
Memristor-based IMPLY Logic Design Procedure

Shahar Kvatinsky, Avinoam Kolodny,

and Uri C. Weiser

Department of Electrical Engineering

Technion – Israel Institute of Technology

Haifa 32000 ISRAEL

{skva@tx, kolodny@ee, uri.weiser@ee}.technion.ac.il

Eby G. Friedman

Department of Electrical and Computer Engineering

University of Rochester

Rochester, NY 14627 USA

friedman@ece.rochester.edu

Abstract — Memristors can be used as logic gates. No design

methodology exists, however, for memristor-based combinatorial

logic. In this paper, the design and behavior of a memristive-

based logic gate – an IMPLY gate - are presented and design

issues such as the tradeoff between speed (fast write times) and

correct logic behavior are described, as part of an overall design

methodology. A memristor model is described for determining

the write time and state drift. It is shown that the widely used

memristor model - a linear ion drift memristor - is impractical

for characterizing an IMPLY logic gate, and a different

memristor model is necessary such as a memristor with a current

threshold.

Keywords- memristor; memristive systems; IMPLY; design

methodology; logic

I. INTRODUCTION

Memristors are passive elements with varying resistance

(also known as a memristance), conceived theoretically in [1].

Changes in the memristance depend upon the history of the

device, the total charge which passes through it, or,

alternatively, the total flux in the device (the integral over time

of the applied voltage at the ports of the device).

In 2008, Hewlett-Packard announced the fabrication of a

working memristor [2]. A linear ion drift model was proposed

for describing the behavior of this memristor. The memristance

of a linear ion drift memristor is

2

() 1 ()v ON
OFF

R
M q R q t

D

µ = −
 , (1)

where ROFF and RON are, respectively, the maximum and

minimum resistance of the memristor, µv is the average ion

mobility, D is the memristor physical thickness, and q(t) is the

total charge passing through the memristor. The linear ion drift

model is the most commonly used memristor model, although

practical memristors exhibit highly non-linear behavior.

Memristors can be used for numerous applications, such as

memory [3], neuromorphic systems [4], and analog circuits

(e.g., see [5]). One interesting application of memristors is

logic, using memristors as building blocks of logic gates. To

use memristors in a digital manner, a high memristance is

considered as logic 0 and a low memristance is considered as

logic 1. Several approaches for memristor-based logic have

been proposed, e.g., [6] and [7], which suggest using

memristors as configurable switches as in an FPGA. The logic

gates are designed as CMOS gates or as programmable

majority logic array (PMLA) based on Goto pairs as logic gates

[8].

Another approach is to use memristors as the primary

building blocks of a logic gate. Each memristor acts as an

input, output, computational logic element, and a latch in

different stages of the computing process [9]. In [10], a

memristor-based logic gate - the IMPLY gate, is presented.

Since this logic function together with FALSE (a function that

always yields the value 0 as an output) comprise a

computationally complete logic structure, it may potentially

provide a basic logic element for a memristor-based circuit.

The truth table for p IMPLY q is listed in Table 1. Unlike

CMOS logic [11], no design methodology exists for memristor-

based logic circuits.

In this paper, a design methodology is suggested for

memristor-based IMPLY logic gates. A memristor-based

IMPLY gate and related limitations are also presented here.

The tradeoff between performance and robustness is described

as well as the necessity to refresh the logic gate.

This paper is organized as follows. In Section II, the

operation of a memristor-based IMPLY gate is described. In

section III, the performance and limitations of this logic gate

are presented. In section IV, a design example is described, and

simulation results of the IMPLY gate are shown. The paper is

summarized in section V.

II. MEMRISTOR-BASED IMPLY GATE

The logic function p→q (also known as "p IMPLIES q,"

"material implication," and "if p then q") is described in [10].

The proposed memristor logic is based upon a resistor RG (RON

< RG < ROFF) connected to two memristors, named P and Q,

acting as digital switches. The corresponding initial

memristances p and q are the inputs of the gate; while the

output of the gate is the final memristance of Q (the result is

written into the logic state q). A schematic of an IMPLY gate

is shown in Figure 1.

The basic concept is to apply different negative voltages to

P and Q, where VSET, the applied voltage on Q, has a higher

magnitude than VCOND, the applied magnitude on P

(|VCOND| < |VSET |). If p = 1 (low resistance), the voltage on the

common terminal is approximately VCOND and the voltage on

This work was partially supported by Hasso Plattner Institute and by Intel

grant "Heterogeneous Computing, the Inevitable Solution: Power

Management, Scheduling and ISA" grant no. 864-737-13.

the memristor Q is approximately VSET - VCOND, which is

sufficiently small to maintain the logic state of q. In the case

of p = 0 and q = 0 (high resistances), the applied voltage on Q

is approximately VSET and Q is switched ON (q = 1). In the

case of p = 0 and q = 1, the logic state of q is maintained.

A two input NAND, based on a memristor-based IMPLY

gate and a FALSE logic gate, is described in [10]. The circuit

is comprised of three memristors; the operation of this NAND

gate changes the function of each memristor during the

computing process. Two memristors act as inputs in the initial

stage, one memristor acts as the output in the last stage, and all

memristors act together as a computational logic element (as a

memristor-based IMPLY gate) during different stages of the

computing process. This application requires three computing

stages (one FALSE and two IMPLY). A schematic and the

sequence of an IMPLY-based NAND are shown in Figure 2.

The execution of any general Boolean function f: B
n
 →B

can be implemented with only n + 3 memristors [12], where

three additional memristors carry out the computation. Only

two memristors are required for up to three inputs.

Computation of the function is performed in steps. In each

step, either FALSE is applied to one memristor, or an IMPLY

is applied to two memristors, where the output is written

(which is one of the inputs of the computational IMPLY

stage). This process requires a long sequence of operations

depending upon the number of inputs. This methodology is

improved in [13] where only two additional memristors are

used rather than three. While [12] and [13] present a general

algorithm to compute any Boolean function with a minimal

number of memristors, the computational process requires a

large number of functional stages, and therefore requires

significant computational time.

III. DESIGN CONSIDERATIONS AND PERFORMANCE

ANALYSIS OF THE MEMRISTOR-BASED IMPLY GATE

A. Analysis fundamentals

The behavior of a memristor-based IMPLY gate is

mathematically cumbersome for analysis. There is therefore a

need to develop heuristics for designing memristive circuits.

These heuristics can be extended to enable a complete

design methodology for memristor-based circuits. A flow

diagram of an IMPLY logic gate design methodology is

shown in Figure 3.

In this section, design strategies for choosing the proper

circuit parameters (RG, VSET, and VCOND) are discussed. The

tradeoff between the delay time of the circuit (to maintain the

proper write time) and the number of cycles to refresh the

memristors (because of state variable drift) is described.

TABLE 1. TRUTH TABLE OF IMPLY FUNCTION.

Case p q p→q

1 0 0 1

2 0 1 1

3 1 0 0

4 1 1 1

Figure 1. Schematic of a memristor-based IMPLY gate. Two memristors

P and Q are connected to a resistor RG. The logic state of the memristors

P and Q are, respectively, p and q.

Figure 2. IMPLY NAND logic gate. (a) Logical operation of an IMPLY-

based NAND, the logic gate requires three sequential steps, and (b)

schematic of IMPLY-based NAND gate.

B. The tradeoff between performance and robustness

VSET and VCOND, the applied voltages on P and Q, are fixed.

Therefore, for any initial state, the memristor state q tends to

drift towards the ON state. For digital operation, the state of q

should either stay unchanged or switch fully ON (changing the

logic state from logic 0 to logic 1).

The different input combinations are presented in Table 1.

Note that in cases 2 and 4, the initial state of q is logic 1 and

the logic gate output q is also logic 1. The gate operation,

therefore, electrically reinforces the logic state of q, and the

memristance of Q is reduced.

Figure 3. IMPLY logic gate design flow diagram. Each box refers to the

relevant section of this paper.

In case 1, the initial state of q is logic 0; after applying the

external voltages, q is switched ON. This case determines the

time required to apply VSET and VCOND until the logic state of q

reaches the desired state (above a certain level of conduction

to maintain correct logic behavior). This case determines the

speed of the circuit in terms of the write time.

In case 3, the initial state of q is logic 0. This logic state

should remain unchanged after applying VSET and VCOND,

although the voltages tend to change the internal state of q

towards the ON state of logic 1. This phenomenon is "state

drift." The logic 0 state of q, which is the output of the gate, is

electrically "weaker" than the input logic state of q (the

memristance of q after applying the voltages is lower than the

initial memristance). State drift may require refreshing the

state; otherwise, the sensing action may incorrectly switch the

logic state of q. State drift depends upon the write time

determined for case 1; a long write time increases the state

drift phenomenon.

C. Basic principles for parameter determination and

design procedure

Although it is difficult to compute the precise value of the

applied voltage on Q, it is possible to determine the applied

voltage on Q at the beginning of the logic gate activity. The

initial applied voltage on Q is different for each case (a

different initial memristance for q and p). The initial applied

voltages on P and Q are listed in Table 2 under the

assumptions that the memristance of logic 1 and logic 0 is,

respectively, RON and ROFF, where ROFF >> RON.

From the initial applied voltages, some necessary conditions

for correct logic behavior can be determined. These conditions

are not precise, but can provide design constraints. The basic

design principle is that the write time of the logic gate is

determined from case 1, but the parameters of the circuit

should also not exceed a specific state drift in case 3. To

determine the circuit parameters, an effective model for the

memristors needs to be chosen. The model needs to be

sufficiently accurate, while also correctly representing the

switching behavior. Inserting the initial applied voltages into

the simple memristor switching model can provide an

approximate estimate of the circuit parameters.

D. Write time and state drift for a binary memristance

A useful and simple switching model is the binary

memristance model. Assume only two allowed memristances,

RON and ROFF. A total charge Q' must flow through the

memristor to cause the memristance ROFF to switch to

memristance RON. Under these assumptions and by solving

both the switching behavior in case 1 and the write time T as a

function of Q', the circuit parameter T is

[]
2 2

'.OFF OFF G

OFF SET G SET COND

R R R
T Q

R V R V V

 +
= ⋅

+ −

 (2)

The write time for different circuit parameters and a varying

VSET is shown in Figure 4. Note that the logic gate is faster

with higher applied voltages, or smaller ROFF.

Under this model, it is possible to limit the state drift (case 3)

for a fixed drift. The state drift is

[]
2

() ',G OFF G
q SET COND

ON G OFF SET G SET COND

R R R
q T V V Q

R R R V R V V

 +
≈ − ⋅ ⋅ + + −

 (3)

where qq(T) is the total charge flowing through memristor Q

after time T in case 3. To limit the state drift to a value of Q'/4,

after four times, the logic gate is applied as in case 3, and the

state drift changes the memristive logic state. This

phenomenon requires a refresh every three times the gate is

used, since the logic state changes during the fourth time. The

allowed value of VSET for several circuit parameters is shown

in Figure 5. Note that the state drift is more significant with a

higher applied voltage, or with smaller ROFF. Combining

Figures 4 and 5, the tradeoff between the speed and robustness

of a memristive logic gate is shown in Figure 6.

E. RG for a fixed threshold model

Another simple memristor model assumes non-linear

behavior with a fixed threshold voltage VON. For an applied

voltage below VON, the memristance is unchanged. To produce

correct logical behavior, the initial applied voltage on Q must

be above the threshold voltage in case 1 and below the

threshold voltage in case 3. Adding this assumption to the

initial applied voltage (see Table 2) leads to the following two

conditions on the circuit parameters,

TABLE 2. APPLIED LOGIC GATE VOLTAGES VQ AND VP, RESPECTIVELY, ON

MEMRISTORS P AND Q AT t = 0, UNDER THE ASSUMPTIONS THAT THE

MEMRISTANCE OF LOGIC 1 AND LOGIC 0 IS, RESPECTIVELY, RON AND ROFF,

WHERE ROFF >>RON.

Case VQ(t=0) VP(t=0)

1
2 2

OFF G G
SET COND

OFF G OFF G

R R R
V V

R R R R

+
⋅ − ⋅

+ +

2 2

G OFF G

SET COND

OFF G OFF G

R R R
V V

R R R R

 +
− ⋅ − ⋅ + +

2 ON OFF G
SET SET

OFF ON G

R R R
V V

R R R

+
⋅ ⋅ ≈

+

G

SET COND

ON G

R
V V

R R

− ⋅ − +

3 G
SET COND

ON G

R
V V

R R
− ⋅

+

CONDV

4
2 2

ON G G
SET COND

ON G ON G

R R R
V V

R R R R

+
⋅ − ⋅

+ +

2 2

G ON G
SET COND

ON G ON G

R R R
V V

R R R R

 +
− ⋅ − ⋅ + +

Figure 4. Write time T in case 1 for three values of ROFF (5 kΩ, 10 kΩ,

and 100 kΩ) under the assumptions of a binary resistance model and Q' =

5·10-14 C.

Figure 5. Allowed values of VSET for limited state drift in case 3 of Q'/4.

VSET is allowed if qq(T) is smaller than Q'/4 (the horizontal line in the

figure).

[] []
,

2

SET ON SET ON
ON G OFF

ON SET COND ON SET COND

V V V V
R R R

V V V V V V

− −
⋅ < < ⋅

− − − −
 (4)

.SET OFF

COND ON

V R

V R
< (5)

The allowed value for RG for several circuit parameters and

varying VSET are shown in Figure 7.

Figure 6. Tradeoff between the logic gate speed (write time) and

robustness (the state drift in case 3 for memristor Q), for three values of

ROFF (5 kΩ, 10 kΩ, and 100 kΩ) under the assumptions of a binary

resistance model and Q' = 5·10-14 C.

Figure 7. Allowed value of RG depends on VSET. The upper line is the

upper bound for allowed RG and the lower line is the lower allowed bound

for RG. Under the assumption of a threshold voltage VON = 0.55 V, VCOND =

0.5 V, RON = 100 Ω, and ROFF = 10 kΩ.

IV. DESIGN EXAMPLE

As a specific example of applying the flow chart of Figure

3, assume the requirements for a circuit are a maximum write

time of 0.5 µsec (note that the write time is normalized. A

practical memristor write time is significantly faster [14]) and

the maximum state drift is 0.025ROFF (2.5% of the state drift as

compared to full switching).

Assume a memristor with RON and ROFF, respectively, of 1

kΩ and 100 kΩ. Set one circuit parameter VCOND to 0.5 V. The

behavior of an ideal IMPLY logic gate (zero write time, no

state drift) is shown in Figures 8 and 9. Practical logic gates,

however, have non-zero write time and state drift. From

Figures 4 and 5, note that as VSET rises, the logic gate write

time T decreases and the gate response is faster; however, the

state drift phenomenon is more significant. From (5),

 0.5 50SETV V V< < . (6)

This expression only produces a lower bound on VSET, since

the upper bounds are significantly higher than practical on-

chip supply voltages. For a current-controlled memristor, it is

unrealistic to determine an exact equivalent voltage threshold

(which depends on the transient memristance of the device). A

good approximation for an equivalent voltage threshold is

ON ON OFFV i R= ⋅ , (7)

where VON is the voltage threshold, and iON is the current

threshold. For a memristor with a current threshold of 7 µA,

the equivalent voltage threshold is 0.7 volts. From (4), RG is

 1.5 33.3Gk R kΩ < < Ω . (8)

The widely used linear ion drift memristor model [15] is

incompatible with IMPLY logic gates. In this model, the

memristance changes linearly for any applied voltage; the state

drift phenomenon is therefore significant, as shown in Figures

10 and 11. Hence, a different memristor model with a current

threshold is preferable [16]. With this model, the exact circuit

parameters are selected. The chosen circuit parameters are RON

= 1 kΩ, ROFF = 100 kΩ, VCOND = 0.5 V, VSET = 1 V, and RG = 5

kΩ. SPICE simulation results for these parameters are shown

in Figures 12 and 13. The write time and state drift for several

circuit parameters are listed in Table 3. An increase in the

resistance of RG or decrease in the voltage level of VSET delays

the gate, but lowers the state drift (and vice versa).

Figure 8. State drift of an ideal IMPLY logic gate. While the logic state in

case 1 changes to a zero write time, the drift for case 3 is zero.

Figure 9. Memristance of an ideal IMPLY logic gate. While the

memristance in case 1 decreases to RON within a zero write time, the

memristance in case 3 does not change.

Figure 10. State variable w of q when applying IMPLY logic gate for

cases 1 (dashed line) and 3 (solid line) for a memristor with linear ion

drift. T is 468.1 nsec. The state drift for case 3 is 48.9%, which makes this

model impractical for an IMPLY logic gate.

Figure 11. The memristance of q when applying an IMPLY logic gate for

cases 1 (dashed line) and 3 (solid line) for a memristor with linear ion

drift.

Figure 12. State variable w of q when applying an IMPLY logic gate for

cases 1 (dashed line) and 3 (solid line) for a memristor with a threshold

model (current threshold is 7 µA). T is 470.3 nsec. The state drift for case

3 is 2.44%.

Figure 13. Memristance of q when applying an IMPLY logic gate for

cases 1 (dashed line) and 3 (solid line) for a memristor with threshold

model (current threshold is 7 µA).

TABLE 3. WRITE TIME AND STATE DRIFT FOR DIFFERENT VALUES OF VSET AND

RG. ALL VALUES SATISFY (6) AND (8). VCOND IS SET TO 0.5 V.

VSET [V] RG [kΩ] T [µsec] State Drift [% ROFF]

1 5 0.47 2.44

0.8 5 0.592 ~ 0

1.5 5 0.31 6

1 3.5 0.453 2.53

1 15 0.579 2.15

V. CONCLUSIONS

The logic design of a memristor-based IMPLY logic gate is

presented. Investigating and characterizing the behavior of a

memristor and IMPLY logic gate reveals several design

limitations and considerations. The IMPLY logic gate trades

off performance (write time) with robustness (internal state

drift). This tradeoff requires the circuit to be occasionally

refreshed.

Several heuristics for designing IMPLY logic gates with

memristors are proposed and organized into a design

procedure. This design procedure considers the influences and

tradeoffs among the different input cases, initial conditions,

and circuit parameters of the memristor.

A design example based on the proposed design procedure

is presented and compared with simulation. It is shown that

the widely used linear ion drift model is incompatible with the

IMPLY logic gate, since under this model, the state drift

phenomenon is excessively high. To accurately characterize

the IMPLY logic gate operation, a highly non-linear

memristor model needs to be used; or alternatively, a device

with a threshold. The proposed design procedure is the first

step in the development of a general design methodology for

logic gates based on memristors.

REFERENCES

[1] L. O. Chua, “Memristor – the Missing Circuit Element,” IEEE

Transactions on Circuit Theory, Vol. 18, No. 5, pp. 507-519, September

1971.

[2] D. B. Strukov, G. S.Snider, D. R. Stewart, and R. S. Williams, "The

Missing Memristor Found,” Nature, Vol. 453, pp. 80-83, May 2008.

[3] Y. Ho, G. M. Huang, P. Li, "Nonvolatile Memristor Memory: Device

Characteristics and Design Implications," Proceedings of the IEEE

International Conference on Computer-Aided Design, pp. 485-490,

November 2009.

[4] A. Afifi, A. Ayatollahi, and F. Raissi, "Implementation of Biologically

Plausible Spiking Neural Network Models on the Memristor Crossbar-

based CMOS/Nano Circuits," Proceedings of the European Conference

on Circuit Theory and Design, pp. 563- 566, August 2009.

[5] Y. V. Pershin and M. Di Ventra, "Practical Approach to Programmable

Analog Circuits with Memristors," IEEE Transactions on Circuits and

Systems I: Regular Papers, Vol. 57, No. 8, pp. 1857-1864, August 2010.

[6] D. B. Strukov and K. K. Likharev, "CMOL FPGA: a Reconfigurable

Architecture for Hybrid Digital Circuits with Two-Terminal

Nanodevices," Nanotechnology, Vol. 16, No. 6, pp. 888-900, June 2005.

[7] G. S. Snider and R. S. Williams, "Nano/CMOS Architectures Using a

Field-Programmable Nanowire Interconnect," Nanotechnology, Vol. 18,

No. 3, 035204, January 2007.

[8] G. S. Rose and M. R. Stan, "A Programmable Majority Logic Array

Using Molecular Scale Electronics," IEEE Transactions on Circuits and

Systems I: Regular Papers, Vol. 54, No. 11, pp. 2380-2390, November

2007.

[9] G. Snider, "Computing with Hysteretic Resistor Crossbars," Applied

Physics A: Materials Science and Processing, Vol. 80, No. 6, pp. 1165-

1172, March 2005.

[10] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R.

S. Williams, "Memristive Switches Enable 'Stateful' Logic Operations

via Material Implication," Nature, Vol. 464, pp. 873-876, April 2010.

[11] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems

Perspective, Addison Wesley, 2010.

[12] E. Lehtonen and M. Laiho, "Stateful Implication Logic with

Memristors," Proceedings of the IEEE/ACM International Symposium

on Nanoscale Architectures, pp. 33-36, July 2009.

[13] E. Lehtonen, J. H. Poikonen, and M. Laiho, "Two Memristors Suffice to

Compute All Boolean Functions," Electronics Letters, Vol. 46, No. 3,

pp. 239-240, February 2010.

[14] K. Eshraghian, K. R. Cho, O. Kavehei, S. K. Kang, D. Abbot, and S. M.

S. Kang, "Memristor MOS Content Addressable Memory (MCAM):

Hybrid Architecture for Future High Performance Search Engines,"

IEEE Transactions on Very Large Scale Integrated Systems, in press.

[15] Z. Biolek, D. Biolek, and V. Biolkova, "Spice Model of Memristor with

Nonlinear Dopant Drift," Radioengineering, Vol. 18, No. 2, Part 2, pp.

210-214, June 2009.

[16] S. Kvatinsky, E. G. Friedman, A. Kolodny and U. C. Weiser, "TEAM:

ThrEshold Adaptive Memristor Model," unpublished.

