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Abstract — Necessity has driven the evolution of microprocessor design practices and CAD tools at Intel Corporation, as the 

transistor count has grown by a factor of about 4X each processor generation. In order to cope with the complexity of design tasks, 

Intel's engineers were early adopters and adapters of innovative CAD research from universities. A unique partnership with Alberto’s 

group in U.C. Berkeley during the 1980's has created one of the first industrial-strength synthesis-based design flows, which became the 

prevalent paradigm for the whole electronic industry. This paradigm enabled the semiconductor foundry business model, facilitated the 

proliferation of fab-less semiconductor companies all over the world, while enabling Intel designers to keep pace with Moore’s Law. 

 

I. INTRODUCTION 

 During the 1980's, Intel Corp. transformed itself from a 

semiconductor company producing memory chips into a 

computer company [1].  Intel's transformation was actually a 

part of a revolution in the whole electronics industry: in the 

beginning of the decade, microprocessors were considered as 

toys; the computer industry was dominated by mainframes 

and minicomputers made by vertically-integrated 

companies. By the end of that decade, microprocessors 

became the standard engines for computing platforms, and 

the whole industry was restructured. Many more vendors 

entered the industry, each specializing in different areas. 

 These changes were fueled by the continuous scaling of 

MOS technology, which followed Moore's law. 

Interestingly, in his original 1965 paper [2], Gordon Moore 

expressed a concern that the growth rate he predicted may 

not be sustainable, because the requirement to define and 

design products at such a rapidly-growing complexity may 

not keep up with his predicted growth rate. However, the 

highly competitive business environment drove to fully 

exploit technology scaling. The number of available 

transistors doubled with every generation of process 

technology, which occurred roughly every two years.  As 

shown in Table I, major architecture changes 

in microprocessors were occurring with a 4X increase of 

transistor count, approximately every second process 

generation. Intel‟s microprocessor design teams had to come 

up with ways to keep pace with the size and scope of every 

new project.   
TABLE I: INTEL PROCESSORS 1971-1993 

Processor Intro 

Date 

Process Transistors Freq 

4004 1971 10 um 2,300 108KHz 

8080 1974 6 um 6,000 2 MHz 

8086 1978 3 um 29,000 10 MHz 
80286 1982 1.5um 134,000 12 MHz 
80386 1985 1.5 um 275,000 16 MHz 

Intel486 DX 1989 1 um 1.2 M 33 MHz 
Pentium 1993 0.8 um 3.1 M 60 MHz 

 

This incredible growth rate could not be achieved by 

hiring an exponentially-growing number of design 

engineers. It was fulfilled by adopting new design 

methodologies and by introducing innovative design 

automation software at every processor generation. These 

methodologies and tools always applied principles of raising 

design abstraction, becoming increasingly precise in terms 

of circuit and parasitic modeling while simultaneously using 

ever-increasing levels of hierarchy, regularity, and automatic 

synthesis. As a rule, whenever a task became too painful to 

perform using the old methods, a new method and associated 

tool were conceived for solving the problem. This way, tools 

and design practices were evolving, always addressing the 

most labor-intensive task at hand.  Naturally, the evolution of 

tools occurred bottom-up, from layout tools to circuit, logic, 

and architecture. Typically, at each abstraction level the 

verification problem was most painful, hence it was 

addressed first. The synthesis problem at that level was 

addressed much later. 

This paper is about the co-evolution story of design 

methodologies, practices and CAD tools in Intel's design 

environment, as it had to cope with growing complexity 

since the turbulent 80's and until recent years.  It is 

interesting to note that at the beginning of this process the 

engineering culture was advocating a tall, thin designer. 

Nowadays, VLSI engineers are highly specialized in 

different areas of the design discipline, where specialized 

tools are used in each area. This is similar to the restructuring 

of the whole computer industry from vertical to horizontal. 

In the 80‟s, the CAD industry itself was nascent at best. 

While some areas like schematic or layout entry had solid 

commercial offerings, the rapidly evolving complexity of 

this young industry gave little hope from commercial tool 

offerings at the time. Thus, most tools emerged from internal 

development, external university research or often a 

coevolving blend of internal work with external tools and 

research. While there were a number of corporate university 

relationships at the time, none was as significant as that of 

Intel with U.C. Berkeley. In particular, Alberto and his 

collaborative research team consisting of Prof. Robert 
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Brayton, Prof. Richard Newton and many graduate students, 

had developed a strong partnership with Intel and its 

microprocessor teams. This long partnership with Intel 

stands as one of the most fruitful relationships in EDA with 

fundamental breakthroughs in multiple elements of 

microprocessor logic, synthesis and layout. Many of these 

early successes resulted in enormous benefit to Intel and 

eventually made their way into the EDA industry as key 

enablers of many EDA tools and today‟s fab-less /ASIC/SoC 

semiconductor industry. 

 

II. DESIGN ENVIRONMENT FOR THE EARLY X86 PROCESSORS 

 

A. Inherited tools from memory chips 

Intel's initial design environment was formed to serve the 

needs of memory chips. During the 70's, the primary CAD 

tools were layout capture and verification tools, used by 

draftsmen to generate and check mask layouts. These tools 

were put in place because the layouts were already too 

complicated to develop and maintain on solely paper or 

Mylar, hence polygon-based layout representations had to be 

stored and handled by computerized tools, initially on 

dedicated systems such as the Calma or Applicon. 

Engineers were doing circuit and logic designs at the 

transistor level, usually by hand, producing hand-drawn 

schematics at the transistor level for the layout designers. 

The engineers did most of their design work using pencil and 

paper, but they also had circuit simulation tools derived from 

the industry standard Spice [3] program, which originated 

from Don Pederson‟s group  at U.C. Berkeley, and later on 

refined by Newton, Alberto and students (Intel‟s version was 

known as ISPEC). It was possible to simulate and check 

logic behavior and timing waveforms for small circuits, up to 

a few hundred transistors.  

As Intel started doing logic products, including the first 

microprocessors (the Intel 4004, 8008, and 8080), design 

engineers inherited all of those tools and methods which 

were initially conceived for memory chip design.  Some 

engineers preferred to perform logic design using gate-level 

schematics, but this encountered some push-back from the 

layout designers who were familiar with transistor 

representations, which directly matched the layout. 

Translation of logic gate symbols into transistor structures 

was not a trivial task, because the early microprocessors and 

numeric co-processors (8087, 80387) were designed in 

NMOS technology. Circuit operation relied on device 

strength ratios, so each gate symbol had to be accompanied 

with specific transistor sizes. In addition, the prevailing 

design style supported many complex gate pull-down 

devices, pass transistors for clocking structures, dynamic 

circuits and numerous other clever and often "tricky" 

structures which could not be cleanly represented by a 

simple logic gate abstraction. Consequently, even logic 

design was actually performed by engineers at the transistor 

level (a.k.a. switch-level), such that even well-known 

techniques such as logic minimization by Karnaugh maps, 

which were taught at engineering schools, were not widely 

used by VLSI engineers in those NMOS days. The clever 

NMOS design tricks typically resulted in superior densities 

albeit with commensurate complexities they inherently 

carried with them. 

 

B. Evolution of Intel's logic design and RTL modeling 

As it became too error-prone to debug logic behavior of 

processor circuits by hand, and too time-consuming to verify 

the logic behavior by circuit simulation using continuous 

waveforms, people at Intel were looking for an executable 

functional model. At that time, the mainframe computer 

industry was already using gate-level logic simulators, 

which used variable-delay models for TTL gates (made with 

bipolar junction transistors). An attempt to adopt logic 

simulation at Intel resulted in a failure: A gate-level logic 

simulator called LOCIS was developed at Intel in the mid 

1970's, and the 8086 design engineers converted their 

transistor-level schematics into an equivalent logic model 

using LOCIS gate models. However, the generic gate models 

of the simulator did not match the tricky MOS logic 

structures of the 8086 schematics, and its gate-delay models 

burdened the users with too many irrelevant timing-related 

messages and glitch warnings. 

After this experience, engineers turned to build functional 

models with general-purpose programming languages. One 

of the first Register-Transfer Level (RTL) models at Intel 

was developed for the 8087 numeric co-processor in 1978. It 

was a FORTRAN program which described the logic 

behavior of circuits, as extracted by human interpretation of 

the transistor level schematics. It was used for verifying and 

debugging the microcode programs stored on the chip.  

In the design of the 80286 processor, the starting point 

was already a functional RTL model. This model was 

manually translated into schematics in a top-down fashion, 

rather than the other way around! The model was written in 

MainSail [4] an Algol-like general-purpose programming 

language that derived from Stanford‟s AI Language (SAIL). 

RTL modeling and simulation by a compiled program in a 

standard language (where logic propagation between gates is 

actually assumed to occur without any delay) was made 

possible because of a strictly-synchronous design 

methodology, with two non-overlapping clock signals Phi1, 

Phi2. During each phase of the clocks, new signal values can 

propagate in the logic network, and the logic designer only 

cared about the final, steady-state values which were latched 

at the end of the clock phase. As a separate task, someone (a 

circuit designer) had to ensure that the cycle-time was long 

enough for the circuit to reach a steady state in each phase. 

The RTL program simulated the circuit behavior at a 

cycle-by-cycle timing resolution by invoking code for each 

clock phase in turn. This approach was inspired by Mead and 

Conway's famous book [5]. Today, this approach seems 

trivially obvious. However, in that era, logic design was 

typically done in the context of detailed timing-dependent 

behavior, where both timing and logical function were 

verified simultaneously. With the synchronous 

methodology, separation of the functional simulation from 

the timing issues enabled successful large scale design and 

created two kinds of engineers, who could worry about two 
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separate problems: the logic designers focused on the 

functional correctness problem, and the circuit designers 

focused on transistor sizes, voltage levels, parasitic 

capacitances and gate delays.  Separation of concerns like 

this continues to be a powerful mechanism in design 

automation. 

Taking advantage of MainSail's support of dynamical 

linking of separately compiled modules, RTL models of 

large circuit blocks were coded as program modules, and a 

simulator, SIM [6], was developed to control and monitor 

their execution.  The first Intel design to use such a scheme 

was the iAPX 432 chip set, developed in Oregon and 

released in 1981.   

In the 80286 design, the blocks of RTL were manually 

translated into the schematic design of gates and transistors 

which were manually entered in the schematic capture 

system which generated netlists of the design. The 

schematics would be simulated via the switch-level 

simulator MOSSIM [7] and compared to the RTL design on 

a per clock per signal basis. This was a laborious procedure 

but verified the logical integrity of the RTL with that of the 

entered schematic design. Design changes were always 

challenging as they required the synchronization of the 

changes into RTL and schematic databases. 

There was a separate path for the handful of 

programmable logic arrays. In this case the PLA functions 

were optimized using the internal LOGMIN tool which 

automated the logic minimization process. The same 

resulting PLA codes were loaded into the RTL as a macro 

function and into the schematic system and used to program 

the PLA arrays into the layout. Much of the early automation 

in PLA synthesis at Intel was enabled by Alberto‟s U.C. 

Berkeley research in two-level logic minimization by 

Espresso [8] and physical automation (e.g. PLA folding [9]) 

to make large control circuit synthesis using PLAs practical.  

 

C. The issue of performance verification 

The RTL-based functional design methodology has 

separated the issue of timing from the issue of functional 

correctness, assuming that synchronous methodology was 

enforced, and that the clock is slow enough for all logic paths 

to settle to a steady logic state within each clock phase. 

However, during this time critical paths were only modestly 

considered during the design phase largely due to lack of 

tools and engineer‟s knowledge of the design and the „likely‟ 

critical areas. The large majority of critical paths were not 

fixed until they were discovered on silicon. The clock could 

be slowed down until no critical path failure existed. Then 

the clocks frequency was sped up, but specific clock pulses 

were  extended to help isolate the failing circuit. For 

example, the 49
th

 clock pulse during the test program could 

be made longer, to allow completion of a slow logic 

operation somewhere in the chip.  This was done by a special 

clock stretcher debugging equipment.  However, the 286 

design had many second sources and very quickly those 

manufacturers were finding clever ways to speed up their 

designs to rival Intel‟s. This led to a minor crisis within Intel 

as the industry was quickly putting pressure on Intel in the 

very architecture and design it created, and the tools to dig 

into this problem were weak and laborious. 

This crisis triggered the introduction of Static Timing 

Analysis into Intel, and development of the Coarse-Level 

Circuit Debugger (CLCD) tool [10]. It was a schematic-level 

analysis tool for electrical rule checking and critical path 

finding, which could discover circuit-levels bugs and resolve 

device sizing issues. It could also extract the logic 

functionality of transistor-level circuit structures and 

represent them by logical expressions. However, the new 

capabilities were applied in the next generation 

microprocessor, the 386, which was no longer in NMOS but 

rather in CMOS. 

III. THE 386 DESIGN ENVIRONMENT 

 

In moving to the 386 during 1982, the design team quickly 

ported the 286 design modules to the 386 design 

environment as a starting point. In particular, for the 

complex memory protection model of the 286, some of these 

blocks would make it to the final 386 with minimal changes. 

However, most of the remainder of the design went through 

radical changes with the move to 32-bit datapath width and 

the introduction of the flat paging model. The design work 

iterated rapidly with the RTL being the center of the logic 

design team‟s efforts.  RTL simulation for the first time 

dominated the overall computing load of the design team as 

logical correctness became the focus of the team's activity.  

With the team focused on RTL design and the substantial 

complexity increase from the 286, the question was how to 

more effectively provide the translation to schematics and 

the logical representation of the chip. In particular we were 

looking for acceleration of the design process, minimization 

of manual translation errors and handling of the rapidly 

increasing design complexity. With these goals in mind, the 

relationship with U.C. Berkeley and ASV was quickly center 

to our efforts. Albert Yu (manager of the Microprocessor 

Division) and Pat Gelsinger (leading new design methods in 

Corporate CAD at the time) visited Berkeley to explore some 

of Alberto‟s research work and affinity toward our problems 

as well as the ability to partner on these challenges.  

The meeting focused on topics such as the regularization 

of layout and the potential use of YACR (yet another channel 

router)[11], TimberWolf [12], logic synthesis, and potential 

for multi-level logic synthesis, where the path between input 

and output could propagate through several logic gates rather 

than just two as in a PLA. Albert Yu‟s proposition was that 

Intel needed to keep a two year beat to develop a new 

microprocessor and he thought that the only way to keep the 

beat was to introduce new tools and methods. The potential 

of multi-level logic synthesis and of regular layout was fully 

appreciated by Albert and Pat. Albert proposed to support 

the research at U.C. Berkeley, introduce the use of 

multi-level logic synthesis and automatic layout for the 

control logic of the 386, and to set up an internal group to 

implement the plan, albeit Alberto pointed out that 

multi-level synthesis had not been released even internally to 
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other research groups in U.C. Berkeley.    The design 

manager of the project, Gene Hill,  put Alberto on a 

consulting contract to facilitate the above topics as well as 

reviewing the overall floor plan to better understand the 

broader applicability of advanced CAD methods to the 

design. 

 It is important to note that with the 386, the era of CMOS 

began at Intel. While we were far from the power wall of the 

early part of the 2000 decade, NMOS power was increasing 

at a near exponential rate. CMOS brought with it a 

reasonable P device and a strong bias towards 

complementary logic structures to eliminate steady-state 

power dissipation, achieve symmetry between rise and fall 

times, and get full-swing logic voltage levels regardless of 

transistor sizes and transition speeds. With CMOS, there was 

much less benefit to gain from a cleverly ratioed design. 

While there were still arguments for complex domino type 

design approaches, the inherent nature of CMOS design 

created a strong move toward using a standard set of gates 

from a cell library, rather than individually-sized and 

customized gate structures which were common in the days 

of NMOS. 

Working with a cell library, we could employ U.C. 

Berkeley tools like Espresso for logic minimization and 

TimberWolf for simulated annealing of cell placement. We 

were quickly demonstrating large regular blocks of 

reasonably well optimized logic designs. While the idea of 

simulated annealing seemed rather chaotic at best, the results 

were quite good. An oft-repeated lesson in science and 

engineering is to apply proven techniques from other fields 

to similar problems in your field. In this case, simulated 

annealing proved to be the perfect answer. Of course, with 

ample computing cycles made available on the IBM 3081, 

one could play with the parameters offered at length to find 

ever more optimal layout results. Post global placement by 

TimberWolf, specific cell placement occurred in 

standardized rows of standard cells and routing channels 

with a tool called P3APR developed by Manfred Wiesel who 

came to Intel from the BellMac project at AT&T. 

In fact, the results were good enough that the design team 

eliminated all the small PLAs from the 286 and simply 

converted them to interconnected logic gates (i.e. random 

logic). This made the logic blocks larger with greater 

potential for further logic design optimization. Only the I/O 

ring, the data and address path, the microcode array and three 

large PLAs were not taken through the synthesis tool chain 

on the 386. While there were many early skeptics, the results 

spoke for themselves. 

With layout of standard cell blocks automatically 

generated, the layout and circuit designers could myopically 

focus on the highly optimized blocks like the datapath and 

I/O ring where their creativity could yield much greater 

impact. Further, these few large blocks greatly simplified the 

overall global chip floor planning effort allowing a much 

more rapid final chip assembly with far fewer errors. 

Verification of final connectivity was performed by an 

in-house program called CVS written by Todd Wagner [13]. 

While today the 386‟s 275,000 transistors seem trivial, at the 

time, it was a monumental feat breaking ground in 

performance, ISA compatibility and design methodology.  

 

 
 
Figure 1: Intel 80386 Processor – Taking a clockwise path around the chip: 

The upper right was bus interface and instruction decode, lower right was 

test and control logic and the large microcode ROM, the lower left was the 
data path for primary instruction executive. Moving up the data stack on the 

left of the chip was the segment and virtual address generation and finally in 
the top left was paging and final physical address generation. Synthesized 

random logic blocks stand out clearly in the middle given their row of cells 

and routing channel characteristics.  Photo courtesy of Intel Corporation. 

 

IV. THE 486 DESIGN ENVIRONMENT 

A. The challenge of logic design effort in the 486  

While the 386 design heavily leveraged the logic design of 

the 286, the 486 was a more radical departure with the move 

to a fully pipelined design, the integration of a large floating 

point unit, and the introduction of the first on-chip cache – a 

whopping 8K byte cache which was a write through cache 

used for both code and data. Given that substantially less of 

the design was leveraged from prior designs and with the 4X 

increase in transistor counts, there was enormous pressure 

for yet another leap in design productivity While we could 

have pursued simple increases in manpower, there were 

questions of the ability to afford them, find them, train them 

and then effectively manage a team that would have needed 

to be much greater than 100 people that eventually made up 

the 486 design team.  

With this challenge in front of us then, several aggressive 

goals were proposed for enabling our small team to tackle 

the 486 design: 

 A fully automated translation from RTL to layout  

 (we called it RLS: RTL to Layout Synthesis) 

 No manual schematic design 

(direct synthesis of gate-level netlists from RTL, 

without graphical schematics of the circuits) 
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 Multi-level logic synthesis for the control functions 

 Automated gate sizing and optimization 

 Inclusion of  parasitic elements estimation 

 Full chip layout and floor planning tools 

 

For executing this visionary design flow, we needed to put 

together a CAD system which did not exist yet. We traveled 

one more time to our now good friend Alberto at U.C. 

Berkeley to extend our previous collaboration with new tool 

development. A liaison person from Intel (Gary Gannot) was 

stationed in Berkeley for two years as a participant in 

Alberto's research team.  

While we were working on the 386, academic CAD 

research was going through a major renaissance at U.C. 

Berkeley.   The original research in CAD there was being 

combined into the “Berkeley Synthesis Project” with focus 

on merging logic synthesis and layout generation efforts.  

After collaboration with Alberto at IBM in 1980-1982 and a 

Berkeley sabbatical in 1985, Dr. Robert Brayton joined the 

U.C. Berkeley faculty full-time in 1987 and the three main 

CAD professors, Alberto, Brayton, and Newton joined 

forces to build what became a highly prolific period in CAD.  

Alberto coined this era as the “age of the heroes”, a “vibrant 

era of creativity and expansion” in his tour de force DAC 

2003 keynote speech. In hindsight, Alberto and his 

colleagues fostered strong industrial collaboration by their 

decision to make the results of U.C. Berkeley research 

(including software systems) freely available to everyone. 

Through this arrangement, the close technical collaboration 

between Intel and the U.C. Berkeley CAD group was able to 

benefit academia and industry, which in turn fueled even 

more research advances.  

 As the 486 project was starting in 1986, Gene Hill 

(Director of microprocessor development) was deliberating 

whether to take the full risk, or work on a conservative plan 

in parallel. Gary recalls: "He asked me if I felt comfortable 

that the code written by the students at Berkeley would be 

reliable enough in a production worthy environment. Since I 

was proud to be part of the MIS team, I immediately 

responded that I felt very comfortable". Finally, Hill decided 

to go for it: he transferred “open requisitions" to hire 15 

engineers from his budget to Corporate CAD department. 

There was agreement by Gene with Albert Yu and Mike 

Aymar (who headed Corporate CAD) to form a central 

methodology development group under Rafi Nave with Pat 

Gelsinger and Jim Nadir at the center of the group. Jim 

Nadir‟s primary focus was on library and physical design, 

Pat Gelsinger was in charge of the methodology and the 

tools, working closely with the CAD teams in US and Israel 

and with U.C. Berkeley and Alberto. He did not expect this 

at the time, but his next assignment would be managing the 

486 design, so he quickly became the customer for the very 

tool chain he was driving. 

 

B. Intel's Hardware Description Language 

A major technical challenge we had to overcome for 

enabling a direct link from RTL to logic synthesis was the 

input language for RTL modeling. Languages like Mainsail 

or general C didn‟t have the formalism required to describe 

synthesizable hardware. Languages like VHDL were in the 

process of being invented at the time but were considered 

hopelessly complex given the broad industry process being 

used to define them.  

Thus, we launched the iHDL effort. A language definition 

specifically with the formalism required for synthesis with 

clear semantics for items like busses, native algebraic and 

Boolean logic functions and the basic control flow 

mechanisms that a logic design required. The iHDL 

language defined by Tzvi Ben Tzur, Randy Steck, Gadi 

Singer and Pat Gelsinger met the bill. In a series of summits 

between Israel, Oregon and Santa Clara in 1985 and 1986 we 

converged on a language definition while the CAD team in 

Israel was developing the language compiler. The result was 

a formal language description for RTL development and 

logic/layout synthesis from that description. U.C. Berkeley‟s 

adoption of standard intermediate format for logic 

representation was a key enabler for Intel (and others) to 

develop higher-level description languages.  Amazingly, 

Intel didn‟t replace iHDL until 2005 with Verilog simply 

because of its expressive completeness and effectiveness for 

synthesis, i.e. a 20 year life to the language. 

 

C. Intel's first standard Cell Library 

The vision of automatic conversion of RTL to layout 

hinged also upon the existence of a standard cell library. The 

library cells had to fit multiple tools: they had to have a 

standard “height” and ports to enable automatic placement 

and routing. Their delay characteristics had to be modeled 

for static timing analysis, and the whole library had to serve 

as input to the logic synthesis tools. Beyond this, a decision 

was made to develop a single library for use by multiple 

design teams across Intel, and gain productivity due to the 

large-scale reuse and modularity. Given the long history of 

individual transistor optimization at Intel, getting agreement 

on standard cells was no small assignment. 

Jim Nadir in Corp CAD was given the assignment to 

create the common cell library, working closely with people 

at Intel's Technology Development group in Oregon. This 

turned out to be one of the more difficult and political 

assignments anywhere in the company at the time, as each 

project group in the company wanted to have some unique 

cells. The resistance to a standard cell library sounds absurd 

today, when libraries are offered to design houses as the 

basic access interface to semiconductor manufacturers.   

 

D. Intel's adaptation of logic synthesis from. Berkeley  

 We decided that our RLS system would be based on a tool 

called MIS (Multi-level Logic Interactive Synthesis System) 

[14], which was actually an experimental workbench which 

was being developed by the graduate students at Berkeley for 

executing various restructuring operations on combinational 

logic blocks. Gary, our liaison person, was regularly sending 

software releases of MIS from Berkeley, CA to the Intel 
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CAD team in Haifa, Israel. The team in Haifa wrote software 

programs to perform a series of tasks: compile iHDL models 

into intermediate data structures, decompose the compiled 

blocks into separate combinational blocks and sequential 

elements (latches or flip-flops), feed each combinational 

block into MIS for logic minimization (the output was a 

network of generic NAND gates), convert the generic form 

into a combination of actual gates from the library, and 

combine all the results along with the sequential elements 

into a final netlist, which could be handed over to the layout 

synthesis tools. The library mapping step was developed by 

U.C. Berkeley at our request [15], as it was essential for our 

program.    

A key challenge of applying logic synthesis to our 

industrial design was the clocking style: Intel designs 

commonly used transparent latches to allow more flexibility 

in the amount of logic levels between state elements. 

Furthermore, skew penalties apply only once to a loop of 

transparent latches, rather than to every sampling element as 

with flip flops where the "hold time" is wasted in each flop.  

Finally, latches were smaller.  Yet this introduced 

complexity for synthesis in coping with a two-phase 

clocking system, both at the logic level as well as during 

place-and-route.  As design debate raged then (as it does 

now) about whether to flop or to latch in any given design, 

our CAD programs had to cope with both. We also needed to 

address timing, parasitic estimation and the automated sizing 

of gates. To do this we used the internally generated tool 

called CLCD [10]. In addition to CLCD, we also developed a 

central timing tool called TISS which managed the global 

timing signal requirements. Some of these would be 

generated automatically from the synthesis, some would be 

globally determined by external requirements and some were 

highly optimized design signals such as critical datapath 

signals that were highly optimized by manual circuit design 

and layout approaches. 

Much of the RLS integration/development effort was done 

in Israel due to the central role that the CLCD tool played 

and the relative stability of the other tools in the flow. Pat 

Gelsinger recalls some of the sensitivity associated with 

working across a geographical and cultural barrier. He says: 

“I demanded the CLCD team work directly for me as I knew 

how central it was to the overall flow. Mike Aymar, who ran 

corporate CAD at the time, refused claiming I needed to 

learn how to manage indirectly and through influence. I 

wanted to kill him at the time knowing the Israeli‟s were 

tough and remote and I didn‟t have time for such nonsense if 

we were going to pull the overall RLS system off in time for 

the 486 program to start up on it. It was a valuable learning 

and development experience for me as a manager, even if I 

despised Aymar for at least a year for making me live 

through such a challenging management experience”. 

Aymar put a strong emphasis on continually pulling the 

teams together, between Oregon, California and Israel. He 

recalls: "This placed significant demands on people's 

personal lives as they had to spend quite a bit of extended 

time in remote sites from their home site.  It worked though, 

and overall pretty well. In those days I got hooked on email. I 

remember describing to Andy Grove how amazing it worked 

in allowing folks to communicate between various sites and 

time zones.  He didn't buy it at the time.  This was one of the 

rare times, maybe the only time I anticipated the importance 

of an emerging trend before he did!" 

E.  Physical design automation in RLS  

With the advent of multi-layer metal process technologies, 

layout synthesis became competitive with manual layout 

artwork.  The complexity of creating dense designs now 

made automation more suitable and acceptable to engineers.  

At the time, Intel still used manual effort to generate more 

regular structures such as memories and datapath, but control 

logic was synthesized both at the logic and layout levels.   

Place and route algorithms came from Alberto‟s students at 

U.C. Berkeley:  TimberWolf used simulated annealing and 

was directly and heavily used to create optimized 

placements.  While routers were written for industrial use, 

the algorithms were heavily based on technology from 

Alberto, the infamous YACR2 algorithm [11] and the 

Chameleon [16] multi-layer approach by Doug Braun (who 

joined Intel in 1987 and wrote most of the routing 

compaction algorithms). 

The physical design automation software was written in 

MainSail, as were most CAD tools at Intel at the time, and 

the team produced a series of capabilities led by Manfred 

Wiesel.   The DAPR [17][18] standard-cell tool placed and 

routed blocks of several thousand standard cells in 

double-back rows (shared power supply) with diffusion 

sharing, routing over the cell, and double-layer metal 

technology. For the first time on the 486, we had developed a 

full-chip floorplanning and assembly tool called ChPPR [19]  

which used a ½ design rule boundary abstraction to create 

correct-by construction abutting block placements, over the 

cell routing, and a hierarchical global abutment and 

connectivity check that bypassed traditional connectivity 

verification [13] which was orders of magnitude faster by 

eliminating layout extraction.  The ChPPR hierarchical tool 

was actively used on mainstream microprocessors at Intel 

until about 2005, almost twenty years.   

F. Complete RLS flow for Random logic synthesis  

The combination of all these tools was stitched together 

into a system called RLS which was the first RTL to layout 

system ever employed in a major microprocessor 

development program, although similar synthesis projects 

were implemented at several other companies in the 1980s.  

RLS was used only for control logic in the 486 chip, 

covering the most complex and tedious logic design effort, 

while the highly regular data path was done manually for 

achieving high density and speed.  

RLS  succeeded because it combined the power of three 

essential ingredients:  

 CMOS (which enabled the use of a cell library) 

 A Hardware Description Language  (providing a 

convenient input mechanism to capture design intent) 
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 Synthesis (which provided the automatic conversion 

from RTL to gates and layout) 

This was the "magic and powerful triumvirate".  Each one of 

these elements alone could not revolutionize design 

productivity. A combination of all three was necessary!  

These three elements were later standardized and integrated 

by the EDA industry. This kind of system became the basis 

for all of the ASIC industry, and the common interface for 

the fab-less semiconductor industry. 

 

 
 
Figure 2: Intel486 Processor -- counter-clockwise from top-left: memory 

interface, 8k unified cache, floating point unit. At the bottom right is the 

decode logic, microcode ROM at bottom all mostly hand-craft, then going 
up split into data-path on left (hand-craft) and control on right (all synthesis 

with a small hand-craft section in middle of die), crossing control signals 

handled by full-chip assembly.  Photo courtesy of Intel Corporation. 

 

At the end of the design, Pat, Gene and Alberto were 

featured in a video that Intel distributed worldwide to 

universities [20]. The video described how microprocessor 

design was done at Intel, and how we had revolutionized 

CAD by working with Alberto‟s team to bring in new 

technology and delivering stunning acceleration in the 486 

program. Our commercial to academic collaboration was 

widely recognized in the industry as extremely effective. As 

part of that video Pat joked about that "small school in the 

Bay". Being a Stanford graduate, a partnership with U.C. 

Berkeley might be a bit unexpected. However, with our US 

to Israel, U.C. Berkeley and commercial to university 

collaborations, we had created an extraordinary sense of 

teamwork crossing numerous unwritten barriers to diversity 

and creativity. 

V. DESIGN ENVIRONMENT OF PENTIUM PROCESSORS 

 

The 486 processor was followed by Pentium, Pentium Pro 

and more advanced generations, which integrated numerous 

architectural extensions and continuously increased 

complexity. It is interesting to note that the same basic 

design methodology and design flow has remained in effect 

through all of those generations, while the initial set of tools 

were replaced by more robust and better integrated tool sets. 

As the EDA industry has matured, some of the in-house tools 

were replaced by commercial tools. Starting at the Pentium 

generation, the two-phase clocking scheme was largely 

replaced by a single-clock and master-slave flip-flops, which 

were simpler to synthesize and check, and are easily 

supported by commercial tools. RTL remains the primary 

entry point into the design cycle. No higher level synthesis 

has emerged in the design of processors, although higher 

level models are used in defining and verifying system 

architectures. 

The first Pentium was a superscalar microprocessor 

design and the micro-architecture included new features like 

microcode-based instructions, 64-bit fast external data-bus 

and a completely revamped Floating Point Unit with 

unprecedented levels of performance (e.g., the FMUL was 

about 15 times higher throughput than in the 486). At 3.1 

million transistors, Pentium required stronger EDA 

capabilities. Avtar Saini, the Pentium design manager, met 

Gadi Singer who relocated from Israel to California in the 

summer of 1990, designated to be the next Intel liaison 

person in Alberto's group.  Avtar talked to Gadi at Intel's 

Santa Clara cafeteria on the evening before he drove to 

Berkeley, and convinced him to retarget his stay and become 

the Pentium DA manager. That shift did not end up a total 

negative for the Intel-Berkeley interaction as the Pentium 

DA team continued a very deep and effective interaction 

with Alberto, Newton, and the rest of U.C. Berkeley team. 

 Logic and layout synthesis for the control circuits in the 

Pentium could be performed by the RLS flow, and was no 

longer a problem. The productivity bottleneck for the 

Pentium design was mainly in the much more complex 

datapath circuits, which were still designed at the schematic 

level, by manual conversion of the RTL model. In particular, 

the translation of schematics to layout was too slow. The 

layout designers were using a new symbolic editor, but due 

to well entrenched practices they continued to lay down 

wires and gates in a polygon-oriented manner. With a 

combination of basic training and a set of automation tools to 

aid symbolic layout, productivity tripled in a matter of 

weeks. This was an important lesson for the future, that the 

human factor is a major aspect in getting value out of new 

capabilities. 
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Manually-designed datapath circuits had to be checked to 

verify that their behavior was identical to the RTL model. 

This area required substantial investment in developing test 

vectors that would be executed on both the schematic and 

RTL and cover all functionality branches with high 

coverage. Simulating the schematics at switch-level was a 

major sink of computing resources, and incomplete coverage 

left holes in verification that were manifested as circuit bugs. 

Gadi developed a new technology to formally and 

completely validate the correlation between schematics and 

RTL. It was a combination of two existing capabilities in a 

brand new context. First, the datapath circuit schematics 

were automatically analyzed for their logic expressions and 

translated into RTL representation [10], [21]. Then, the 

extracted logic models (in iHDL) were fed into the logic 

synthesis programs co-developed with Alberto's group, 

which could take two logic descriptions, turn them into 

canonical form and compare them mathematically. By using 

this new Schematic Formal Verification (SFV) functionality, 

all circuits that reside between latch/memory elements could 

be fully verified against their original RTL descriptions 

without a single simulation cycle.  This removed a whole 

domain of investment during the Pentium duration, reducing 

test development for Schematic Verification to zero, 

reducing the run time to a fraction of the previous dynamic 

verification, and increasing the quality level towards zero 

schematic mismatches. 

 Still, functional verification of the full chip RTL model 

has grown non-linearly with the size of the processor. The 

importance of verification was exemplified by the infamous 

“Pentium FDIV bug”, where a rare and minute numerical 

inaccuracy in some mathematical calculation has created a 

business crisis.  The technical challenge then was to formally 

verify floating-point arithmetic logic as well as all associated 

micro-code to be functionally correct.  This spawned another 

phase of Intel‟s close collaboration with academic 

researchers [22] (though not with a U.C. Berkeley emphasis) 

which led to the creation of the Intel Strategic CAD Labs. 

Formal verification looked like a promising approach. In 

principle, this is a static method which examines the design 

without simulating its behavior over time and does not 

require test inputs. However, the promise did not fully 

materialize. Functional equivalence checking of RTL to 

gates has been added to the design flow as a static check.  

Widely used at Intel, SALT and PEPPER are two internally 

developed tools for combinational and sequential 

equivalence checking respectively. However, dynamic 

verification remains the main way to address the functional 

verification problem.  Formal techniques were helpful for 

property checking by simulation instrumentation (tracking 

violation of formally specified properties). RTL simulations, 

carefully designed to “cover” the enormous space of 

processor states and logical conditions, remain the primary 

verification vehicle, and they still consume more than 80% 

of the computing resources.  

Yet another area which became critical in the Pentium era 

was full chip timing and modeling of interconnects for static 

timing analysis. In previous products, smaller circuits were 

designed using accurate extractions, but large static timing 

analysis was based on a simplified lumped capacitance 

extraction model. However, this was insufficient to support 

the aggressive timing requirements and the new cross-unit 

interdependencies that introduced many long-haul signals. 

Distributed RC extraction and modeling was introduced for 

the Pentium, as well as the power grid analysis. 

It is important to note that since the 1990s a very 

significant productivity gain was achieved by increasing the 

computational power available to design teams. It is 

important to consider the computing environment at Intel 

design centers. Interestingly, beginning with the 386 

development Intel began employing UNIX as its primary 

engineering development environment given its more 

flexible and engineering oriented environment. In fact, Pat‟s 

entry to the design team was because of their zeal for UNIX. 

The 386 design team was fed up with the DEC 20 and the 

IBM CMS environment, and was highly attracted to the 

flexibility of the UNIX environment. However, the only 

machine big enough at the time (and available) was the 

IBM370-168, later replaced with 3081. Given Pat was a bit 

of a UNIX hacker at the time, he set up the entire design team 

inside of his CMS account which was running the UTS 

UNIX environment from Amdahl. Thus, he was „root‟ on the 

UTS environment for the entire 386 design team.   Everyone 

was extremely motivated to get to UNIX and thus quickly 

overlooked Pat's naiveté in logic design as a way to get away 

from the Corporate IT environment. “Live Free or Die” 

UNIX license plates commonly adorned design member‟s 

offices. 

Late in the 486 design and entirely for the Pentium 

generations Intel‟s whole computing environment was 

moved to local UNIX workstations.   In addition to the 

interactive performance, the design team was extremely 

motivated to develop the 486 on 386 machines, Pentium on 

486 machines and so on. The functional simulations could be 

easily partitioned into different jobs for running on different 

workstations. A major invention at Intel was called 

NetBatch. The idea was to utilize all of the engineering 

workstations at Intel world-wide as a virtual pool for running 

verification tasks in parallel, exploiting time-zone 

differences among sites. This is conceptually similar to grid 

and cloud computing which have become commercially 

available several years later. 
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Figure 3: Intel Pentium Processor – counter clockwise from top-left: 

floating point unit (hand crafted datapath on the left and synthesized 

controls on the right).  The middle of the die consists of the primary datapath 
(handcraft on the right) with a control section on the left (all synthesis) with 

a channel for chip assembly.  The top right consists of an 8K data cache.  

The bus interface logic resides below the data cache.  The 8K instruction 
cache occupies the lower right of the die.  The instruction fetch and the 

branch target buffer memory are on the lower left.  The microcode ROM and 

logic were drawn below the floating point unit.  Photo courtesy of Intel 
Corporation. 

VI. DISCUSSION AND TRENDS 

At each step of the CAD evolution, higher productivity 

was enabled by increased automation, which leveraged 

increasing compute capacity, higher abstraction, higher 

regularity, more usage of hierarchy, and a more disciplined 

and restrictive methodology.  

In the evolution we have described, using RTL instead of 

schematics was an example of higher abstraction. Using a 

cell library was an example of higher regularity. Hierarchical 

decomposition ("divide and conquer") was achieved when 

complex problems were divided into independent pieces 

(e.g. separation of logic verification from timing verification, 

separation of logic synthesis from library mapping). This 

decomposition led to specialization in the expertise of 

engineers: for example, due to RTL and synthesis, logic 

designers have become programmers.  

Examples of a restrictive methodology are numerous: the 

synchronous design paradigm, the specific iHDL language 

design for synthesis, the cell library, static CMOS, all 

involve some self-imposed restrictions as part of the 

engineering discipline. Disciplined restrictions are essential 

in every methodology. However, the introduction of new 

methods and tools did not proceed smoothly, but rather 

encountered skepticism and resistance from designers who 

did not want to give away their work habits, their control of 

details and their wild creative "rights". They did not want to 

accept the standards/restrictions of new methodologies 

(which were chosen in order to save verification and allow 

automation). This kind of conservatism goes together with 

risk-avoidance, as people stick to their familiar methods and 

tools, trying to minimize risks from large scale engineering 

programs.   

It is also interesting that while manufacturing technology 

scaling proceeded predictably via coordinated efforts, with 

Moore's law and Dennard's theory as a top-down roadmap 

and a strategic guideline, the evolution of CAD and design 

methodology happened bottom-up and via numerous 

controversies.  

Finally, many of the breakthroughs described in this paper 

were only accomplished by significant cross-discipline 

cooperation. The design teams took significant risks in 

embracing new methods that were yet to be proven. Design 

tools were being invented simultaneously with the design 

team‟s requirements.  

Collaboration between Intel, Alberto and U.C. Berkeley 

continues to this day in a broad range of areas of computer 

architecture and in particular in the area of platform-based 

design. It is very likely that in order to achieve the next step 

function in design productivity, people in the electronic 

design community will have to take such radical 

codevelopment risks once again in large scale engineering 

programs where failure is not an alternative. With such risky 

endeavors, the “era of heroes” may be upon us once more. 
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