers preferred to perform logic design using gate-level

schematics, but this encountered some push-back from the

layout designers who were familiar with transistor

representations, which directly matched the layout.

Translation of logic gate symbols into transistor structures

was not a trivial task, because the early microprocessors and

numeric co-processors (8087, 80387) were designed in

NMOS technology. Circuit operation relied on device

strength ratios, so each gate symbol had to be accompanied

with specific transistor sizes. In addition, the prevailing

design style supported many complex gate pull-down

devices, pass transistors for clocking structures, dynamic

circuits and numerous other clever and often "tricky"

structures which could not be cleanly represented by a

simple logic gate abstraction. Consequently, even logic

design was actually performed by engineers at the transistor

level (a.k.a. switch-level), such that even well-known

techniques such as logic minimization by Karnaugh maps,

which were taught at engineering schools, were not widely

used by VLSI engineers in those NMOS days. The clever

NMOS design tricks typically resulted in superior densities

albeit with commensurate complexities they inherently

carried with them.

B. Evolution of Intel's logic design and RTL modeling

As it became too error-prone to debug logic behavior of

processor circuits by hand, and too time-consuming to verify

the logic behavior by circuit simulation using continuous

waveforms, people at Intel were looking for an executable

functional model. At that time, the mainframe computer

industry was already using gate-level logic simulators,

which used variable-delay models for TTL gates (made with

bipolar junction transistors). An attempt to adopt logic

simulation at Intel resulted in a failure: A gate-level logic

simulator called LOCIS was developed at Intel in the mid

1970's, and the 8086 design engineers converted their

transistor-level schematics into an equivalent logic model

using LOCIS gate models. However, the generic gate models

of the simulator did not match the tricky MOS logic

structures of the 8086 schematics, and its gate-delay models

burdened the users with too many irrelevant timing-related

messages and glitch warnings.

After this experience, engineers turned to build functional

models with general-purpose programming languages. One

of the first Register-Transfer Level (RTL) models at Intel

was developed for the 8087 numeric co-processor in 1978. It

was a FORTRAN program which described the logic

behavior of circuits, as extracted by human interpretation of

the transistor level schematics. It was used for verifying and

debugging the microcode programs stored on the chip.

In the design of the 80286 processor, the starting point

was already a functional RTL model. This model was

manually translated into schematics in a top-down fashion,

rather than the other way around! The model was written in

MainSail [4] an Algol-like general-purpose programming

language that derived from Stanford‟s AI Language (SAIL).

RTL modeling and simulation by a compiled program in a

standard language (where logic propagation between gates is

actually assumed to occur without any delay) was made

possible because of a strictly-synchronous design

methodology, with two non-overlapping clock signals Phi1,

Phi2. During each phase of the clocks, new signal values can

propagate in the logic network, and the logic designer only

cared about the final, steady-state values which were latched

at the end of the clock phase. As a separate task, someone (a

circuit designer) had to ensure that the cycle-time was long

enough for the circuit to reach a steady state in each phase.

The RTL program simulated the circuit behavior at a

cycle-by-cycle timing resolution by invoking code for each

clock phase in turn. This approach was inspired by Mead and

Conway's famous book [5]. Today, this approach seems

trivially obvious. However, in that era, logic design was

typically done in the context of detailed timing-dependent

behavior, where both timing and logical function were

verified simultaneously. With the synchronous

methodology, separation of the functional simulation from

the timing issues enabled successful large scale design and

created two kinds of engineers, who could worry about two

 3

separate problems: the logic designers focused on the

functional correctness problem, and the circuit designers

focused on transistor sizes, voltage levels, parasitic

capacitances and gate delays. Separation of concerns like

this continues to be a powerful mechanism in design

automation.

Taking advantage of MainSail's support of dynamical

linking of separately compiled modules, RTL models of

large circuit blocks were coded as program modules, and a

simulator, SIM [6], was developed to control and monitor

their execution. The first Intel design to use such a scheme

was the iAPX 432 chip set, developed in Oregon and

released in 1981.

In the 80286 design, the blocks of RTL were manually

translated into the schematic design of gates and transistors

which were manually entered in the schematic capture

system which generated netlists of the design. The

schematics would be simulated via the switch-level

simulator MOSSIM [7] and compared to the RTL design on

a per clock per signal basis. This was a laborious procedure

but verified the logical integrity of the RTL with that of the

entered schematic design. Design changes were always

challenging as they required the synchronization of the

changes into RTL and schematic databases.

There was a separate path for the handful of

programmable logic arrays. In this case the PLA functions

were optimized using the internal LOGMIN tool which

automated the logic minimization process. The same

resulting PLA codes were loaded into the RTL as a macro

function and into the schematic system and used to program

the PLA arrays into the layout. Much of the early automation

in PLA synthesis at Intel was enabled by Alberto‟s U.C.

Berkeley research in two-level logic minimization by

Espresso [8] and physical automation (e.g. PLA folding [9])

to make large control circuit synthesis using PLAs practical.

C. The issue of performance verification

The RTL-based functional design methodology has

separated the issue of timing from the issue of functional

correctness, assuming that synchronous methodology was

enforced, and that the clock is slow enough for all logic paths

to settle to a steady logic state within each clock phase.

However, during this time critical paths were only modestly

considered during the design phase largely due to lack of

tools and engineer‟s knowledge of the design and the „likely‟

critical areas. The large majority of critical paths were not

fixed until they were discovered on silicon. The clock could

be slowed down until no critical path failure existed. Then

the clocks frequency was sped up, but specific clock pulses

were extended to help isolate the failing circuit. For

example, the 49
th

 clock pulse during the test program could

be made longer, to allow completion of a slow logic

operation somewhere in the chip. This was done by a special

clock stretcher debugging equipment. However, the 286

design had many second sources and very quickly those

manufacturers were finding clever ways to speed up their

designs to rival Intel‟s. This led to a minor crisis within Intel

as the industry was quickly putting pressure on Intel in the

very architecture and design it created, and the tools to dig

into this problem were weak and laborious.

This crisis triggered the introduction of Static Timing

Analysis into Intel, and development of the Coarse-Level

Circuit Debugger (CLCD) tool [10]. It was a schematic-level

analysis tool for electrical rule checking and critical path

finding, which could discover circuit-levels bugs and resolve

device sizing issues. It could also extract the logic

functionality of transistor-level circuit structures and

represent them by logical expressions. However, the new

capabilities were applied in the next generation

microprocessor, the 386, which was no longer in NMOS but

rather in CMOS.

III. THE 386 DESIGN ENVIRONMENT

In moving to the 386 during 1982, the design team quickly

ported the 286 design modules to the 386 design

environment as a starting point. In particular, for the

complex memory protection model of the 286, some of these

blocks would make it to the final 386 with minimal changes.

However, most of the remainder of the design went through

radical changes with the move to 32-bit datapath width and

the introduction of the flat paging model. The design work

iterated rapidly with the RTL being the center of the logic

design team‟s efforts. RTL simulation for the first time

dominated the overall computing load of the design team as

logical correctness became the focus of the team's activity.

With the team focused on RTL design and the substantial

complexity increase from the 286, the question was how to

more effectively provide the translation to schematics and

the logical representation of the chip. In particular we were

looking for acceleration of the design process, minimization

of manual translation errors and handling of the rapidly

increasing design complexity. With these goals in mind, the

relationship with U.C. Berkeley and ASV was quickly center

to our efforts. Albert Yu (manager of the Microprocessor

Division) and Pat Gelsinger (leading new design methods in

Corporate CAD at the time) visited Berkeley to explore some

of Alberto‟s research work and affinity toward our problems

as well as the ability to partner on these challenges.

The meeting focused on topics such as the regularization

of layout and the potential use of YACR (yet another channel

router)[11], TimberWolf [12], logic synthesis, and potential

for multi-level logic synthesis, where the path between input

and output could propagate through several logic gates rather

than just two as in a PLA. Albert Yu‟s proposition was that

Intel needed to keep a two year beat to develop a new

microprocessor and he thought that the only way to keep the

beat was to introduce new tools and methods. The potential

of multi-level logic synthesis and of regular layout was fully

appreciated by Albert and Pat. Albert proposed to support

the research at U.C. Berkeley, introduce the use of

multi-level logic synthesis and automatic layout for the

control logic of the 386, and to set up an internal group to

implement the plan, albeit Alberto pointed out that

multi-level synthesis had not been released even internally to

 4

other research groups in U.C. Berkeley. The design

manager of the project, Gene Hill, put Alberto on a

consulting contract to facilitate the above topics as well as

reviewing the overall floor plan to better understand the

broader applicability of advanced CAD methods to the

design.

 It is important to note that with the 386, the era of CMOS

began at Intel. While we were far from the power wall of the

early part of the 2000 decade, NMOS power was increasing

at a near exponential rate. CMOS brought with it a

reasonable P device and a strong bias towards

complementary logic structures to eliminate steady-state

power dissipation, achieve symmetry between rise and fall

times, and get full-swing logic voltage levels regardless of

transistor sizes and transition speeds. With CMOS, there was

much less benefit to gain from a cleverly ratioed design.

While there were still arguments for complex domino type

design approaches, the inherent nature of CMOS design

created a strong move toward using a standard set of gates

from a cell library, rather than individually-sized and

customized gate structures which were common in the days

of NMOS.

Working with a cell library, we could employ U.C.

Berkeley tools like Espresso for logic minimization and

TimberWolf for simulated annealing of cell placement. We

were quickly demonstrating large regular blocks of

reasonably well optimized logic designs. While the idea of

simulated annealing seemed rather chaotic at best, the results

were quite good. An oft-repeated lesson in science and

engineering is to apply proven techniques from other fields

to similar problems in your field. In this case, simulated

annealing proved to be the perfect answer. Of course, with

ample computing cycles made available on the IBM 3081,

one could play with the parameters offered at length to find

ever more optimal layout results. Post global placement by

TimberWolf, specific cell placement occurred in

standardized rows of standard cells and routing channels

with a tool called P3APR developed by Manfred Wiesel who

came to Intel from the BellMac project at AT&T.

In fact, the results were good enough that the design team

eliminated all the small PLAs from the 286 and simply

converted them to interconnected logic gates (i.e. random

logic). This made the logic blocks larger with greater

potential for further logic design optimization. Only the I/O

ring, the data and address path, the microcode array and three

large PLAs were not taken through the synthesis tool chain

on the 386. While there were many early skeptics, the results

spoke for themselves.

With layout of standard cell blocks automatically

generated, the layout and circuit designers could myopically

focus on the highly optimized blocks like the datapath and

I/O ring where their creativity could yield much greater

impact. Further, these few large blocks greatly simplified the

overall global chip floor planning effort allowing a much

more rapid final chip assembly with far fewer errors.

Verification of final connectivity was performed by an

in-house program called CVS written by Todd Wagner [13].

While today the 386‟s 275,000 transistors seem trivial, at the

time, it was a monumental feat breaking ground in

performance, ISA compatibility and design methodology.

Figure 1: Intel 80386 Processor – Taking a clockwise path around the chip:

The upper right was bus interface and instruction decode, lower right was

test and control logic and the large microcode ROM, the lower left was the
data path for primary instruction executive. Moving up the data stack on the

left of the chip was the segment and virtual address generation and finally in
the top left was paging and final physical address generation. Synthesized

random logic blocks stand out clearly in the middle given their row of cells

and routing channel characteristics. Photo courtesy of Intel Corporation.

IV. THE 486 DESIGN ENVIRONMENT

A. The challenge of logic design effort in the 486

While the 386 design heavily leveraged the logic design of

the 286, the 486 was a more radical departure with the move

to a fully pipelined design, the integration of a large floating

point unit, and the introduction of the first on-chip cache – a

whopping 8K byte cache which was a write through cache

used for both code and data. Given that substantially less of

the design was leveraged from prior designs and with the 4X

increase in transistor counts, there was enormous pressure

for yet another leap in design productivity While we could

have pursued simple increases in manpower, there were

questions of the ability to afford them, find them, train them

and then effectively manage a team that would have needed

to be much greater than 100 people that eventually made up

the 486 design team.

With this challenge in front of us then, several aggressive

goals were proposed for enabling our small team to tackle

the 486 design:

 A fully automated translation from RTL to layout

 (we called it RLS: RTL to Layout Synthesis)

 No manual schematic design

(direct synthesis of gate-level netlists from RTL,

without graphical schematics of the circuits)

 5

 Multi-level logic synthesis for the control functions

 Automated gate sizing and optimization

 Inclusion of parasitic elements estimation

 Full chip layout and floor planning tools

For executing this visionary design flow, we needed to put

together a CAD system which did not exist yet. We traveled

one more time to our now good friend Alberto at U.C.

Berkeley to extend our previous collaboration with new tool

development. A liaison person from Intel (Gary Gannot) was

stationed in Berkeley for two years as a participant in

Alberto's research team.

While we were working on the 386, academic CAD

research was going through a major renaissance at U.C.

Berkeley. The original research in CAD there was being

combined into the “Berkeley Synthesis Project” with focus

on merging logic synthesis and layout generation efforts.

After collaboration with Alberto at IBM in 1980-1982 and a

Berkeley sabbatical in 1985, Dr. Robert Brayton joined the

U.C. Berkeley faculty full-time in 1987 and the three main

CAD professors, Alberto, Brayton, and Newton joined

forces to build what became a highly prolific period in CAD.

Alberto coined this era as the “age of the heroes”, a “vibrant

era of creativity and expansion” in his tour de force DAC

2003 keynote speech. In hindsight, Alberto and his

colleagues fostered strong industrial collaboration by their

decision to make the results of U.C. Berkeley research

(including software systems) freely available to everyone.

Through this arrangement, the close technical collaboration

between Intel and the U.C. Berkeley CAD group was able to

benefit academia and industry, which in turn fueled even

more research advances.

 As the 486 project was starting in 1986, Gene Hill

(Director of microprocessor development) was deliberating

whether to take the full risk, or work on a conservative plan

in parallel. Gary recalls: "He asked me if I felt comfortable

that the code written by the students at Berkeley would be

reliable enough in a production worthy environment. Since I

was proud to be part of the MIS team, I immediately

responded that I felt very comfortable". Finally, Hill decided

to go for it: he transferred “open requisitions" to hire 15

engineers from his budget to Corporate CAD department.

There was agreement by Gene with Albert Yu and Mike

Aymar (who headed Corporate CAD) to form a central

methodology development group under Rafi Nave with Pat

Gelsinger and Jim Nadir at the center of the group. Jim

Nadir‟s primary focus was on library and physical design,

Pat Gelsinger was in charge of the methodology and the

tools, working closely with the CAD teams in US and Israel

and with U.C. Berkeley and Alberto. He did not expect this

at the time, but his next assignment would be managing the

486 design, so he quickly became the customer for the very

tool chain he was driving.

B. Intel's Hardware Description Language

A major technical challenge we had to overcome for

enabling a direct link from RTL to logic synthesis was the

input language for RTL modeling. Languages like Mainsail

or general C didn‟t have the formalism required to describe

synthesizable hardware. Languages like VHDL were in the

process of being invented at the time but were considered

hopelessly complex given the broad industry process being

used to define them.

Thus, we launched the iHDL effort. A language definition

specifically with the formalism required for synthesis with

clear semantics for items like busses, native algebraic and

Boolean logic functions and the basic control flow

mechanisms that a logic design required. The iHDL

language defined by Tzvi Ben Tzur, Randy Steck, Gadi

Singer and Pat Gelsinger met the bill. In a series of summits

between Israel, Oregon and Santa Clara in 1985 and 1986 we

converged on a language definition while the CAD team in

Israel was developing the language compiler. The result was

a formal language description for RTL development and

logic/layout synthesis from that description. U.C. Berkeley‟s

adoption of standard intermediate format for logic

representation was a key enabler for Intel (and others) to

develop higher-level description languages. Amazingly,

Intel didn‟t replace iHDL until 2005 with Verilog simply

because of its expressive completeness and effectiveness for

synthesis, i.e. a 20 year life to the language.

C. Intel's first standard Cell Library

The vision of automatic conversion of RTL to layout

hinged also upon the existence of a standard cell library. The

library cells had to fit multiple tools: they had to have a

standard “height” and ports to enable automatic placement

and routing. Their delay characteristics had to be modeled

for static timing analysis, and the whole library had to serve

as input to the logic synthesis tools. Beyond this, a decision

was made to develop a single library for use by multiple

design teams across Intel, and gain productivity due to the

large-scale reuse and modularity. Given the long history of

individual transistor optimization at Intel, getting agreement

on standard cells was no small assignment.

Jim Nadir in Corp CAD was given the assignment to

create the common cell library, working closely with people

at Intel's Technology Development group in Oregon. This

turned out to be one of the more difficult and political

assignments anywhere in the company at the time, as each

project group in the company wanted to have some unique

cells. The resistance to a standard cell library sounds absurd

today, when libraries are offered to design houses as the

basic access interface to semiconductor manufacturers.

D. Intel's adaptation of logic synthesis from. Berkeley

 We decided that our RLS system would be based on a tool

called MIS (Multi-level Logic Interactive Synthesis System)

[14], which was actually an experimental workbench which

was being developed by the graduate students at Berkeley for

executing various restructuring operations on combinational

logic blocks. Gary, our liaison person, was regularly sending

software releases of MIS from Berkeley, CA to the Intel

 6

CAD team in Haifa, Israel. The team in Haifa wrote software

programs to perform a series of tasks: compile iHDL models

into intermediate data structures, decompose the compiled

blocks into separate combinational blocks and sequential

elements (latches or flip-flops), feed each combinational

block into MIS for logic minimization (the output was a

network of generic NAND gates), convert the generic form

into a combination of actual gates from the library, and

combine all the results along with the sequential elements

into a final netlist, which could be handed over to the layout

synthesis tools. The library mapping step was developed by

U.C. Berkeley at our request [15], as it was essential for our

program.

A key challenge of applying logic synthesis to our

industrial design was the clocking style: Intel designs

commonly used transparent latches to allow more flexibility

in the amount of logic levels between state elements.

Furthermore, skew penalties apply only once to a loop of

transparent latches, rather than to every sampling element as

with flip flops where the "hold time" is wasted in each flop.

Finally, latches were smaller. Yet this introduced

complexity for synthesis in coping with a two-phase

clocking system, both at the logic level as well as during

place-and-route. As design debate raged then (as it does

now) about whether to flop or to latch in any given design,

our CAD programs had to cope with both. We also needed to

address timing, parasitic estimation and the automated sizing

of gates. To do this we used the internally generated tool

called CLCD [10]. In addition to CLCD, we also developed a

central timing tool called TISS which managed the global

timing signal requirements. Some of these would be

generated automatically from the synthesis, some would be

globally determined by external requirements and some were

highly optimized design signals such as critical datapath

signals that were highly optimized by manual circuit design

and layout approaches.

Much of the RLS integration/development effort was done

in Israel due to the central role that the CLCD tool played

and the relative stability of the other tools in the flow. Pat

Gelsinger recalls some of the sensitivity associated with

working across a geographical and cultural barrier. He says:

“I demanded the CLCD team work directly for me as I knew

how central it was to the overall flow. Mike Aymar, who ran

corporate CAD at the time, refused claiming I needed to

learn how to manage indirectly and through influence. I

wanted to kill him at the time knowing the Israeli‟s were

tough and remote and I didn‟t have time for such nonsense if

we were going to pull the overall RLS system off in time for

the 486 program to start up on it. It was a valuable learning

and development experience for me as a manager, even if I

despised Aymar for at least a year for making me live

through such a challenging management experience”.

Aymar put a strong emphasis on continually pulling the

teams together, between Oregon, California and Israel. He

recalls: "This placed significant demands on people's

personal lives as they had to spend quite a bit of extended

time in remote sites from their home site. It worked though,

and overall pretty well. In those days I got hooked on email. I

remember describing to Andy Grove how amazing it worked

in allowing folks to communicate between various sites and

time zones. He didn't buy it at the time. This was one of the

rare times, maybe the only time I anticipated the importance

of an emerging trend before he did!"

E. Physical design automation in RLS

With the advent of multi-layer metal process technologies,

layout synthesis became competitive with manual layout

artwork. The complexity of creating dense designs now

made automation more suitable and acceptable to engineers.

At the time, Intel still used manual effort to generate more

regular structures such as memories and datapath, but control

logic was synthesized both at the logic and layout levels.

Place and route algorithms came from Alberto‟s students at

U.C. Berkeley: TimberWolf used simulated annealing and

was directly and heavily used to create optimized

placements. While routers were written for industrial use,

the algorithms were heavily based on technology from

Alberto, the infamous YACR2 algorithm [11] and the

Chameleon [16] multi-layer approach by Doug Braun (who

joined Intel in 1987 and wrote most of the routing

compaction algorithms).

The physical design automation software was written in

MainSail, as were most CAD tools at Intel at the time, and

the team produced a series of capabilities led by Manfred

Wiesel. The DAPR [17][18] standard-cell tool placed and

routed blocks of several thousand standard cells in

double-back rows (shared power supply) with diffusion

sharing, routing over the cell, and double-layer metal

technology. For the first time on the 486, we had developed a

full-chip floorplanning and assembly tool called ChPPR [19]

which used a ½ design rule boundary abstraction to create

correct-by construction abutting block placements, over the

cell routing, and a hierarchical global abutment and

connectivity check that bypassed traditional connectivity

verification [13] which was orders of magnitude faster by

eliminating layout extraction. The ChPPR hierarchical tool

was actively used on mainstream microprocessors at Intel

until about 2005, almost twenty years.

F. Complete RLS flow for Random logic synthesis

The combination of all these tools was stitched together

into a system called RLS which was the first RTL to layout

system ever employed in a major microprocessor

development program, although similar synthesis projects

were implemented at several other companies in the 1980s.

RLS was used only for control logic in the 486 chip,

covering the most complex and tedious logic design effort,

while the highly regular data path was done manually for

achieving high density and speed.

RLS succeeded because it combined the power of three

essential ingredients:

 CMOS (which enabled the use of a cell library)

 A Hardware Description Language (providing a

convenient input mechanism to capture design intent)

 7

 Synthesis (which provided the automatic conversion

from RTL to gates and layout)

This was the "magic and powerful triumvirate". Each one of

these elements alone could not revolutionize design

productivity. A combination of all three was necessary!

These three elements were later standardized and integrated

by the EDA industry. This kind of system became the basis

for all of the ASIC industry, and the common interface for

the fab-less semiconductor industry.

Figure 2: Intel486 Processor -- counter-clockwise from top-left: memory

interface, 8k unified cache, floating point unit. At the bottom right is the

decode logic, microcode ROM at bottom all mostly hand-craft, then going
up split into data-path on left (hand-craft) and control on right (all synthesis

with a small hand-craft section in middle of die), crossing control signals

handled by full-chip assembly. Photo courtesy of Intel Corporation.

At the end of the design, Pat, Gene and Alberto were

featured in a video that Intel distributed worldwide to

universities [20]. The video described how microprocessor

design was done at Intel, and how we had revolutionized

CAD by working with Alberto‟s team to bring in new

technology and delivering stunning acceleration in the 486

program. Our commercial to academic collaboration was

widely recognized in the industry as extremely effective. As

part of that video Pat joked about that "small school in the

Bay". Being a Stanford graduate, a partnership with U.C.

Berkeley might be a bit unexpected. However, with our US

to Israel, U.C. Berkeley and commercial to university

collaborations, we had created an extraordinary sense of

teamwork crossing numerous unwritten barriers to diversity

and creativity.

V. DESIGN ENVIRONMENT OF PENTIUM PROCESSORS

The 486 processor was followed by Pentium, Pentium Pro

and more advanced generations, which integrated numerous

architectural extensions and continuously increased

complexity. It is interesting to note that the same basic

design methodology and design flow has remained in effect

through all of those generations, while the initial set of tools

were replaced by more robust and better integrated tool sets.

As the EDA industry has matured, some of the in-house tools

were replaced by commercial tools. Starting at the Pentium

generation, the two-phase clocking scheme was largely

replaced by a single-clock and master-slave flip-flops, which

were simpler to synthesize and check, and are easily

supported by commercial tools. RTL remains the primary

entry point into the design cycle. No higher level synthesis

has emerged in the design of processors, although higher

level models are used in defining and verifying system

architectures.

The first Pentium was a superscalar microprocessor

design and the micro-architecture included new features like

microcode-based instructions, 64-bit fast external data-bus

and a completely revamped Floating Point Unit with

unprecedented levels of performance (e.g., the FMUL was

about 15 times higher throughput than in the 486). At 3.1

million transistors, Pentium required stronger EDA

capabilities. Avtar Saini, the Pentium design manager, met

Gadi Singer who relocated from Israel to California in the

summer of 1990, designated to be the next Intel liaison

person in Alberto's group. Avtar talked to Gadi at Intel's

Santa Clara cafeteria on the evening before he drove to

Berkeley, and convinced him to retarget his stay and become

the Pentium DA manager. That shift did not end up a total

negative for the Intel-Berkeley interaction as the Pentium

DA team continued a very deep and effective interaction

with Alberto, Newton, and the rest of U.C. Berkeley team.

 Logic and layout synthesis for the control circuits in the

Pentium could be performed by the RLS flow, and was no

longer a problem. The productivity bottleneck for the

Pentium design was mainly in the much more complex

datapath circuits, which were still designed at the schematic

level, by manual conversion of the RTL model. In particular,

the translation of schematics to layout was too slow. The

layout designers were using a new symbolic editor, but due

to well entrenched practices they continued to lay down

wires and gates in a polygon-oriented manner. With a

combination of basic training and a set of automation tools to

aid symbolic layout, productivity tripled in a matter of

weeks. This was an important lesson for the future, that the

human factor is a major aspect in getting value out of new

capabilities.

 8

Manually-designed datapath circuits had to be checked to

verify that their behavior was identical to the RTL model.

This area required substantial investment in developing test

vectors that would be executed on both the schematic and

RTL and cover all functionality branches with high

coverage. Simulating the schematics at switch-level was a

major sink of computing resources, and incomplete coverage

left holes in verification that were manifested as circuit bugs.

Gadi developed a new technology to formally and

completely validate the correlation between schematics and

RTL. It was a combination of two existing capabilities in a

brand new context. First, the datapath circuit schematics

were automatically analyzed for their logic expressions and

translated into RTL representation [10], [21]. Then, the

extracted logic models (in iHDL) were fed into the logic

synthesis programs co-developed with Alberto's group,

which could take two logic descriptions, turn them into

canonical form and compare them mathematically. By using

this new Schematic Formal Verification (SFV) functionality,

all circuits that reside between latch/memory elements could

be fully verified against their original RTL descriptions

without a single simulation cycle. This removed a whole

domain of investment during the Pentium duration, reducing

test development for Schematic Verification to zero,

reducing the run time to a fraction of the previous dynamic

verification, and increasing the quality level towards zero

schematic mismatches.

 Still, functional verification of the full chip RTL model

has grown non-linearly with the size of the processor. The

importance of verification was exemplified by the infamous

“Pentium FDIV bug”, where a rare and minute numerical

inaccuracy in some mathematical calculation has created a

business crisis. The technical challenge then was to formally

verify floating-point arithmetic logic as well as all associated

micro-code to be functionally correct. This spawned another

phase of Intel‟s close collaboration with academic

researchers [22] (though not with a U.C. Berkeley emphasis)

which led to the creation of the Intel Strategic CAD Labs.

Formal verification looked like a promising approach. In

principle, this is a static method which examines the design

without simulating its behavior over time and does not

require test inputs. However, the promise did not fully

materialize. Functional equivalence checking of RTL to

gates has been added to the design flow as a static check.

Widely used at Intel, SALT and PEPPER are two internally

developed tools for combinational and sequential

equivalence checking respectively. However, dynamic

verification remains the main way to address the functional

verification problem. Formal techniques were helpful for

property checking by simulation instrumentation (tracking

violation of formally specified properties). RTL simulations,

carefully designed to “cover” the enormous space of

processor states and logical conditions, remain the primary

verification vehicle, and they still consume more than 80%

of the computing resources.

Yet another area which became critical in the Pentium era

was full chip timing and modeling of interconnects for static

timing analysis. In previous products, smaller circuits were

designed using accurate extractions, but large static timing

analysis was based on a simplified lumped capacitance

extraction model. However, this was insufficient to support

the aggressive timing requirements and the new cross-unit

interdependencies that introduced many long-haul signals.

Distributed RC extraction and modeling was introduced for

the Pentium, as well as the power grid analysis.

It is important to note that since the 1990s a very

significant productivity gain was achieved by increasing the

computational power available to design teams. It is

important to consider the computing environment at Intel

design centers. Interestingly, beginning with the 386

development Intel began employing UNIX as its primary

engineering development environment given its more

flexible and engineering oriented environment. In fact, Pat‟s

entry to the design team was because of their zeal for UNIX.

The 386 design team was fed up with the DEC 20 and the

IBM CMS environment, and was highly attracted to the

flexibility of the UNIX environment. However, the only

machine big enough at the time (and available) was the

IBM370-168, later replaced with 3081. Given Pat was a bit

of a UNIX hacker at the time, he set up the entire design team

inside of his CMS account which was running the UTS

UNIX environment from Amdahl. Thus, he was „root‟ on the

UTS environment for the entire 386 design team. Everyone

was extremely motivated to get to UNIX and thus quickly

overlooked Pat's naiveté in logic design as a way to get away

from the Corporate IT environment. “Live Free or Die”

UNIX license plates commonly adorned design member‟s

offices.

Late in the 486 design and entirely for the Pentium

generations Intel‟s whole computing environment was

moved to local UNIX workstations. In addition to the

interactive performance, the design team was extremely

motivated to develop the 486 on 386 machines, Pentium on

486 machines and so on. The functional simulations could be

easily partitioned into different jobs for running on different

workstations. A major invention at Intel was called

NetBatch. The idea was to utilize all of the engineering

workstations at Intel world-wide as a virtual pool for running

verification tasks in parallel, exploiting time-zone

differences among sites. This is conceptually similar to grid

and cloud computing which have become commercially

available several years later.

 9

Figure 3: Intel Pentium Processor – counter clockwise from top-left:

floating point unit (hand crafted datapath on the left and synthesized

controls on the right). The middle of the die consists of the primary datapath
(handcraft on the right) with a control section on the left (all synthesis) with

a channel for chip assembly. The top right consists of an 8K data cache.

The bus interface logic resides below the data cache. The 8K instruction
cache occupies the lower right of the die. The instruction fetch and the

branch target buffer memory are on the lower left. The microcode ROM and

logic were drawn below the floating point unit. Photo courtesy of Intel
Corporation.

VI. DISCUSSION AND TRENDS

At each step of the CAD evolution, higher productivity

was enabled by increased automation, which leveraged

increasing compute capacity, higher abstraction, higher

regularity, more usage of hierarchy, and a more disciplined

and restrictive methodology.

In the evolution we have described, using RTL instead of

schematics was an example of higher abstraction. Using a

cell library was an example of higher regularity. Hierarchical

decomposition ("divide and conquer") was achieved when

complex problems were divided into independent pieces

(e.g. separation of logic verification from timing verification,

separation of logic synthesis from library mapping). This

decomposition led to specialization in the expertise of

engineers: for example, due to RTL and synthesis, logic

designers have become programmers.

Examples of a restrictive methodology are numerous: the

synchronous design paradigm, the specific iHDL language

design for synthesis, the cell library, static CMOS, all

involve some self-imposed restrictions as part of the

engineering discipline. Disciplined restrictions are essential

in every methodology. However, the introduction of new

methods and tools did not proceed smoothly, but rather

encountered skepticism and resistance from designers who

did not want to give away their work habits, their control of

details and their wild creative "rights". They did not want to

accept the standards/restrictions of new methodologies

(which were chosen in order to save verification and allow

automation). This kind of conservatism goes together with

risk-avoidance, as people stick to their familiar methods and

tools, trying to minimize risks from large scale engineering

programs.

It is also interesting that while manufacturing technology

scaling proceeded predictably via coordinated efforts, with

Moore's law and Dennard's theory as a top-down roadmap

and a strategic guideline, the evolution of CAD and design

methodology happened bottom-up and via numerous

controversies.

Finally, many of the breakthroughs described in this paper

were only accomplished by significant cross-discipline

cooperation. The design teams took significant risks in

embracing new methods that were yet to be proven. Design

tools were being invented simultaneously with the design

team‟s requirements.

Collaboration between Intel, Alberto and U.C. Berkeley

continues to this day in a broad range of areas of computer

architecture and in particular in the area of platform-based

design. It is very likely that in order to achieve the next step

function in design productivity, people in the electronic

design community will have to take such radical

codevelopment risks once again in large scale engineering

programs where failure is not an alternative. With such risky

endeavors, the “era of heroes” may be upon us once more.

ACKNOWLEDGMENTS

The authors wish to thank their many collaborators on the

design teams from across Intel, U.C. Berkeley. Such friends

and memories stand as some of the finest of our collective

careers. Further, such an overview paper is prone to errors of

memory. While the authors have attempted to be as accurate

as possible, we are certain that errors of recollection exist

and there are significant contributions that should be

recognized and better chronicled for a better history of CAD

and microprocessor development.

REFERENCES

[1] A.S. Grove, Only the Paranoid Survive: How to Exploit the Crisis

Points that Challenge every Company, Doubleday 1996.

[2] G. Moore, “Cramming more components onto integrated circuits,”
Electronics, Vol. 38, No. 8, April 19, 1965.

[3] T. Quarles, A. R. Newton, D. 0. Pederson, and A.

Sangiovanni-Vincentelli, “SPICE 3BI User‟s Guide”, Univ. of Calif.,
Berkeley, Apr. 1987.

[4] C.R. Wilcox, M.L. Dagcforde, G. A. Jirak, “Mainsail Implementation

Overview,” Stanford Computer Systems Laboratory Report No CSL
TR-167, March 1980.

[5] C. Mead, L. Conway, Introduction to VLSI Systems,

Addison-Wesley, 1980. (Out-of-print: pre-print drafts available:
http://ai.eecs.umich.edu/people/conway/VLSI/VLSIText/VLSIText.html)

[6] K. Tham, R. Willoner, D. Wimp, “Functional Design Verification by

Multi-Level Simulation,” Proceedings 21st Design Automation Conference,
1984, pp 473-478.

[7] R. E. Bryant, “MOSSIM: A switch-level simulator for MOS LSI,”

Proceedings of the 18th Design Automation Conference, 1981, pp 786-790.
[8] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L.

Sangiovanni-Vincentelli, Logic Minimization Algorithms for VLSI

Synthesis, The Kluwer International Series in Engineering and Computer
Science, Vol. 2, Boston, MA: Kluwer Academic Publishers, 1984.

[9] G. D. Hachtel, A. L. Sangiovanni-Vincentelli, and A. R. Newton,

“Some results in optimal PLA folding (Invited Paper),” in Proc. IEEE Intl.
Conf. on Circuits and Computers (ICCC '80), Vol. 2, New York, NY: IEEE,

1980, pp 1023-1027.

http://ai.eecs.umich.edu/people/conway/VLSI/VLSIText/VLSIText.html
http://portal.acm.org/citation.cfm?id=577427
http://portal.acm.org/citation.cfm?id=577427

 10

[10] A. Kolodny, R. Friedman, and T. Ben-Tzur, “Rule-based

Static Debugger and Simulation Compiler for VLSI Schematics,”
Proceedings of the IEEE International Conference on Computer-Aided

Design (ICCAD), Santa Clara, CA, Nov. 1985.

[11] J. Reed, A. L. Sangiovanni-Vincentelli, and M. Santomauro: “A New
Symbolic Channel Router: YACR2,” IEEE Transactions on CAD of

Integrated Circuits and Systems, 1985, pp 208-219.

[12] C. Sechen, A. L. Sangiovanni-Vincentelli. “TimberWolf 3.2: A New
Standard Cell Placement and Global Routing Package,” Proceedings 23rd

Design Automation Conference. 1986, pp. 432-439.

[13] T. J. Wagner, “Hierarchical Layout Verification,” Proceedings 21st
Design Automation Conference, 1985, pp 484-489.

[14] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R.

Wang, "MIS: A multiple-level logic optimization system," IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. CAD-6,

no. 6, Nov. 1987, pp 1062-1081.

[15] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and A.
Wang, “Technology mapping in MIS,” Proceedings of the IEEE

International Conference on Computer-Aided Design ICCAD-87,

November 1987, pp 116-119.
[16] D. Braun, J. Burns, S. Devadas, K. H. Ma, K. Mayaram, F. Romeo, A.

L. Sangiovanni-Vincentelli, “Chameleon: A New Multi-Layer Channel

Router,” Proceedings 23rd Design Automation Conference, 1986, pp
495-502.

[17] M. Rose, M. Wiesel, D. Kirkpatrick, and N. Nettleton, “Dense,

Performance Directed, Auto Place and Route,” IEEE Custom Integrated
Circuits Conference, 1988, pp 11.1.1-4.

[18] M. Rose, N. Papakonstantinou, G. Wellington, D. Kirkpatrick, and M.
Wiesel, “Synthesis for High Performance Random Layout,” Proceedings

IEEE International Symposium on Circuits and Systems, 1990, pp 885-889.

[19] S. Meier, N. Nettleton, D. Kirkpatrick, and D. Braun. “ChPPR - Chip
Planning, Placement and Routing,” IEEE Custom Integrated Circuits

Conference, Section 2, 1990.

[20] G. Hill, “Design and Development of the Intel 80386
Microprocessor,” (video-recording) University Video Communications,

Stanford, CA, 1988.

[21] D. Fischer, Y. Levhari, and G. Singer, "NETHDL: abstraction of
schematics to high-level HDL,” Proceedings of the Conference on European

Design Automation, 1990, pp 90-96.

[22] Y. Chen, E. M. Clarke, P. Ho, Y. V. Hoskote, T. Kam, M. Khaira, J.
W. O'Leary, X. Zhao, “Verification of All Circuits in a Floating-Point Unit

Using Word-Level Model Checking,” Proceedings of Formal Methods in

Computer-Aided Design, 1996, pp 19-33.

Pat Gelsinger is President and COO for

EMC Corporation„s Infrastructure

Products since 2009. Pat had numerous

roles for Intel in his near 30 years with

the company including, Sr. VP and GM

of Digital Enterprise Group, First ever

CTO for Intel, CTO for Intel

Architecture Group, GM of Desktop

products, Design manager for the

Pentium Pro and the 80486, Architect of the 80486, CAD

Logic Methodology manager and designer on the 80386. Pat

has a Masters in EECS from Stanford, a BS in EECS from

Santa Clara and an honorary doctorate from William Jessup

University. He has received a variety of industry recognition

awards, published several books and many papers and is an

IEEE Fellow. He is married with four adult children.

Desmond Kirkpatrick is a Principal

Engineer responsible for Intel‟s research

roadmap in design efficiency. From

1991–1999, he was a member of the

Pentium Pro and Pentium 4

microprocessor design teams,

contributing to full-chip assembly and interconnect

performance management as well as to the specification of

Intel‟s 130 nm process technology. In 1999, he became

Intel‟s first Technical Liaison to the Gigascale Silicon

Research Center at U.C. Berkeley. In 1986, he joined Intel

where he contributed to hierarchical, full-chip timing

analysis, floor-planning, layout synthesis, and extraction,

earning two Intel Achievement Awards. He received the

S.B. degree in electrical engineering from Massachusetts

Institute of Technology in 1986 and the Ph.D. degree in

electrical engineering and computer sciences from U.C.

Berkeley in 1997.

Avinoam Kolodny is an associate

professor of electrical engineering at

Technion –Israel Institute of

Technology. He joined Intel after

completing his doctorate in

microelectronics at the Technion in

1980. During twenty years with the

company he was engaged in diverse

areas including non-volatile memory

device physics, electronic design automation and

organizational development. He pioneered static timing

analysis of processors as the lead developer of the CLCD

tool, served as Intel‟s corporate CAD system architect in

California during the co-development of the RLS system and

the 486 processor, and was manager of Intel‟s performance

verification CAD group in Israel. He has been a member of

the Faculty of Electrical Engineering at the Technion since

2000. His current research is focused primarily on

interconnect issues in VLSI systems, covering all levels from

physical design of wires to networks on chip and multi-core

systems.

Gadi Singer is vice president of the

Intel Architecture Group and general

manager, SoC Enabling Group for Intel

Corporation. Singer joined Intel in

1983, holding a variety of senior

technical and management positions.

He was appointed VP in 1999 and CTO

of Intel Communications Group in

2004, among other accomplishments.

From 2005 through 2007, Singer served as general manager

of the Ultra Mobility Group. Among his prior roles, Singer

was GM of Intel's Design Technology Division, co-GM of

the IA-64 Processor Division and GM of Enterprise

Processors Division. Singer received three Intel

Achievement Awards for his technical contributions. Singer

received his bachelor's degree in electrical engineering from

Technion University, Israel, in 1983 where he also pursued

graduate studies from 1986 to 1988.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1270347

