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Abstract — Memristors can be used as logic gates. No design 

methodology exists, however, for memristor-based combinatorial 

logic. In this paper, the design and behavior of a memristive-

based logic gate – an IMPLY gate - are presented and design 

issues such as the tradeoff between speed (fast write times) and 

correct logic behavior are described, as part of an overall design 

methodology. A memristor model is described for determining 

the write time and state drift. It is shown that the widely used 

memristor model - a linear ion drift memristor - is impractical 

for characterizing an IMPLY logic gate, and a different 

memristor model is necessary such as a memristor with a current 

threshold. 

Keywords- memristor; memristive systems; IMPLY; design 

methodology; logic 

I.  INTRODUCTION  

Memristors are passive elements with varying resistance 

(also known as a memristance), conceived theoretically in [1]. 

Changes in the memristance depend upon the history of the 

device, the total charge which passes through it, or, 

alternatively, the total flux in the device (the integral over time 

of the applied voltage at the ports of the device). 

In 2008, Hewlett-Packard announced the fabrication of a 

working memristor [2]. A linear ion drift model was proposed 

for describing the behavior of this memristor. The memristance 

of a linear ion drift memristor is 
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where ROFF and RON are, respectively, the maximum and 

minimum resistance of the memristor, µv is the average ion 

mobility, D is the memristor physical thickness, and q(t) is the 

total charge passing through the memristor. The linear ion drift 

model is the most commonly used memristor model, although 

practical memristors exhibit highly non-linear behavior. 

Memristors can be used for numerous applications, such as 

memory [3], neuromorphic systems [4], and analog circuits 

(e.g., see [5]). One interesting application of memristors is 

logic, using memristors as building blocks of logic gates. To 

use memristors in a digital manner, a high memristance is 

considered as logic 0 and a low memristance is considered as 

logic 1. Several approaches for memristor-based logic have 

been proposed, e.g., [6] and [7], which suggest using 

memristors as configurable switches as in an FPGA. The logic 

gates are designed as CMOS gates or as programmable 

majority logic array (PMLA) based on Goto pairs as logic gates 

[8]. 

Another approach is to use memristors as the primary 

building blocks of a logic gate. Each memristor acts as an 

input, output, computational logic element, and a latch in 

different stages of the computing process [9]. In [10], a 

memristor-based logic gate - the IMPLY gate, is presented. 

Since this logic function together with FALSE (a function that 

always yields the value 0 as an output) comprise a 

computationally complete logic structure, it may potentially 

provide a basic logic element for a memristor-based circuit. 

The truth table for p IMPLY q is listed in Table 1. Unlike 

CMOS logic [11], no design methodology exists for memristor-

based logic circuits. 

In this paper, a design methodology is suggested for 

memristor-based IMPLY logic gates. A memristor-based 

IMPLY gate and related limitations are also presented here. 

The tradeoff between performance and robustness is described 

as well as the necessity to refresh the logic gate. 

This paper is organized as follows. In Section II, the 

operation of a memristor-based IMPLY gate is described. In 

section III, the performance and limitations of this logic gate 

are presented. In section IV, a design example is described, and 

simulation results of the IMPLY gate are shown. The paper is 

summarized in section V. 

II. MEMRISTOR-BASED IMPLY GATE 

The logic function p→q (also known as "p IMPLIES q," 

"material implication," and "if p then q") is described in [10]. 

The proposed memristor logic is based upon a resistor RG (RON 

< RG < ROFF) connected to two memristors, named P and Q, 

acting as digital switches. The corresponding initial 

memristances p and q are the inputs of the gate; while the 

output of the gate is the final memristance of Q (the result is 

written into the logic state q). A schematic of an IMPLY gate 

is shown in Figure 1. 

The basic concept is to apply different negative voltages to 

P and Q, where VSET, the applied voltage on Q, has a higher 

magnitude than VCOND, the applied magnitude on P        

(|VCOND| < |VSET |). If p = 1 (low resistance), the voltage on the 

common terminal is approximately VCOND and the voltage on 
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the memristor Q is approximately VSET - VCOND, which is 

sufficiently small to maintain the logic state of q. In the case 

of p = 0 and q = 0 (high resistances), the applied voltage on Q 

is approximately VSET and Q is switched ON (q = 1). In the 

case of p = 0 and q = 1, the logic state of q is maintained. 

A two input NAND, based on a memristor-based IMPLY 

gate and a FALSE logic gate, is described in [10]. The circuit 

is comprised of three memristors; the operation of this NAND 

gate changes the function of each memristor during the 

computing process. Two memristors act as inputs in the initial 

stage, one memristor acts as the output in the last stage, and all 

memristors act together as a computational logic element (as a 

memristor-based IMPLY gate) during different stages of the 

computing process. This application requires three computing 

stages (one FALSE and two IMPLY). A schematic and the 

sequence of an IMPLY-based NAND are shown in Figure 2. 

The execution of any general Boolean function f: B
n
 →B 

can be implemented with only n + 3 memristors [12], where 

three additional memristors carry out the computation. Only 

two memristors are required for up to three inputs. 

Computation of the function is performed in steps. In each 

step, either FALSE is applied to one memristor, or an IMPLY 

is applied to two memristors, where the output is written 

(which is one of the inputs of the computational IMPLY 

stage). This process requires a long sequence of operations 

depending upon the number of inputs. This methodology is 

improved in [13] where only two additional memristors are 

used rather than three. While [12] and [13] present a general 

algorithm to compute any Boolean function with a minimal 

number of memristors, the computational process requires a 

large number of functional stages, and therefore requires 

significant computational time. 

III. DESIGN CONSIDERATIONS AND PERFORMANCE 

ANALYSIS OF THE MEMRISTOR-BASED IMPLY GATE 

A. Analysis fundamentals 

The behavior of a memristor-based IMPLY gate is 

mathematically cumbersome for analysis. There is therefore a 

need to develop heuristics for designing memristive circuits. 

These heuristics can be extended to enable a complete 

design methodology for memristor-based circuits. A flow 

diagram of an IMPLY logic gate design methodology is 

shown in Figure 3. 

In this section, design strategies for choosing the proper 

circuit parameters (RG, VSET, and VCOND) are discussed. The 

tradeoff between the delay time of the circuit (to maintain the 

proper write time) and the number of cycles to refresh the 

memristors (because of state variable drift) is described. 

 
TABLE 1.  TRUTH TABLE OF IMPLY FUNCTION. 

 
Case p q p→q 

1 0 0 1 

2 0 1 1 

3 1 0 0 

4 1 1 1 

 
Figure 1. Schematic of a memristor-based IMPLY gate. Two memristors 

P and Q are connected to a resistor RG. The logic state of the memristors 

P and Q are, respectively, p and q. 

 

 
Figure 2. IMPLY NAND logic gate. (a) Logical operation of an IMPLY-

based NAND, the logic gate requires three sequential steps, and (b) 

schematic of IMPLY-based NAND gate. 

 

B. The tradeoff between performance and robustness 

VSET and VCOND, the applied voltages on P and Q, are fixed. 

Therefore, for any initial state, the memristor state q tends to 

drift towards the ON state. For digital operation, the state of q 

should either stay unchanged or switch fully ON (changing the 

logic state from logic 0 to logic 1). 

The different input combinations are presented in Table 1.  

Note that in cases 2 and 4, the initial state of q is logic 1 and 

the logic gate output q is also logic 1. The gate operation, 

therefore, electrically reinforces the logic state of q, and the 

memristance of Q is reduced. 



 
Figure 3. IMPLY logic gate design flow diagram. Each box refers to the 

relevant section of this paper. 

 

 

 

In case 1, the initial state of q is logic 0; after applying the 

external voltages, q is switched ON. This case determines the 

time required to apply VSET and VCOND until the logic state of q 

reaches the desired state (above a certain level of conduction 

to maintain correct logic behavior). This case determines the 

speed of the circuit in terms of the write time. 

In case 3, the initial state of q is logic 0. This logic state 

should remain unchanged after applying VSET and VCOND, 

although the voltages tend to change the internal state of q 

towards the ON state of logic 1. This phenomenon is "state 

drift." The logic 0 state of q, which is the output of the gate, is 

electrically "weaker" than the input logic state of q (the 

memristance of q after applying the voltages is lower than the 

initial memristance). State drift may require refreshing the 

state; otherwise, the sensing action may incorrectly switch the 

logic state of q. State drift depends upon the write time 

determined for case 1; a long write time increases the state 

drift phenomenon. 

 

C. Basic principles for parameter determination and 

design procedure 

Although it is difficult to compute the precise value of the 

applied voltage on Q, it is possible to determine the applied 

voltage on Q at the beginning of the logic gate activity. The 

initial applied voltage on Q is different for each case (a 

different initial memristance for q and p). The initial applied 

voltages on P and Q are listed in Table 2 under the 

assumptions that the memristance of logic 1 and logic 0 is, 

respectively, RON and ROFF, where ROFF >> RON. 

From the initial applied voltages, some necessary conditions 

for correct logic behavior can be determined. These conditions 

are not precise, but can provide design constraints. The basic 

design principle is that the write time of the logic gate is 

determined from case 1, but the parameters of the circuit 

should also not exceed a specific state drift in case 3. To 

determine the circuit parameters, an effective model for the 

memristors needs to be chosen. The model needs to be 

sufficiently accurate, while also correctly representing the 

switching behavior. Inserting the initial applied voltages into 

the simple memristor switching model can provide an 

approximate estimate of the circuit parameters. 

 

D. Write time and state drift for a binary memristance 

A useful and simple switching model is the binary 

memristance model. Assume only two allowed memristances, 

RON and ROFF. A total charge Q' must flow through the 

memristor to cause the memristance ROFF to switch to 

memristance RON. Under these assumptions and by solving 

both the switching behavior in case 1 and the write time T as a 

function of Q', the circuit parameter T is 
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The write time for different circuit parameters and a varying 

VSET is shown in Figure 4. Note that the logic gate is faster 

with higher applied voltages, or smaller ROFF.  

Under this model, it is possible to limit the state drift (case 3) 

for a fixed drift. The state drift is 
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where qq(T) is the total charge flowing through memristor Q 

after time T in case 3. To limit the state drift to a value of Q'/4, 

after four times, the logic gate is applied as in case 3, and the 

state drift changes the memristive logic state. This 

phenomenon requires a refresh every three times the gate is 

used, since the logic state changes during the fourth time. The 

allowed value of VSET for several circuit parameters is shown 

in Figure 5. Note that the state drift is more significant with a 

higher applied voltage, or with smaller ROFF. Combining 

Figures 4 and 5, the tradeoff between the speed and robustness 

of a memristive logic gate is shown in Figure 6. 

 

E. RG for a fixed threshold model 

Another simple memristor model assumes non-linear 

behavior with a fixed threshold voltage VON. For an applied 

voltage below VON, the memristance is unchanged. To produce 

correct logical behavior, the initial applied voltage on Q must 

be above the threshold voltage in case 1 and below the 

threshold voltage in case 3. Adding this assumption to the 

initial applied voltage (see Table 2) leads to the following two 

conditions on the circuit parameters, 

  



TABLE 2. APPLIED LOGIC GATE VOLTAGES VQ AND VP, RESPECTIVELY, ON 

MEMRISTORS P AND Q AT t = 0, UNDER THE ASSUMPTIONS THAT THE 

MEMRISTANCE OF LOGIC 1 AND LOGIC 0 IS, RESPECTIVELY, RON AND ROFF, 

WHERE ROFF >>RON. 
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Figure 4. Write time T in case 1 for three values of ROFF (5 kΩ, 10 kΩ, 

and 100 kΩ) under the assumptions of a binary resistance model and Q' = 

5·10-14 C. 
 

 
Figure 5. Allowed values of VSET for limited state drift in case 3 of Q'/4. 

VSET is allowed if qq(T) is smaller than Q'/4 (the horizontal line in the 

figure). 
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The allowed value for RG for several circuit parameters and 

varying VSET are shown in Figure 7. 

 
Figure 6. Tradeoff between the logic gate speed (write time) and 

robustness (the state drift in case 3 for memristor Q), for three values of 

ROFF (5 kΩ, 10 kΩ, and 100 kΩ) under the assumptions of a binary 

resistance model and Q' = 5·10-14 C. 
 

 
Figure 7. Allowed value of RG depends on VSET. The upper line is the 

upper bound for allowed RG and the lower line is the lower allowed bound 

for RG. Under the assumption of a threshold voltage VON = 0.55 V, VCOND = 

0.5 V, RON = 100 Ω, and ROFF = 10 kΩ. 
 

IV. DESIGN EXAMPLE 

As a specific example of applying the flow chart of Figure 

3, assume the requirements for a circuit are a maximum write 

time of 0.5 µsec (note that the write time is normalized. A 

practical memristor write time is significantly faster [14]) and 

the maximum state drift is 0.025ROFF (2.5% of the state drift as 

compared to full switching). 

Assume a memristor with RON and ROFF, respectively, of 1 

kΩ and 100 kΩ. Set one circuit parameter VCOND to 0.5 V. The 

behavior of an ideal IMPLY logic gate (zero write time, no 

state drift) is shown in Figures 8 and 9. Practical logic gates, 

however, have non-zero write time and state drift. From 

Figures 4 and 5, note that as VSET rises, the logic gate write 

time T decreases and the gate response is faster; however, the 

state drift phenomenon is more significant. From (5),  

 0.5 50SETV V V< < . (6) 

This expression only produces a lower bound on VSET, since 

the upper bounds are significantly higher than practical on-

chip supply voltages. For a current-controlled memristor, it is 

unrealistic to determine an exact equivalent voltage threshold 



(which depends on the transient memristance of the device). A 

good approximation for an equivalent voltage threshold is 

 
ON ON OFFV i R= ⋅ , (7) 

where VON is the voltage threshold, and iON is the current 

threshold. For a memristor with a current threshold of 7 µA, 

the equivalent voltage threshold is 0.7 volts. From (4), RG is 

 1.5 33.3Gk R kΩ < < Ω . (8) 

The widely used linear ion drift memristor model [15] is 

incompatible with IMPLY logic gates. In this model, the 

memristance changes linearly for any applied voltage; the state 

drift phenomenon is therefore significant, as shown in Figures 

10 and 11. Hence, a different memristor model with a current 

threshold is preferable [16]. With this model, the exact circuit 

parameters are selected. The chosen circuit parameters are RON 

= 1 kΩ, ROFF = 100 kΩ, VCOND = 0.5 V, VSET = 1 V, and RG = 5 

kΩ. SPICE simulation results for these parameters are shown 

in Figures 12 and 13. The write time and state drift for several 

circuit parameters are listed in Table 3. An increase in the 

resistance of RG or decrease in the voltage level of VSET delays 

the gate, but lowers the state drift (and vice versa). 

 

 
Figure 8. State drift of an ideal IMPLY logic gate. While the logic state in 

case 1 changes to a zero write time, the drift for case 3 is zero. 

  

 
Figure 9. Memristance of an ideal IMPLY logic gate. While the 

memristance in case 1 decreases to RON within a zero write time, the 

memristance in case 3 does not change. 

 
Figure 10. State variable w of q when applying IMPLY logic gate for 

cases 1 (dashed line) and 3 (solid line) for a memristor with linear ion 

drift. T is 468.1 nsec. The state drift for case 3 is 48.9%, which makes this 

model impractical for an IMPLY logic gate. 

 

 
Figure 11. The memristance of q when applying an IMPLY logic gate for 

cases 1 (dashed line) and 3 (solid line) for a memristor with linear ion 

drift. 

 

 
Figure 12. State variable w of q when applying an IMPLY logic gate for 

cases 1 (dashed line) and 3 (solid line) for a memristor with a threshold 

model (current threshold is 7 µA). T is 470.3 nsec. The state drift for case 

3 is 2.44%. 

 

 



 
Figure 13. Memristance of q when applying an IMPLY logic gate for 

cases 1 (dashed line) and 3 (solid line) for a memristor with threshold 

model (current threshold is 7 µA). 

 
TABLE 3.  WRITE TIME AND STATE DRIFT FOR DIFFERENT VALUES OF VSET AND 

RG. ALL VALUES SATISFY (6) AND (8). VCOND IS SET TO 0.5 V. 

 

VSET [V] RG [kΩ] T [µsec] State Drift [% ROFF] 

1 5 0.47 2.44 

0.8 5 0.592 ~ 0 

1.5 5 0.31 6 

1 3.5 0.453 2.53 

1 15 0.579 2.15 

 

V. CONCLUSIONS 

The logic design of a memristor-based IMPLY logic gate is 

presented. Investigating and characterizing the behavior of a 

memristor and IMPLY logic gate reveals several design 

limitations and considerations. The IMPLY logic gate trades 

off performance (write time) with robustness (internal state 

drift). This tradeoff requires the circuit to be occasionally 

refreshed. 

Several heuristics for designing IMPLY logic gates with 

memristors are proposed and organized into a design 

procedure. This design procedure considers the influences and 

tradeoffs among the different input cases, initial conditions, 

and circuit parameters of the memristor. 

A design example based on the proposed design procedure 

is presented and compared with simulation. It is shown that 

the widely used linear ion drift model is incompatible with the 

IMPLY logic gate, since under this model, the state drift 

phenomenon is excessively high. To accurately characterize 

the IMPLY logic gate operation, a highly non-linear 

memristor model needs to be used; or alternatively, a device 

with a threshold. The proposed design procedure is the first 

step in the development of a general design methodology for 

logic gates based on memristors. 
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