
HNOCS: Modular Open-Source Simulator for 

Heterogeneous NoCs

Yaniv Ben-Itzhak
1
 Eitan Zahavi

1
      Israel Cidon

2
  Avinoam Kolodny

2
 

Electrical Engineering Department 

Technion – Israel Institute of Technology 

Haifa, Israel 
1
{yanivbi, ezahavi}@tx.technion.ac.il 

2
{cidon, kolodny}@ee.technion.ac.il 

 

 
Abstract— We present HNOCS (Heterogeneous Network-on-

Chip Simulator), an open-source NoC simulator based on 

OMNeT++. To the best of our knowledge, HNOCS is the first 

simulator to support modeling of heterogeneous NoCs with 

variable link capacities and number of VCs per unidirectional 

port. The HNOCS simulation platform provides an open-source, 

modular, scalable, extendible and fully parameterizable 

framework for modeling NoCs. It includes three types of NoC 

routers: synchronous, synchronous virtual output queue (VoQ) 

and asynchronous. HNOCS provides a rich set of statistical 

measurements at the flit and packet levels: end-to-end latencies, 

throughput, VC acquisition latencies, transfer latencies, etc. We 

describe the architecture, structure, available models and the 

features that make HNOCS suitable for advanced NoC 

exploration.  We also evaluate several case studies which cannot 

be evaluated with any other exiting NoC simulator.  

Keywords-NoC simulator; Heterogeneous NoC  

I.  INTRODUCTION 

Network-on-Chip (NoC) has emerged as a new on-chip 
communication approach. It offers better scalability, 
throughput, overall latency and area compared to bus-based on-
chip interconnect. However, the NoC design space is very large 
and high dimensional. It includes the optimization of topology, 

                                                           
1
 In order to obtain parallelism in HNOCS, one must change 

the types of links to unidirectional [11]. 

routing mechanism, congestion control methodologies, link 
capacities, number of buffers and virtual channels per link, etc. 
Furthermore, the NoC research area is still at its infancy. 
Consequently new architectures, techniques and ideas are being 
proposed, developed and evaluated. Hence, simulators are 
essential tools in evaluating the performance of different NoC 
designs and new proposals. Therefore, in order to be able to 
cover the existing and future NoC diversities, NoC simulators 
should be modular, scalable, extendible and fully 
parameterizable. 

In this paper we introduce HNOCS, a modular open-source 
OMNeT++ based NoC simulator. To the best of our 
knowledge, HNOCS is the first NoC simulator to support 
heterogeneous NoCs with variable link capacities and number 
of VCs per each unidirectional port. Heterogeneous NoCs [7] 
[8] [9] offer better performance compared to homogeneous 
NoCs since SoCs and CMPs are heterogeneous in terms of 
module-to-module traffic requirements. HNOCS allows 
researching and exploring new paradigms and phenomena of 
heterogeneous NoCs  [10]. 

HNOCS supports parallelism
1
 and arbitrary topologies. It 

includes synchronous, synchronous virtual output queue and 
asynchronous NoC  routers.  Several  previous  NoC simulators   

TABLE I.  NOC SIMULATORS COMPARISON 

Simulator Framework Availability Parallelism Topologies 
Open-

Source 

Heterogeneous 

Support 

Synchronous 

/ Asynchronous 

SICOSYS [1] C++ + - Limited + - Synchronous 

Noxim [2] SystemC + - Mesh + - Synchronous 

NNSE [3] SystemC + - Mesh/Torus + - Synchronous 

Nirgam [4] SystemC + - All + - Synchronous 

gpNoCsim [5] Java + - All + - Both 

[6] OMNeT++ - + All - - Synchronous 

HNOCS OMNeT++ + +
1
 All + + Both 



have been presented. To the best of our knowledge, none of   
them satisfies all the aforementioned requirements that are 
necessary to cover the design and research space. TABLE I 
presents a comparison between previous NoC simulators and 
HNOCS. HNOCS is based on OMNeT++ [11], which is an 
extensible, modular, open-source component-based C++ 
simulation library and framework, primarily aimed at building 
network simulators.  

OMNeT++ provides several important advantages utilized 
by HNOCS. It offers easy traceability, debug utilities to reduce 
debug-time, and built-in parallelism support to reduce 
simulation run-time. Moreover, it supports flexible and 
efficient topology definition using NED, the OMNeT++ 
topology description language. NED has a simple syntax, yet it 
is very powerful for defining arbitrary topologies (see Fig. 3). 
All these advantages give HNOCS the potential to become a 
highly beneficial and extensible open source simulation 
platform for the service of the NoC research community.  

Availability. HNOCS is available at the OMNeT++ 
website in the simulation models page [12] and at the following 
link:    http://webee.technion.ac.il/matrics/software.html.  

Currently, it supports three router types: synchronous, 
synchronous virtual output queue (VoQ) and asynchronous. It 
includes full model documentation and several examples. 

The rest of this paper is organized as follows: section  II 
presents the simulator architecture and the available models. In 
section  III, we describe in details the models of HNOCS. 
Section  IV presents performance evaluation examples. We 
evaluate the end-to-end latency and throughput for uniform 
traffic pattern. We also present a synthetic non-uniform traffic 
and heterogeneous NoC examples. In section  IV.D, we discuss 
possible extensions of HNOCS.  

II. SIMULATOR ARCHITECTURE 

HNOCS architecture is optimized for extendibility and 
comparative architecture evaluation. This requirement is 
translated to several major features of HNOCS: the use of 
module interfaces, message classes, modules directory, support 
for arbitrary topologies and module selection as a simulation 
parameter. In this section we describe each one of these 
features and the way, in which they are provided by HNOCS.  

HNOCS is designed so that different implementations of 

NoC architecture building blocks could be gradually extended 
to finally form a rich set of alternative architectures. Therefore, 
it is required that parts of the model should be easily replaced 
by new implementations in a manner that does not require the 
author of the new model to know the details of other blocks 
internals. It is crucial for such a system to use well defined 
interfaces between the parts of the model. Such interfaces 
should be extendible in such a way that several new modules 
would be enabled to exchange new types of information 
without breaking the rest of the modules functionality. 
OMNeT++ provides two main features that enable such 
architecture: module-interfaces and message-inheritance. 

An OMNeT++ module represents a hardware or a software 
entity that is capable of receiving messages (from itself or other 
modules) and implements self-contained logic. Modules are 
declared by specifying their configurable properties and “ports” 
– where messages can arrive or leave from. A module-interface 
is a skeleton that has no real module implementation behind it. 
Modules may declare their adherence to such an interface 
(meaning the set of ports and properties) and thus may be used 
in place of the skeletons in a dynamic manner. The list of 
available interfaces in HNOCS is presented in TABLE II. Each 
line of the table describes a module interface with its properties 
and a list of ports. A port which represents a set of indexed 
ports is marked by “[]”. 

Generally, a NoC is built from two main modules: Routers 
and Network Interfaces (NI) as shown in Fig. 1(a) (named 
“core[*]” and “router[*]" respectively). Internally the NI 
contains sources and sinks (Fig. 1(c)). Routers hierarchically 
built as a collection of connected ports. The hierarchical 
approach allows HNOCS to support heterogeneity; each port is 
configured according to its capacity and number of VCs. The 
routers consist of ports (Fig. 1(b)). The ports include input-port 
(inPort), output-port selector (opCalc), VC-allocator (vcCalc), 
and scheduler (sched) (Fig. 1(d)). The input-port stores the 
incoming flits in the proper VC buffer. Once a head-flit is in 
the head of the FIFO buffer, the output-port selector 
implements the routing decision. Then, the VC-allocator 
allocates an output VC. The scheduler employs arbitration 
between the different packets needed to be transmitted through 
the proper out-port. Actually, this is an implementation of the 
switch allocation pipe-stage. Section  III.A provides more 
details about the process of flits through the NoC router.  

TABLE II. NOC MODULE INTERFACES 

Interface Properties Ports Description 

NI_Ifc         id in, out Network interface 

Source_Ifc     srcId Out Source of traffic 

Sink_Ifc       numVCs  In Sink of traffic 

Port_Ifc  numPorts in, out, sw_in, sw_out, sw_ctrl_in, sw_ctrl_out Hierarchical router port 

Router_Ifc     id, numPorts  ports in[], out[] NoC router 

Sched_Ifc      numVCs ctrl[], in[], out[] Scheduler/Arbiter 

InPort_Ifc     numVCs  in, out[], ctrl[], calcVC, calcOp Router input port 

OPCalc_Ifc     Calc Routing calculation 

VCCalc_Ifc     Calc VC Allocator 



 

Figure 1. 2x2 mesh NoC: (a) a complete mesh built from routers and cores; (b) 

a hierarchical router of 5 ports; (c) a core structure;  (d) a single port structure.  

Fig. 2 depicts the HNOCS modules directory structure for 
each module shown in Fig. 1. For instance, one can select to 
use the opCalc module as static (i.e. deterministic routing). In 
order to use a new routing scheme, one should implement new 
module for opCalc.   

HNOCS uses “message” objects as its scheduled events. 
“Messages” are callback functions to be invoked when the 
event reaches the top of the event wheel. In addition, they carry 
topological information, such as the source module, the output 
port, the message sent on, the current module, the message 
arrived to, etc. In addition, OMNET++ provides a rich set of 
utilities and APIs acting on messages. These are, for example, 
time-stamping (used for latency calculations), tracking 
ownership, management, visualization and logging. A standard 
set of messages is defined in HNOCS in order to facilitate 
extendibility. Similarly to module-interfaces, OMNeT++ 
provides means to sub-class messages using a mechanism 
similar to C++ inheritance. All HNOCS modules should be 
designed to accept a small set of message types on their NoC 
link ports. Several modules may share message sub-class 
definition and extend the data delivered by the standard 
messages  without  affecting  other modules operation. HNOCS  

Figure 2.  HNOCS modules directory structure and classification 

 

Figure 3. A parameterized mesh topology definition in NED language 

defines two types of messages that represent traffic on the NoC 
links: NoCFlitMsg representing the data flits and 
NoCCreditMsg the flow control signals. NoCFlitMsg messages 
represent a single flit with its associated small data size. 
However, they also carry simulation attributes to enable 
different types of algorithms within the NoC. Flexible and 
efficient topology definition is natively supported by 
OMNeT++. For example the topology definition of a flexible 
size mesh is provided in Fig. 3. The provided mesh definition 
demonstrates the power of the NED language in the ability to 
iterate and declare connections using iterator values. The NI 
and Router modules are selected using the coreType and 
routerType parameters which are evaluated during the 
simulation run. As opposed to the common practice where on 
each change, a new simulation executable should be built and 
maintained. When the number of possible combinations for 
different module implementations grows, the number of 
executables explodes, thus turning the run-time 
parameterization into key-factor in delivering a platform for 
many NoC architectures simulation. 

OMNeT++ simulates a wire by describing its latency and 
capacity. In HNOCS we use the capacity parameter for links 
that carry flits and the latency parameter for zero size control 
messages such as credits or router control messages. This 
allows us to describe a synchronous clocked implementation 
for the router internal scheduler with fine grain control over 
exact number of cycles of each function. OMNeT++ protects 
the data links by enforcing the delivery of a single message at a 
time preventing any overflow of the link’s defined capacity.  

III. MODELS DESCRIPTION 

This section describes the main modules available in the 
current version of HNOCS. 

A. Hierarchical Router  

The hierarchical router structure consists of ports which are 
fully connected (see Fig. 1(c)); each port consists of in-port, 
VC allocator (vcCalc), routing module (opCalc), and scheduler 
(sched) (see Fig. 1(d)).  



Fig. 4 depicts the process for a new head-flit arrival. When 
a head-flit arrives at an in-port, it is queued in the proper VC 
buffer and the routing module calculates the packet`s out-port 
(1). When the head-flit is in the head of the buffer, the VC 
allocator assigns a VC over the out-port (2). Then, the in-port 
sends a request message to the scheduler of the out-port (3). 
Once the scheduler can transmit the head-flit (depends on the 
capacity of the port`s outgress link), it sends a grant message to 
the in-port (4). In return, the in-port sends a credit message to 
the scheduler of the previous router (5) and also sends the 
head-flit to the out-port (6). Then, the scheduler sends it to the 
in-port of the next-router (7). The rest of the packet`s flits are 
assigned the same out-port and VC of their head-flit. The 
scheduler sends grant messages to the in-port whenever it can 
transmit the packet`s flits (8); in return, the in-port sends the 
next package`s flit or NACK if there are no ready flits to 
transmit.   

The scheduler serves the request messages from the in-ports 
(per VC) in a FIFO manner. It employs a round-robin (each VC 
with outstanding flits sends a single flit) or a winner-takes-all 
arbitration (the winner VC sends all its outstanding flits) [13]. 
The grant messages are only sent when there are credits for the 
proper VC.  

HNOCS contains three types of hierarchical routers: 
synchronous, synchronous virtual output queue (VoQ) and 
asynchronous. The main difference between the synchronous 
and virtual output queue to the asynchronous routers is at 
which time grant messages are sent. The synchronous router 
attempts to send a grant message in every clock cycle; while, 
the asynchronous router attempts to send a grant message when 
it gets a request, a flit or a credit message, or after it finishes 
transmitting a flit. The synchronous and asynchronous NoC 
routers implement FIFO buffers per VC. The synchronous 
virtual output queuing (VoQ) router allows packets to bypass 
packets destined to other output queues. This enables higher 
utilization since it limits the head-of-line blocking scenario 
only between VCs going to the same output port. The number 
of concurrent packets being sent to different output ports is an 
HNOCS parameter, which can be configured.        

 

B. Traffic Configuration 

Traffic is configured by setting the destination and packet-
arrival time parameters for each source. The destination can be 
either deterministic or randomly distributed. The distributions 
are set using the built-in OMNeT++ generation functions (e.g. 
intuniform: uniform distribution OMNeT++ function). The 
packet inter-arrival times can be either randomly distributed 
(e.g. exponential, constant) or driven by a trace file. The trace 
file includes specific times when a packet should be generated. 
Hence, HNOCS can cover a variety of traffic patterns. We plan 
to extend HNOCS so that it will simultaneously support 
different packets generation schemes for each source. 

C. Statistics Collection  

HNOCS provides a rich set of statistical measurements 
collected by the sink, the source and the in-port modules. The 
sinks collects throughput and different latency statistics at the 
flit and package levels. The source collects several source 
queue indicators in order to identify the point of saturation. The 
in-port collects VC acquisition latencies (i.e. latency to acquire 
an out-port VC) and transfer latencies. The user can easily add 
more statistical measurements and export them to his favorite 
workspace. In particular, one can easily integrate a power 
estimation model (e.g. ORION) into HNOCS in order to 
evaluate NoC power consumption.   

IV. PERFORMANCE EVALUATION 

This section demonstrates the capabilities, features and run-
time of HNOCS. To that end, we present a comparison 
between three routers implemented using HNOCS (i.e. 
synchronous, synchronous virtual output queue (VoQ) and 
asynchronous) for a uniform traffic pattern and for a synthetic 
non-uniform traffic example.  We also present an evaluation for 
a heterogeneous NoC with variable link capacities and number 
of VCs per port, which none of the existing NoC simulators is 
capable of evaluating (see TABLE I).  

A. Uniform Traffic Pattern  

Fig. 5 presents the average throughput and end-to-end 
latency for a uniform traffic pattern over a 4x4 NoC with two 
GBps and two VCs for all links. We compare three types of 
NoC routers: synchronous, synchronous VoQ and 
asynchronous  employ   winner-takes-all  arbitration.   HNOCS  

 

Figure 4. Router transmission process example (OMNeT++ event log viewer snapshot (non linear time scale)  *some of the events are overlapping in real time. 



 

Figure 5. Uniform traffic pattern. (a) Average throughput versus offered load ; 

(b) Average end-to-end latency versus offered load 

modules type  parameterization  feature  enables the use of the 
same simulation setup for these three different NoC 
implementations. The results show that under high loads the 
asynchronous router has the highest throughput, followed by 
the synchronous VoQ and synchronous routers. This behavior 
is expected since the asynchronous router incur in lower 
latency (no clocking or pipeline) as compared to the 
synchronous VoQ and synchronous routers. The VoQ router 
(which uses a separate FIFO for each input port, output port 
and input VC) is expected to outperform the synchronous 
router which utilizes a single FIFO per each input port VC.  

B. Synthetic Non-Uniform Traffic Example 

In this section, we present an example for performance 
evaluation of an asynchronous NoC router, which employs   
round-robin arbitration, for non-uniform traffic. Fig. 6(a) 
presents the synthetic example, where all links are 16 Gbps and 
have single VC. Fig. 6(b) presents the end-to-end latency 
versus offered load for each flow. It can be seen that flows 1 
and 2 incur higher latency compared to the other flows. 
Furthermore, flow 3 incurs higher latency compared to flow 4 
and so on. This phenomenon can be explained by looking at the 
path acquisition latency (i.e. the time it takes the head-flit to 
reach the destination) of each flow (Fig. 6(c)). For instance, the 
path acquisition latency of flow 2 depends on the time that flow 
1 occupies the first link.  However, the time during which flow 
1  occupies  the  first link 

 

Figure 6. (a) Synthetic Example for Non-Uniform Traffic ; (b) End-to-end 

latency versus offered load per flow ; (c) Path acquisition Latency  versus 
offered load per flow 

depends on its own path acquisition latency which depends on 
the time that flows 3 to 5 occupy their links [10]. Hence, 
understanding different scenarios is possible due to a rich set of 
statistical measurements which can be provided by HNOCS.  

C. Synthetic Example for Heterogeneous NoC Evaluation  

In this section, we present a synthetic example of a 
heterogeneous NoC (see Fig. 7) which employs round-robin 
arbitration. All flows have the same packet generation rate. 
Unless noted, all links are 16Gbps and have sufficient number 
of VCs (i.e. at least the number of flows transmitted over it). 
Fig. 8 presents the end-to-end latency versus the offered load 
for each flow. It can be seen that flow 1 has the lowest latency. 
Flows 2-4 incur higher latencies since they are transmitted 
through link 12 which is only 12 Gbps and through link 7 
which has only single VC. Therefore, these flows are 
transmitted through `bottleneck` links which cause increase of 
the VC acquiring and transfer latencies. 

HNOCS is the only NoC simulator which can evaluate 
heterogeneous NoCs, such this scenario (see TABLE I).   



 
Figure 7. Synthetic example of NoC with non-uniform  numbers of VCs and 

non-uniform capacities of links (Unless noted links are 16Gbps and have 

sufficient number of VCs). ��� = 10	�	
�; ��� = 12�	
�; ��� = 1. 

 

Figure 8. The end-to-end latency of the flows in Fig. 7. 

D. HNOCS Run-Time  

TABLE III presents the HNOCS run-time simulation of 2 
ms for both low load and saturated NoCs. The run-time is 
measured for the uniform traffic pattern evaluation presented in 
section  IV.A , the synthetic traffic examples presented in 
sections  IV.B and  IV.C, and for the synthetic example 
presented in Fig. 9. The latter synthetic example consists of 
link capacity of 16 Gbps and single VC for all links. 

TABLE III. HNOCS SIMULATION RUN-TIME  

 Simulation Run-Time [Sec] 

Low Load Saturation 

Uniform Traffic Pattern 
(Section  IV.A)                             
[ Sync / SyncVoQ / Async ] 

295 /401 / 272 588 / 872 / 587 

Synthetic Non-Uniform Traffic 
Example (Section  IV.B) 

57 96 

Synthetic Example for 
Heterogeneous NoC Evaluation 
(Section  IV.C) 

45 69 

Synthetic Example (Fig. 9) 74 101 

 

 

Figure 9. The syntethic example used in TABLE III. All links are 16 Gbps 

with single VC. 

We run HNOCS over a standard desktop computer with 
Q6600 Intel processor and 2GB memory. Our experience 
shows that one should repeat the simulation (An OMNeT++ 
parameter) for five to ten times in order to get low variance and 
sufficient accuracy. 

V. SUMMARY AND FUTURE WORK 

A modular NoC simulator based on OMNeT++ framework 
has been presented and implemented. Several advantages of 
HNOCS compared to previous NoC simulators have been 
discussed. It has been shown that HNOCS is the only simulator 
capable of supporting heterogeneous NoC routers with variable 
link capacities and number of VCs per unidirectional port. The 
detailed structure of HNOCS architecture and its model 
descriptions have been explained. It has been demonstrated that 
HNOCS offers an open-source, scalable, extendible and fully 
parameterizable framework for modeling NoCs.  

HNOCS is planned for easy extensions in several 
directions. For instance, supporting different routing protocols; 
employing different arbitration schemes; implementing various 
QoS mechanisms; and supporting power/energy estimation.   
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