
HNOCS: Modular Open-Source Simulator for

Heterogeneous NoCs

Yaniv Ben-Itzhak
1
 Eitan Zahavi

1
 Israel Cidon

2
 Avinoam Kolodny

2

Electrical Engineering Department

Technion – Israel Institute of Technology

Haifa, Israel
1
{yanivbi, ezahavi}@tx.technion.ac.il

2
{cidon, kolodny}@ee.technion.ac.il

Abstract— We present HNOCS (Heterogeneous Network-on-

Chip Simulator), an open-source NoC simulator based on

OMNeT++. To the best of our knowledge, HNOCS is the first

simulator to support modeling of heterogeneous NoCs with

variable link capacities and number of VCs per unidirectional

port. The HNOCS simulation platform provides an open-source,

modular, scalable, extendible and fully parameterizable

framework for modeling NoCs. It includes three types of NoC

routers: synchronous, synchronous virtual output queue (VoQ)

and asynchronous. HNOCS provides a rich set of statistical

measurements at the flit and packet levels: end-to-end latencies,

throughput, VC acquisition latencies, transfer latencies, etc. We

describe the architecture, structure, available models and the

features that make HNOCS suitable for advanced NoC

exploration. We also evaluate several case studies which cannot

be evaluated with any other exiting NoC simulator.

Keywords-NoC simulator; Heterogeneous NoC

I. INTRODUCTION

Network-on-Chip (NoC) has emerged as a new on-chip
communication approach. It offers better scalability,
throughput, overall latency and area compared to bus-based on-
chip interconnect. However, the NoC design space is very large
and high dimensional. It includes the optimization of topology,

1
 In order to obtain parallelism in HNOCS, one must change

the types of links to unidirectional [11].

routing mechanism, congestion control methodologies, link
capacities, number of buffers and virtual channels per link, etc.
Furthermore, the NoC research area is still at its infancy.
Consequently new architectures, techniques and ideas are being
proposed, developed and evaluated. Hence, simulators are
essential tools in evaluating the performance of different NoC
designs and new proposals. Therefore, in order to be able to
cover the existing and future NoC diversities, NoC simulators
should be modular, scalable, extendible and fully
parameterizable.

In this paper we introduce HNOCS, a modular open-source
OMNeT++ based NoC simulator. To the best of our
knowledge, HNOCS is the first NoC simulator to support
heterogeneous NoCs with variable link capacities and number
of VCs per each unidirectional port. Heterogeneous NoCs [7]
[8] [9] offer better performance compared to homogeneous
NoCs since SoCs and CMPs are heterogeneous in terms of
module-to-module traffic requirements. HNOCS allows
researching and exploring new paradigms and phenomena of
heterogeneous NoCs [10].

HNOCS supports parallelism
1
 and arbitrary topologies. It

includes synchronous, synchronous virtual output queue and
asynchronous NoC routers. Several previous NoC simulators

TABLE I. NOC SIMULATORS COMPARISON

Simulator Framework Availability Parallelism Topologies
Open-

Source

Heterogeneous

Support

Synchronous

/ Asynchronous

SICOSYS [1] C++ + - Limited + - Synchronous

Noxim [2] SystemC + - Mesh + - Synchronous

NNSE [3] SystemC + - Mesh/Torus + - Synchronous

Nirgam [4] SystemC + - All + - Synchronous

gpNoCsim [5] Java + - All + - Both

[6] OMNeT++ - + All - - Synchronous

HNOCS OMNeT++ + +
1
 All + + Both

have been presented. To the best of our knowledge, none of
them satisfies all the aforementioned requirements that are
necessary to cover the design and research space. TABLE I
presents a comparison between previous NoC simulators and
HNOCS. HNOCS is based on OMNeT++ [11], which is an
extensible, modular, open-source component-based C++
simulation library and framework, primarily aimed at building
network simulators.

OMNeT++ provides several important advantages utilized
by HNOCS. It offers easy traceability, debug utilities to reduce
debug-time, and built-in parallelism support to reduce
simulation run-time. Moreover, it supports flexible and
efficient topology definition using NED, the OMNeT++
topology description language. NED has a simple syntax, yet it
is very powerful for defining arbitrary topologies (see Fig. 3).
All these advantages give HNOCS the potential to become a
highly beneficial and extensible open source simulation
platform for the service of the NoC research community.

Availability. HNOCS is available at the OMNeT++
website in the simulation models page [12] and at the following
link: http://webee.technion.ac.il/matrics/software.html.

Currently, it supports three router types: synchronous,
synchronous virtual output queue (VoQ) and asynchronous. It
includes full model documentation and several examples.

The rest of this paper is organized as follows: section II
presents the simulator architecture and the available models. In
section III, we describe in details the models of HNOCS.
Section IV presents performance evaluation examples. We
evaluate the end-to-end latency and throughput for uniform
traffic pattern. We also present a synthetic non-uniform traffic
and heterogeneous NoC examples. In section IV.D, we discuss
possible extensions of HNOCS.

II. SIMULATOR ARCHITECTURE

HNOCS architecture is optimized for extendibility and
comparative architecture evaluation. This requirement is
translated to several major features of HNOCS: the use of
module interfaces, message classes, modules directory, support
for arbitrary topologies and module selection as a simulation
parameter. In this section we describe each one of these
features and the way, in which they are provided by HNOCS.

HNOCS is designed so that different implementations of

NoC architecture building blocks could be gradually extended
to finally form a rich set of alternative architectures. Therefore,
it is required that parts of the model should be easily replaced
by new implementations in a manner that does not require the
author of the new model to know the details of other blocks
internals. It is crucial for such a system to use well defined
interfaces between the parts of the model. Such interfaces
should be extendible in such a way that several new modules
would be enabled to exchange new types of information
without breaking the rest of the modules functionality.
OMNeT++ provides two main features that enable such
architecture: module-interfaces and message-inheritance.

An OMNeT++ module represents a hardware or a software
entity that is capable of receiving messages (from itself or other
modules) and implements self-contained logic. Modules are
declared by specifying their configurable properties and “ports”
– where messages can arrive or leave from. A module-interface
is a skeleton that has no real module implementation behind it.
Modules may declare their adherence to such an interface
(meaning the set of ports and properties) and thus may be used
in place of the skeletons in a dynamic manner. The list of
available interfaces in HNOCS is presented in TABLE II. Each
line of the table describes a module interface with its properties
and a list of ports. A port which represents a set of indexed
ports is marked by “[]”.

Generally, a NoC is built from two main modules: Routers
and Network Interfaces (NI) as shown in Fig. 1(a) (named
“core[*]” and “router[*]" respectively). Internally the NI
contains sources and sinks (Fig. 1(c)). Routers hierarchically
built as a collection of connected ports. The hierarchical
approach allows HNOCS to support heterogeneity; each port is
configured according to its capacity and number of VCs. The
routers consist of ports (Fig. 1(b)). The ports include input-port
(inPort), output-port selector (opCalc), VC-allocator (vcCalc),
and scheduler (sched) (Fig. 1(d)). The input-port stores the
incoming flits in the proper VC buffer. Once a head-flit is in
the head of the FIFO buffer, the output-port selector
implements the routing decision. Then, the VC-allocator
allocates an output VC. The scheduler employs arbitration
between the different packets needed to be transmitted through
the proper out-port. Actually, this is an implementation of the
switch allocation pipe-stage. Section III.A provides more
details about the process of flits through the NoC router.

TABLE II. NOC MODULE INTERFACES

Interface Properties Ports Description

NI_Ifc id in, out Network interface

Source_Ifc srcId Out Source of traffic

Sink_Ifc numVCs In Sink of traffic

Port_Ifc numPorts in, out, sw_in, sw_out, sw_ctrl_in, sw_ctrl_out Hierarchical router port

Router_Ifc id, numPorts ports in[], out[] NoC router

Sched_Ifc numVCs ctrl[], in[], out[] Scheduler/Arbiter

InPort_Ifc numVCs in, out[], ctrl[], calcVC, calcOp Router input port

OPCalc_Ifc Calc Routing calculation

VCCalc_Ifc Calc VC Allocator

Figure 1. 2x2 mesh NoC: (a) a complete mesh built from routers and cores; (b)

a hierarchical router of 5 ports; (c) a core structure; (d) a single port structure.

Fig. 2 depicts the HNOCS modules directory structure for
each module shown in Fig. 1. For instance, one can select to
use the opCalc module as static (i.e. deterministic routing). In
order to use a new routing scheme, one should implement new
module for opCalc.

HNOCS uses “message” objects as its scheduled events.
“Messages” are callback functions to be invoked when the
event reaches the top of the event wheel. In addition, they carry
topological information, such as the source module, the output
port, the message sent on, the current module, the message
arrived to, etc. In addition, OMNET++ provides a rich set of
utilities and APIs acting on messages. These are, for example,
time-stamping (used for latency calculations), tracking
ownership, management, visualization and logging. A standard
set of messages is defined in HNOCS in order to facilitate
extendibility. Similarly to module-interfaces, OMNeT++
provides means to sub-class messages using a mechanism
similar to C++ inheritance. All HNOCS modules should be
designed to accept a small set of message types on their NoC
link ports. Several modules may share message sub-class
definition and extend the data delivered by the standard
messages without affecting other modules operation. HNOCS

Figure 2. HNOCS modules directory structure and classification

Figure 3. A parameterized mesh topology definition in NED language

defines two types of messages that represent traffic on the NoC
links: NoCFlitMsg representing the data flits and
NoCCreditMsg the flow control signals. NoCFlitMsg messages
represent a single flit with its associated small data size.
However, they also carry simulation attributes to enable
different types of algorithms within the NoC. Flexible and
efficient topology definition is natively supported by
OMNeT++. For example the topology definition of a flexible
size mesh is provided in Fig. 3. The provided mesh definition
demonstrates the power of the NED language in the ability to
iterate and declare connections using iterator values. The NI
and Router modules are selected using the coreType and
routerType parameters which are evaluated during the
simulation run. As opposed to the common practice where on
each change, a new simulation executable should be built and
maintained. When the number of possible combinations for
different module implementations grows, the number of
executables explodes, thus turning the run-time
parameterization into key-factor in delivering a platform for
many NoC architectures simulation.

OMNeT++ simulates a wire by describing its latency and
capacity. In HNOCS we use the capacity parameter for links
that carry flits and the latency parameter for zero size control
messages such as credits or router control messages. This
allows us to describe a synchronous clocked implementation
for the router internal scheduler with fine grain control over
exact number of cycles of each function. OMNeT++ protects
the data links by enforcing the delivery of a single message at a
time preventing any overflow of the link’s defined capacity.

III. MODELS DESCRIPTION

This section describes the main modules available in the
current version of HNOCS.

A. Hierarchical Router

The hierarchical router structure consists of ports which are
fully connected (see Fig. 1(c)); each port consists of in-port,
VC allocator (vcCalc), routing module (opCalc), and scheduler
(sched) (see Fig. 1(d)).

Fig. 4 depicts the process for a new head-flit arrival. When
a head-flit arrives at an in-port, it is queued in the proper VC
buffer and the routing module calculates the packet`s out-port
(1). When the head-flit is in the head of the buffer, the VC
allocator assigns a VC over the out-port (2). Then, the in-port
sends a request message to the scheduler of the out-port (3).
Once the scheduler can transmit the head-flit (depends on the
capacity of the port`s outgress link), it sends a grant message to
the in-port (4). In return, the in-port sends a credit message to
the scheduler of the previous router (5) and also sends the
head-flit to the out-port (6). Then, the scheduler sends it to the
in-port of the next-router (7). The rest of the packet`s flits are
assigned the same out-port and VC of their head-flit. The
scheduler sends grant messages to the in-port whenever it can
transmit the packet`s flits (8); in return, the in-port sends the
next package`s flit or NACK if there are no ready flits to
transmit.

The scheduler serves the request messages from the in-ports
(per VC) in a FIFO manner. It employs a round-robin (each VC
with outstanding flits sends a single flit) or a winner-takes-all
arbitration (the winner VC sends all its outstanding flits) [13].
The grant messages are only sent when there are credits for the
proper VC.

HNOCS contains three types of hierarchical routers:
synchronous, synchronous virtual output queue (VoQ) and
asynchronous. The main difference between the synchronous
and virtual output queue to the asynchronous routers is at
which time grant messages are sent. The synchronous router
attempts to send a grant message in every clock cycle; while,
the asynchronous router attempts to send a grant message when
it gets a request, a flit or a credit message, or after it finishes
transmitting a flit. The synchronous and asynchronous NoC
routers implement FIFO buffers per VC. The synchronous
virtual output queuing (VoQ) router allows packets to bypass
packets destined to other output queues. This enables higher
utilization since it limits the head-of-line blocking scenario
only between VCs going to the same output port. The number
of concurrent packets being sent to different output ports is an
HNOCS parameter, which can be configured.

B. Traffic Configuration

Traffic is configured by setting the destination and packet-
arrival time parameters for each source. The destination can be
either deterministic or randomly distributed. The distributions
are set using the built-in OMNeT++ generation functions (e.g.
intuniform: uniform distribution OMNeT++ function). The
packet inter-arrival times can be either randomly distributed
(e.g. exponential, constant) or driven by a trace file. The trace
file includes specific times when a packet should be generated.
Hence, HNOCS can cover a variety of traffic patterns. We plan
to extend HNOCS so that it will simultaneously support
different packets generation schemes for each source.

C. Statistics Collection

HNOCS provides a rich set of statistical measurements
collected by the sink, the source and the in-port modules. The
sinks collects throughput and different latency statistics at the
flit and package levels. The source collects several source
queue indicators in order to identify the point of saturation. The
in-port collects VC acquisition latencies (i.e. latency to acquire
an out-port VC) and transfer latencies. The user can easily add
more statistical measurements and export them to his favorite
workspace. In particular, one can easily integrate a power
estimation model (e.g. ORION) into HNOCS in order to
evaluate NoC power consumption.

IV. PERFORMANCE EVALUATION

This section demonstrates the capabilities, features and run-
time of HNOCS. To that end, we present a comparison
between three routers implemented using HNOCS (i.e.
synchronous, synchronous virtual output queue (VoQ) and
asynchronous) for a uniform traffic pattern and for a synthetic
non-uniform traffic example. We also present an evaluation for
a heterogeneous NoC with variable link capacities and number
of VCs per port, which none of the existing NoC simulators is
capable of evaluating (see TABLE I).

A. Uniform Traffic Pattern

Fig. 5 presents the average throughput and end-to-end
latency for a uniform traffic pattern over a 4x4 NoC with two
GBps and two VCs for all links. We compare three types of
NoC routers: synchronous, synchronous VoQ and
asynchronous employ winner-takes-all arbitration. HNOCS

Figure 4. Router transmission process example (OMNeT++ event log viewer snapshot (non linear time scale) *some of the events are overlapping in real time.

Figure 5. Uniform traffic pattern. (a) Average throughput versus offered load ;

(b) Average end-to-end latency versus offered load

modules type parameterization feature enables the use of the
same simulation setup for these three different NoC
implementations. The results show that under high loads the
asynchronous router has the highest throughput, followed by
the synchronous VoQ and synchronous routers. This behavior
is expected since the asynchronous router incur in lower
latency (no clocking or pipeline) as compared to the
synchronous VoQ and synchronous routers. The VoQ router
(which uses a separate FIFO for each input port, output port
and input VC) is expected to outperform the synchronous
router which utilizes a single FIFO per each input port VC.

B. Synthetic Non-Uniform Traffic Example

In this section, we present an example for performance
evaluation of an asynchronous NoC router, which employs
round-robin arbitration, for non-uniform traffic. Fig. 6(a)
presents the synthetic example, where all links are 16 Gbps and
have single VC. Fig. 6(b) presents the end-to-end latency
versus offered load for each flow. It can be seen that flows 1
and 2 incur higher latency compared to the other flows.
Furthermore, flow 3 incurs higher latency compared to flow 4
and so on. This phenomenon can be explained by looking at the
path acquisition latency (i.e. the time it takes the head-flit to
reach the destination) of each flow (Fig. 6(c)). For instance, the
path acquisition latency of flow 2 depends on the time that flow
1 occupies the first link. However, the time during which flow
1 occupies the first link

Figure 6. (a) Synthetic Example for Non-Uniform Traffic ; (b) End-to-end

latency versus offered load per flow ; (c) Path acquisition Latency versus
offered load per flow

depends on its own path acquisition latency which depends on
the time that flows 3 to 5 occupy their links [10]. Hence,
understanding different scenarios is possible due to a rich set of
statistical measurements which can be provided by HNOCS.

C. Synthetic Example for Heterogeneous NoC Evaluation

In this section, we present a synthetic example of a
heterogeneous NoC (see Fig. 7) which employs round-robin
arbitration. All flows have the same packet generation rate.
Unless noted, all links are 16Gbps and have sufficient number
of VCs (i.e. at least the number of flows transmitted over it).
Fig. 8 presents the end-to-end latency versus the offered load
for each flow. It can be seen that flow 1 has the lowest latency.
Flows 2-4 incur higher latencies since they are transmitted
through link 12 which is only 12 Gbps and through link 7
which has only single VC. Therefore, these flows are
transmitted through `bottleneck` links which cause increase of
the VC acquiring and transfer latencies.

HNOCS is the only NoC simulator which can evaluate
heterogeneous NoCs, such this scenario (see TABLE I).

Figure 7. Synthetic example of NoC with non-uniform numbers of VCs and

non-uniform capacities of links (Unless noted links are 16Gbps and have

sufficient number of VCs). ��� = 10	�	
�; ��� = 12�	
�; ��� = 1.

Figure 8. The end-to-end latency of the flows in Fig. 7.

D. HNOCS Run-Time

TABLE III presents the HNOCS run-time simulation of 2
ms for both low load and saturated NoCs. The run-time is
measured for the uniform traffic pattern evaluation presented in
section IV.A , the synthetic traffic examples presented in
sections IV.B and IV.C, and for the synthetic example
presented in Fig. 9. The latter synthetic example consists of
link capacity of 16 Gbps and single VC for all links.

TABLE III. HNOCS SIMULATION RUN-TIME

 Simulation Run-Time [Sec]

Low Load Saturation

Uniform Traffic Pattern
(Section IV.A)
[Sync / SyncVoQ / Async]

295 /401 / 272 588 / 872 / 587

Synthetic Non-Uniform Traffic
Example (Section IV.B)

57 96

Synthetic Example for
Heterogeneous NoC Evaluation
(Section IV.C)

45 69

Synthetic Example (Fig. 9) 74 101

Figure 9. The syntethic example used in TABLE III. All links are 16 Gbps

with single VC.

We run HNOCS over a standard desktop computer with
Q6600 Intel processor and 2GB memory. Our experience
shows that one should repeat the simulation (An OMNeT++
parameter) for five to ten times in order to get low variance and
sufficient accuracy.

V. SUMMARY AND FUTURE WORK

A modular NoC simulator based on OMNeT++ framework
has been presented and implemented. Several advantages of
HNOCS compared to previous NoC simulators have been
discussed. It has been shown that HNOCS is the only simulator
capable of supporting heterogeneous NoC routers with variable
link capacities and number of VCs per unidirectional port. The
detailed structure of HNOCS architecture and its model
descriptions have been explained. It has been demonstrated that
HNOCS offers an open-source, scalable, extendible and fully
parameterizable framework for modeling NoCs.

HNOCS is planned for easy extensions in several
directions. For instance, supporting different routing protocols;
employing different arbitration schemes; implementing various
QoS mechanisms; and supporting power/energy estimation.

REFERENCES

[1] V. Puente, J. Gregorio, and R. Beivide, “SICOSYS: an integrated
framework for studying interconnection network performance in
multiprocessor systems,” in Parallel, Distributed and Network-based
Processing, 2002. Proceedings. 10th Euromicro Workshop on. IEEE,
2002, pp. 15–22.

[2] F. Fazzino, M. Palesi, and D. Patti, “Noxim: Network-on-chip
simulator,” 2008.

[3] Z. Lu, R. Thid, M. Millberg, E. Nilsson, and A. Jantsch, “NNSE:
Nostrum network-on-chip simulation environment,” in Swedish System-
on-Chip Conference (SSoCC’03). Citeseer, 2005, pp. 1–4.

[4] L. Jain, B. Al-Hashimi, M. Gaur, V. Laxmi, and A. Narayanan,
“NIRGAM: a simulator for NoC interconnect routing and application
modeling,” in Workshop on Diagnostic Services in Network-on-Chips,
Design, Automation and Test in Europe Conference (DATE’07), 2007,
pp. 16–20.

[5] H. Hossain, M. Ahmed, A. Al-Nayeem, T. Islam, and M. Akbar,
“Gpnocsim-A General Purpose Simulator for Network-On-Chip,” in
Information and Communication Technology, 2007. ICICT’07.
International Conference on. IEEE, 2007, pp. 254–257.

[6] R. Al-Badi, M. Al-Riyami, and N. Alzeidi, “A parameterized NoC
simulator using OMNet++,” in Ultra Modern Telecommunications &
Workshops, 2009. ICUMT’09. International Conference on. IEEE, 2009,
pp. 1–7.

[7] A. Mishra, N. Vijaykrishnan, and C. Das, “A case for heterogeneous on-
chip interconnects for CMPs,” in Proceeding of the 38th annual
international symposium on Computer architecture. ACM, 2011, pp.
389–400.

[8] A. Bakhoda, J. Kim, and T. Aamodt, “Throughput-effective on-chip
networks for manycore accelerators,” in Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2010, pp. 421–432.

[9] M. Kreutz, C. Marcon, L. Carro, F. Wagner, and A. Susin, “Design
space exploration comparing homogeneous and heterogeneous network-
on-chip architectures,” in Proceedings of the 18th annual symposium on
Integrated circuits and system design. ACM, 2005, pp. 190–195.

[10] Y. Ben-Itzhak, I. Cidon, and A. Kolodny, “Delay analysis of wormhole
based heterogeneous NoC,” in Proceedings of the fifth ACM/IEEE
international symposium on Networks-on-Chip (NOCS 2011), 2011.

[11] A. Varga et al., “The OMNeT++ discrete event simulation system,” in
Proceedings of the European Simulation Multiconference (ESM’2001),
2001, pp. 319–324.

[12] [Online]. Available: http://www.omnetpp.org/models/catalog

[13] W. Dally and B. Towles, Principles and practices of interconnection
networks. Morgan Kaufmann, 2004.

