
GANA: A Novel Low Cost Conflict Free

NoC Architecture

EITAN ZAHAVI, ISRAEL CIDON AND AVINOAM KOLODNY

Electrical Engineering Department, the Technion – Israel Institute of Technology

__

Similar to off-chip networks, current NoC architectures are based on the store and forward of uncoordinated
end-to-end packet transmissions through autonomous buffered routers. However, the monolithic nature and the
small physical dimensions of on chip networks open up the opportunity for much more tightly controlled
architectures. We present GANA, a new Global Arbiter NoC Architecture. In GANA, the transmission of end-

to-end data is timed by a global arbiter in a way that avoids any queuing in the network. The arbitration takes
into account the complete transfer of the end-to-end packets through the entire network path, avoiding any
intermediate queuing and hop-by-hop packet arbitration. Consequently, buffers and arbiters are no longer
required in the routers, resulting in smaller area and low power consumption. It is demonstrated through
detailed design and full synthesis that the additional area of the central arbiter and the control path are negligible

in comparison to the provided area saving. For example, an 8x8 GANA consumes only 16% of the area of an
equivalent autonomous NoC while providing a better end-to-end throughput. The end-to-end performance of
GANA at high network loads is typically much better than in a distributed-control NOC, because resource
contention and queuing in the network are avoided. This comes at the cost of a few percentage increase in
latency at light loads due to the additional arbitration phase. GANA architecture combines the inherent benefits

of a network (parallelism and spatial reuse of links) with the inherent benefits of high integration (global view
of the system state, central control, and synchronization). The scalability of GANA is evaluated analytically,
showing that it can be superior to fully-distributed networks in systems up to a size of about 100 modules
manufactured in 45nm technology, which can be used today as well as in the foreseeable future.

Categories and Subject Descriptors: C.2.1 [Network Architecture and Design]: Network on Chip --- Central
Arbitration
General Terms: Design, Network on Chip, Arbitration
Additional Key Words and Phrases: Arbitration Fairness,

__

1. INTRODUCTION

Network on Chip (NoC) architectures have evolved in the last decade as a key technology

for System on Chip (SoC) and Chip Multi Processor (CMP) designs [1]. The prevalent

NoC architecture is an embedding of a 2D interconnection mesh network within the

device. In such a NoC, each vertex of the mesh consists of an autonomous router which

stores, routes, arbitrates and performs time-multiplexing of packets received at an input

port and forwarded to an appropriate output port. To support intermediate packet

arbitration, routing and virtual channel (VC) logic at full wire speed, routers typically

need 2 to 4 pipe stages and 3 or more buffers per VC.

Authors' addresses: Eitan Zahavi, Israel Cidon and Avinoam Kolodny, Department of Electrical Engineering,
The Technion --- Israel institute of technology, Haifa 32000, Israel. Permission to make digital/hard copy of part

of this work for personal or classroom use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the publication, and its date of
appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 2001 ACM 1073-0516/01/0300-0034 $5.00

Several router enhancements to reduce the router latency can be added [16][6], albeit they

increase the area and power of the NoC.

We argue that this common architecture of NoCs has been borrowed from wide-area

macro-networks, where link distances and latencies are large, while the cost of additional

out-of-band communication is prohibitive. Indeed, modern on-chip communication

requires the inherent capability of networks, namely sharing and spatial reuse of wires, in

order to provide the necessary throughput and scalability.

However, on-chip distances are small, additional wires are cheap, and synchronization

is quite possible in the foreseeable future, up to fairly large system sizes of around 256

modules. Therefore, in NoCs it is possible to combine the benefits of data-parallelism (as

in macro-networks) with the benefits of centralized control (conceptually as in bus-based

systems).

 This paper presents a novel NoC architecture that performs NoC input packet

arbitration and time scheduling in a global fashion. The input arbitration by a central

arbiter takes into account all flit movements in a fully synchronized and precisely

predictable way. As a consequence of these accurate timing calculations, the central

arbitration can guarantee that all flits will traverse the NoC without any conflict at any

intermediate router, experiencing a full path cut-through latency. We term this

architecture GANA (Global Arbiter NoC Architecture). Through a detailed design and

synthesis we show that overall, taking into account the arbitration overheads, GANA

saves a considerable amount of area and power due to the elimination of router’s buffers,

VCs and arbiters. These area and power savings are much larger than the corresponding

area and power added for the sake of the central arbitration system, including both its

communication and computation parts. It is demonstrated that an 8x8 GANA saves 84%

of the area and 24% of the power compared to an equivalent traditional NoC (at 25%

load) while providing better end-to-end throughputs. Under light traffic loads, the latency

of GANA is slightly higher in comparison with the traditional NoC because of the extra

request/grant phase associated with the central control unit. However, for medium to high

traffic loads, GANA provides a superior performance, since its control mechanism

guarantees a conflict free network traversal eliminating any queuing delays in the routers.

Our work follows and extends the area saving ideas of Æthereal Guaranteed Service,

[4][5] which relies on availability of the (static) SoC traffic matrix to pre-calculate

periodic arbitration slots which in turn reduces buffering costs. We extend these ideas to

handle online adaptive scheduling to support the dynamically-varying traffic patterns of a

CMP. Clearly, GANA can also be employed in a SoC environment, especially when

traffic patterns cannot be predicted ahead of time (e.g. MPSoC). The GANA idea also

relates to previous work on optical burst reservation [2] which uses out-of-band control

lines and circuits to dynamically allocate data links to specific flows in a buffer-less

system. We extend that work by introducing centralized control and applying these ideas

to NoC. Previous work on buffer-less NoC, relying on ‘‘deflection’’ routing to avoid the

need for message buffers, is limited to low network loads [15][14]. Our approach is able

to remove both the buffers and arbiters from the NoC and support high network

throughputs.

Unlike most previous NoC architectures, our tightly controlled architecture has no

comparable in off-chip networks. Therefore, the inevitable question is 'What makes this

architecture possible and scalable in this environment?' The answer lies in the core

capability of on-chip technology that was not fully exploited for packet based NoC

architectures: Off-chip interconnection networks of different scales cannot synchronize

the arbitration across multiple nodes due to the variable and large latencies imposed by

the long wires and the distributed clocking. These variable latency links should be used

both for the data packet transmissions and for communicating the arbitration information

gathering and commands. In contrast, the monolithic nature of NoCs provides low

latencies and enables synchronous or mesochronous on-chip clock. The relatively small

wire delays over the N x N mesh links (as compared to macro networks) enables a global

arbiter to receive requests from each network interface within about N cycles, preferably

using an out-of-band and highly predictable dedicated lines (similar to the approach taken

by [12]).

GANA connectivity is an overlay of two layers described in Figure 1. The network

elements that carry data packets are shown in Figure 1(a). Although they are laid out

similarly to the common NoC, buffering is provided only at the Network Interfaces (NI),

and no packet arbiters are placed in the Network Routers (NR), which are actually

equivalent to simple latched crossbar switches. Figure 1(b) shows the Global Arbitration

Unit (GAU) located in the middle of the chip. The GAU is connected by Transmission

Request (TR) and grant lines to every NI. It is important to note that massive amounts of

data can be transmitted through the distributed NoC structure of Figure 1(a), exploiting

the parallel operation of all links to provide the required throughput. In contrast to this,

the wires connected to the GAU in Figure 1(b) carry only a few control bits. These wires

leading to the central unit may be long, but repeaters and flip-flops are inserted along

their path, such that the velocity of signal propagation along these wires is similar to the

propagation in NoC links.

The rest of the paper is structured as follows: section 2 describes GANA principles;

Section 3 describes GANA’s detailed micro-architecture; Section 4 evaluates GANA in

terms of area, power and performance; Section 5 provides analysis of GANA latency and

discusses scaling. Section 6 provides our conclusions.

2. THE GLOBAL ARBITER NOC ARCHITECTURE

2.1 Operation Example

We first provide an example for the basic operation of GANA. Our example assumes a 4

x 4 Mesh topology using static, dimension-order XY routing as depicted in Figure 2. Let

further assume that two network interfaces are set to send data: NI 0 needs to send a

packet of 4 flits to NI 11 and NI 2 needs to send a packet of two flits to NI 15. Prior to

t=0, the GAU inspects the requests and concludes that while both flows use links C, D

and E, both NIs can start transmission at t=0 without any future contention. First, the

GAU checks the previous allocations of the links A, B, C, D and E. Assuming that these

links were not previously allocated to any flow in any future cycle, the earliest time the

requests can be granted is t=0 since the second (and last) flit of the flow from NI 2 will

leave link C at t=1 while the first flit of the flow from NI 0 will reach link C at t=2.

Once NI 0 and NI 2 receive the grant signal from the GAU they immediately place the

first flit of their packets on the module output, and continuously place the next flits every

cycle until their packets transmission is complete. The flits traverse the NoC toward their

destination without experiencing any port collision, making a one hop progress of every

single cycle. Assuming NI 2 needs to send a second packet to NI 15, it can place its

request at t=1. The GAU now inspects the link availability: the first cycle link C is

Fig. 1. A 4 x 4 Global arbiter NoC Architecture (GANA).

a) Data plain containing NoC Interfaces (NI) and very simple Network Routers (NR);

b) Control plain connections of the Interfaces to the GAU

(a) (b) NI NR

GAU

core

available at t=6 (after the tail of the first 4 flits packet of NI 0 is passed). So the GAU

grants the new request at t=6.

2.2 Building Blocks Requirements

There are different ways to implement a generic global arbitration in a NoC [20]. The

architecture presented in this paper is based on several design choices. The most

important choice that leads to most of the area saving is to implement an accurate link-

by-link conflict free scheduling. Here, the global arbiter plans which link in the network

will deliver traffic at each and every cycle. This provides a full congestion avoidance that

enables the removal of all intermediate buffers from the network. This decision leads to

several behavioral requirements from the GANA building blocks:

Network interfaces must precisely follow the GAU instructions. They must send flits

exactly at the granted time, and maintain a continuous flow of the flits of the packet.

These requirements translate into a simple NI design and simple transmission gating

logic. On the receive side, the NI is required to be able to always consume packets at the

full rate of its input link. Accurate scheduling requires the GAU to plan the usage of the

NoC links such that no collision of two flits on the same link ever occurs. It also requires

the GAU to assure fairness so that network interfaces do not starve. As packet arbitration

is taken off the routers, the requirements from routers are minimized to route the received

flits to the correct output port. Since the GAU assures that no link contention is possible,

no buffering is required within the routers. Figure 3 depicts the structure of today’s

common NoC router. The blocks that are not needed in a GANA router are crossed out.

The remaining blocks are the crossbar switch and the routing logic which controls its data

path.

Fig. 2.Flows from core 0 to 11 and 2 to 15 using common links C, D and E but GAU is able to avoid

contention by controlling the exact time each packet is injected into the network

For the sake of simplicity, some common architectural choices are made in this paper.

We assume the classical wormhole approach of providing the destination address only in

the header flit (e.g., GAU is required to schedule all the packet’s flits to be transmitted

continuously). Static XY routing was selected, while each NI can have a single

outstanding request.

3. GLOBAL ARBITER UNIT MICRO-ARCHITECTURTE

3.1 GAU State Registers

Transmission requests arrive from each NI to the GAU and are stored in N
2
 request

registers within the GAU --- one for each NI.

The task of the GAU is to manage the planned usage of each (unidirectional) link in

the N x N mesh over a future time window of F clock cycles. The future allocation of

links is tracked in usage registers, one for each link. Since each bidirectional link in the

NoC has 2 links and each NI connects to a router via 2 (directed) links, the total number

of usage registers (and unidirectional links) in the network is 6N
2
-4N. Usage registers are

bit-vectors of a size of F bits. The j
th
 bit of a usage register indicates that the link is

scheduled to pass traffic at clock cycle j (relative to the current time t=0).

The arbitration result for each NI is stored in grant registers of a size of F bits. The j
th

bit of a grant register indicates that the corresponding NI should send a flit at (exactly)

cycle j.

In every clock cycle all the usage and grant registers are shifted to the right, removing

the already used information. Request registers are loaded when the previous request is

Fig. 3. A common mesh router. Blocks not needed for the GANA mesh router are crossed out. The

only remaining blocks are the crossbar switch and the router logic.

granted or if they are empty. So a network interface may send a new request whenever a

grant is received. Two requests may be sent from one network interface before the first

grant.

3.2 Computing the Grant Window

To service a packet transmission request, the GAU initiates a greedy algorithm to find the

earliest contiguous sequence of time slots --- named ‘‘grant window’’ which allows non-

stop transmission of the whole packet along the full route from source to destination.

 The non-stop transmission is required in order to avoid the need for buffering inside

the network. This means that when a flit is sent by a NI, all the links along its way to the

destination should be free when the flit arrives. The example in Figure 4 shows a packet

path traversing through three links. The usage registers of these links are drawn one

below the other in the order of the path traversal.

The gray coloring indicates that the link is already allocated in this particular future

cycle. In the example of Figure 4 the first link is pre-allocated at t=1,9,10,11,12, so new

flits cannot be allocated in these future cycles. A flit injected at the first non-allocated

cycle of link 0, at t=2, reaches link 1 at t=3 and finds it is already allocated. Similarly, a

flit sent at t=3 reaches link 2 at t=5 and finds it pre-allocated too.

 The possible non-stop sending times are marked by ‘‘free’’ arrows. The GAU

calculates them using a sequence of bitwise-OR over the path’s usage registers, where

each register is shifted to the right by its distance from the source. We term the

intermediate result of this OR along the path ‘‘aggregated usage’’. This computation stage

is termed the ‘‘propagation phase’’, as the information represented by the diagonal arrows

is propagated on the path from source to destination.

The propagation phase provides a set of possible ‘‘free’’ cycles in which a flit can be

sent from the source and reach the destination without being buffered. However, for a

wormhole routing based NoC, it is required that the entire packet of L flits is sent on L

contiguous cycles. Therefore, a logic circuit called ‘‘find-first-range’’ receives the possible

set of cycles and searches for the first L consecutive free cycles. This selection is done in

the second phase of computation, named the FFR phase. For the example of Figure 4,

Fig. 4. Possible future cycles for Non-Stop flit transmission along the path from source to destination.

Previously allocated cycles are shown darkened on the usage registers. Arrows show valid cycles.

assuming the packet length is 3 flits, the first free range starts at cycle 6. The resultant

‘‘grant window’’ will consist of cycles 6, 7 and 8.

Once the ‘‘grant window’’ is assigned in the find-first-range phase, the usage registers

of the links on the path should be updated by marking the appropriate bits as allocated.

The updated content of the usage registers for our example is shown in Figure 5. The

process of updating the usage registers is performed in the ‘‘allocation’’ phase. Note, how

the grant window is shifted by one clock every hop on the path from the source to

destination.

The result of the ‘‘grant window’’ computation is written into the grant register

associated with the requestor NI (bitwise-OR’ed with previous set bits). Once granted,

the request stored in the request register may be replaced with a new one. The stage of the

algorithm, in which the grant and request registers are updated, is termed the load phase.

If the find-first-range circuit cannot find a valid grant window, no allocation is

performed on the path back to the source (no update is performed to the usage registers).

The grant register is not loaded and the request is kept pending in the request register. As

the usage registers are shifted to the right every clock cycle, the same request may be

granted after few cycles.

 The four phases described above, which are propagate, find-first-range, allocation

and load, form a complete scheduling cycle. Since the allocation phase writes the same

‘‘usage’’ structures being read during the propagate phase, the GAU micro architecture

described in this section (and the rest of the paper) does not allow a pipelined

implementation of the scheduling cycles.

As different network interfaces have different distances from the GAU, the request

and grant lines take different number of cycles to propagate data to and from the GAU. It

is crucial for the GAU to consider these different latencies, such that exact transmission

timing on the NoC data lines can be maintained. For that sake, the GAU may equalize the

request latency by adding flip-flops, or calculate the appropriate future cycle for every

request according to distance. Similarly, the grant register should be shifted to

accommodate the grant latency of the particular NI it connects to.

Fig. 5.The usage registers after being updated with the ‘‘Grant Window’’ matching a three flits packet. To

support ‘‘Wormhole’’ routing this window is the first contiguous three free transmission cycles

The hardware involved in the ‘‘grant window’’ calculation, which is replicated for

each link, is depicted in Figure 6. Each output link is handled by link logic which

includes the usage register and it’s bitwise-OR with the previous links aggregated usage.

The four input ports Request1 to Request4, represent the multiple input links that may

feed the output link. Grant window bits, provided on the Grant input, are loaded into the

usage register and passed to the appropriate input.

The GAU, a small block located near the center of the die, is an array of identical

circuits (See Figure 7(b)). Each of the circuits corresponds to a router in the NoC. Each of

such circuits includes link logic for all the ports of the router, a single request/grant logic

for the local core, and FFR logic. For demonstration purposes we illustrate a path in the

NoC for a particular source destination pair in Figure 7 (a), and show the associated link-

logic elements representing the path within the GAU.

Fig. 6. GAU Hardware per Link:

Requests that are routed through the link are arbitrated. The winner request aggregated usage propagates

forwardafterbeingOR’edwiththelinkusageregister.Thecomputed‘‘Grant Window’’ updates the usage

register and propagates backwards through the arbitrated input.

 (a) (b)

Fig. 7. (a) A path from NI-0 to NI-10 in the NoC (b) The Global Arbitration Unit (GAU) is a small

block located near the center of the die, built as an array of identical circuits. Each of the circuits

corresponds to a router in the NoC.

The complete path from the source to the destination is shown in Figure 8. It starts

from the request register and traverses the link logic circuits towards the destination. The

aggregated usage is processed by the FFR and the resulting ‘‘grant window’’ (if any) is

sent back over the path, updating the allocated data into each link usage register. Finally,

when the source is reached, the grant register is loaded with the ‘‘grant window’’.

3.3 Arbitrating Several Requests

So far we have showed how the GAU calculates the ‘‘grant window’’ for a single

transmission request. This subsection addresses the case in which several requests are

concurrently issued by different NIs.

If all of the different requests traverse disjoint, non-intersecting paths, the mechanism

described above can handle all of them in parallel. In such a case no arbitration is

required. However, if several requested paths intersect, their requests are arbitrated. In

each scheduling cycle the GAU selects only one of the intersecting requests to propagate

through each link logic, as represented by the switches and arbiter in Figure 6. Since

arbitration is introduced, there is a need to guarantee starvation-free scheduling for all

NIs. To that end the GAU uses the concept of ‘‘age’’. Each request register is extended to

also hold the request age. The age is initialized to 0 when a request is loaded into to the

GAU and increases every cycle. The arbiter corresponding with the link logic selects the

oldest request available on its inputs. The propagated data during the propagation phase

includes the aggregated usage, destination, packet length and request age. This scheme

prevents starvation, since from all intersecting requests at least the oldest one is

scheduled (note that younger requests on non-intersecting paths are scheduled

Fig. 8. The hardware involved in a single request.

In the Propagation phase, previous allocation information is aggregated and passed forward through a series

of links. In the FFR phase: Find-First-Range logic, at the destination, computes the ‘‘grant Window’’. In the

Allocation phase: If a valid window exists, it is propagated back through the links and finally loaded into

the grant register.

concurrently). Those requests that lose the arbitration are kept in the request register and

their age increases by one, which improves their chance to win in the next GAU cycle.

NI’s never post more than 2 requests. Once they do post 2 requests, they wait until the

grant line is asserted to indicate that the first one is granted. Introducing age based

arbitration on every hop of the request propagation is greedy and might be sub-optimal.

Improving this algorithm, for example, by introducing a second arbitration iteration, is

considered for future work. The information about the winning request (and the input it

arrived on) is used in the allocation phase to select the appropriate input to be updated

with the grant window.

4. EVALUATION

In this section, we evaluate GANA performance in terms of area, power, latency

(including buffering time in the NI) and throughput. We compare GANA to a ‘‘baseline

NoC’’ which is an XY routed mesh with wormhole switching using 2 virtual channels

(VC) and 4 flit-buffers per VC. The cost comparison is based on a detailed GAU model

implemented in Verilog synthesized and tested for correctness. For the performance

evaluation, a simulator for both the baseline NoC and GANA was built under the

framework of OMNET++ simulation environment [19]. The simulated baseline-NoC and

GANA use a 500MHz clock and 32bits flit (resulting in 2GB/s link data rate). The

evaluated cases are the following: a standard set of fixed communication patterns, a case

showing fairness advantages of GANA and a case showing GANA ability to avoid

blocking due to VC shortages when congestion is introduced by hot-modules.

4.1 Cost Comparison

Two implementations, a baseline NoC and GANA, are compared. The NoC topology is

an 8x8 mesh with inter-router distances of 2000um, a flit size of 32 bits, running at

750MHz on TSMC 45nm process. The baseline NoC was evaluated by running using

ORION2 [7] with 2 VCs per link and 4 flits buffer per VC. ORION2 is a program that

reports the area and power of NoC elements utilizing macro models adjusted to best-fit

detailed NoC implementations, and can be configured for specific NoC architectures and

specific process technologies. Although the NoC research community keeps improving

NoC implementations providing area savings of up to 37% [9], most of these publications

do not provide accurate area or process information to enable a detailed comparison.

Therefore, it is convenient to use the ORION models as a reference baseline. The GAU

implementation supports F=64 cycles look-ahead and a maximal packet length of M=31

flits.

In addition to the GAU, the cost of GANA is composed of the following elements:

NR: as in the baseline NoC there are N
2
 such routers. However, their per-port area

only includes the area taken by the XY routing logic and single flit storage implemented

using flip-flops.

NoC Routing: 32 wires (a flit width) in each direction. GANA does not require flow-

control wires or logic. So the area and power are limited to the data wires and buffers.

The total area is proportional to N
2
 as in a baseline NoC. In this comparison we ignored

the GANA saving of backpressure lines.

Transmission and Grant requests: there are N
2
 lines connecting all NIs to the GAU.

Each transmission request line carries the destination address of A = 2⌈log2(N)⌉ bits and

message length of 𝐵 = ⌈𝑙𝑜𝑔2(𝑀)⌉ bits when M is the maximal packet length in flits. The

grant line carries a single bit back to the NI that times the transmission of the next flit.

The NI to GAU connection width is A+B+1 (which is 15 bits for meshes with N ≤ 15).

The request and grant lines bridge distances as far as N routers away from the GAU

require buffering and are sampled by latches or flip-flops at most N times along their

way. Assuming a methodology of Over-the-Cell routing (OTC), which is commonly used

in processor design, the quoted routing area is of the repeater cells and flip-flops used

along the wires.

Table 1 shows the area and power of a baseline NoC in comparison with GANA

implementation. The different contributions for the cost in area and power are listed with

their occurrence multiplier. The bottom line shows that for N=8, GANA takes only 16%

(i.e., 84% saving) of the baseline NoC area and consumes 38% and 24% less power for

the 25% and 75% load cases. Note that although the Req/Gnt lines travel the same per-

hop distance as the data lines, their power is lower due to their lower activity. Even

under100% load their activity will be 1/avg-packet-length which is assumed to be 4-flits.

For the data lines only 75% of the flip-flop power is assumed to be proportional to the

offered load the rest is leakage power.

Another indication for the cost of GANA compared to baseline NoC is to count the

flip-flops required by each architecture. For GANA each router contains an output buffer

per direction: 4𝐹(𝑁2 − 𝑁). GAU holds utilization register of the size of the look-ahead

window per link: 4𝐿(𝑁2 − 𝑁) and FFR and Request and Grant registers per NI:

(2𝐿 + 𝐴 + 𝐵 + 1)𝑁2. The flip-flops used to store the arbitration results are negligible. In

total GANA requires:

𝐹𝐹𝐺𝐴𝑁𝐴 = (4𝐹 + 6𝐿 + 𝐴 + 𝐵+1)𝑁2 − 4𝑁(𝐿 + 𝐹)

The baseline NoC has all its flip-flops within the routers. It must use output flip-flops

like the GANA routers: 4𝐹(𝑁2 − 𝑁) but it also stores D flits on each input port for each

VC (we denote number of VCs by V). So buffering uses a total of 5𝐷𝐹𝑉(𝑁2 − 𝑁). We

assume the number of flip-flops of the arbitration logic are negligible and obtain the total

number of baseline router flip-flops:

𝐹𝐹𝐵𝐿 = 𝐹(4 + 5𝐷𝑉)(𝑁2 − 𝑁)

For our comparison we used N=8, F=32, L=64, A+B+1=15, D=4, V=2 and obtain:

𝐹𝐹𝐺𝐴𝑁𝐴 = 30656 and 𝐹𝐹𝐵𝐿 = 78848.

Table I. Area and power comparison of baseline to GANA

(a) Neighbor Latency (b) Neighbor Throughput

(c) Tornado Latency (d) Tornado Throughput

(e) Uniform Latency (f) Uniform Throughput

Fig. 9. Synthetic Traffic Patterns Average Latency and Throughput versus Offered-Load

4.2 Synthetic Traffic Patterns Benchmark

To obtain a performance benchmark of the baseline NoC versus GANA we follow the

same approach used by [15][18][8] and apply standard communication patterns over an

8x8 size NoC: Tornado, Neighbor, Uniform-Random, Bit-complement, Bit-transpose,

Bit-rotate and Bit-shuffle. For the Neighbor, Tornado and Uniform-Random patterns the

average latency and average throughput versus the offered load are presented in Figure 9.

The Neighbor pattern which avoids link contention shows no difference between the

baseline and GANA. It also shows that both can support full wire speeds without

contention. For the Tornado communication pattern which creates many hot spots, GANA

and the baseline NoC have roughly the same latency but GANA provides around 30%

more throughput for loads above 0.85GB/s (42.5% utilization). In contrast to the previous

fixed permutations, the Uniform-Random destinations change randomly. Figure 9(e) and

(f) show the GANA and the baseline NoC latency and throughput versus offered load for

traffic that changes the destination every 16 packets.

For the Bit-complement, Bit-transpose, Bit-rotate and Bit-shuffle communication

patterns, Figure 10 shows the average latency and minimal output bandwidth from all the

NIs. As can be seen, the GANA latency is better or equal to the baseline NoC latency.

The minimal throughput of the baseline NoC is much lower than that of GANA. In two of

the cases, the baseline NoC throughput is less than half of the GANA throughput. All the

plots show that as the offered load increases from 0, both architectures have the same

linear increase in throughput. However, once some network links reach their maximal

capacity, the baseline NoC tends to favor certain flows while others are discriminated.

For permutation traffic, this means that the baseline NoC minimal bandwidth out of the

network is lowered, as shown in the graphs.

(a) Bit-Reverse Latency (b) Bit-Reverse Throughput

(c) Bit-Rotate Latency (d) Bit-Rotate Throughput

(e) Bit-Shuffle Latency (f) Bit- Shuffle Throughput

Fig. 10 Synthetic Traffic Patterns Average Latency and MIN Throughput versus Offered-Load

As GANA requires the NI’s to hold packets until they are granted. Another aspect

worth examining is the amount of NI buffering required by GANA compared to the

baseline NoC. To that end we track the number of queued packets in each NI. This

number is sampled whenever a new packet is generated. The average and maximal packet

queue depth for the uniform and tornado traffic patterns are presented in Figure 11. It can

be observed that GANA requires less NI buffers than the baseline NoC. For the uniform

traffic in Figure 11(a) GANA is close to the baseline NoC mainly since the random

destination evens out the network load. For the tornado traffic pattern in Figure 11(b)

network bottlenecks cause unfair throughput in some flows of the baseline NoC. This in-

turn cause backpressure on some NI’s that increase the number of packets queued

Another aspect to observe is the distribution of packet latency. Figure 12 presents the

packet latency (from generation to ejection) for uniform traffic at 5% load. GANA

provides a narrow distribution with peak around 30-40 cycles while the baseline NoC

provides a wider distribution with peaks from 50 to 100 cycles. This may be attributed to

GANA cut-through latency versus the baseline NoC where different sources have to pass

a different number of queues and the latency distribution exhibit multiple peaks.

(a) (b)

Fig. 11. NI Output Queue Depth in packets (a) for uniform and (b) for tornado traffic.

The AVG and MAX lines show queue length or maximal queue length through the simulation time

averagedoverallNI’sand10different simulations.

Fig. 12. Distribution of end to end packet latencies from all sources into a single sink for GANA and

baseline NoC, under uniform destination traffic at a light network load.

(a)

 (b)

Fig. 14 A Case of VC Congestion Spreading On a XY

routed 6x6 mesh: NI 19 receives traffic from NIs 6, 18, 20

and 25; NI 25 receives traffic from NIs: 8, 24, 26 and 31. So

hot-modules 19 and 25 are 1:4 congested. The flow C (NI 1

to 13) is sharing a link with flows A (6 to 19) and B (8 to

25). On a baseline NoC this causes VC starvation for the

non-congested flow C. On GANA C reachestheexpected½

throughput (while A and B get¼each).

4.3 Arbitration Fairness

The GAU age based arbitration improves fairness as reported by [10]. To demonstrate the

fairness provided by GANA, a case of 4 flows that pass through a single link is presented

in Figure 13 (a). Arbitration at the baseline NoC, which is based on round robin among

the input ports of the router, yields an unfair throughput in what is known as the ‘‘parking

lot’’ problem [3]. In this case, the three flows from NIs 0, 1 and 2 share the same input

port of NR 3 and compete against the single flow from NI 3. Accordingly, the link

bandwidth of 2GB/s is split between the flow from NI 3 which receives 1GB/s and the

three flows which receive together the other half. Similarly, at NR 2, the flow from NI 2

receives 500MB/s and the other two flows together receive the other half. At NR 1, each

of these flows receives 250MB/s. GANA that arbitrates based on request age, provides an

equal bandwidth share to each flow. Figure 13 (b) shows the simulated throughput for the

baseline NoC and GANA. The results match exactly the expected behavior.

(a)

 (b)

Fig. 13 A Case of 4 Flows passing through one

link showing the ‘‘Parking Lot Effect’’. The Baseline

NoC discriminates long flows while GANA provides

equal share to all flows.

4.4 Handling Congestion

Hot-Modules are those receiving traffic from multiple sources, exceeding their input

capacity. CMPs, where the NoC is heterogeneous, are likely to contain hot-modules. For

example, if few DRAM controllers are shared by several L2 caches. When the congestion

rooted at the input of these modules spreads toward the sources, then VCs that were

allocated to congested flows are not released, resulting in the stalling of other non-

congested flows [11][17].

The example traffic presented in Figure 14(a) has two hot modules: NI 19 and NI 25

(each driven by 4 flows). A victim flow named ‘‘C’’ (from NI 1 to NI 13) is sharing one

link with other flows ‘‘A’’ (NI 6 to NI 19) and ‘‘B’’ (NI 8 to NI 25) driving these two hot

spots. Since our NoC has 2 VCs, the resulting effect is that the victim flow ‘‘C’’ is stalled

due to a lack of VCs at the +Y output of NR 7. The resulting throughput at NI 13 for

GANA and the baseline NoC are shown in Figure 14(b). As expected for the baseline

NoC the worst throughput is over NI 13 with ~300MB/s at an offered load of 1400MHz

which is far less than the 1/3rd of the shared link (NR 7 +Y). It is closer to 1/8th of the

link bandwidth. This is expected due to the sharing of a VC with traffic destined to a hot

spot with a degree of 4. GANA, however, is able to provide the saturation ¼ of link

bandwidth to flows ‘‘A’’ and ‘‘B’’ and the rest ½ to flow ‘‘C’’.

4.5 CMP Application Simulation

The simulation models presented above were extended to provide functionality of a CMP

with three types of cores: Processing Element (PE) with L1 cache, L2 cache and DRAM

interface. These modules were tiled to form a 6x6 cores CMP presented in Figure 15(a).

L2 access traces of the Blackscholes benchmark of the PARSEC suite were applied to

this model. Two parallel instances of the program were run --- each on 12 PE cores (on the

upper and lower halves of the CMP) assuming 64KB L1 and 4MB L2 caches, both with

64 bytes cache lines and associativity of 64 lines per set. All NoC packets are of 16 flits

of 4 bytes length. The simulation results show runtimes of 2.7msec and 2.6msec for the

GANA and the baseline NoCs respectively. The end-to-end packet latency histograms for

the last cores to complete (PE 16 and 34) are presented in Figure 15(b). The histograms

show that GANA and the baseline NoC have similar latency for the short L2 transactions

that do not require DRAM access. However, GANA is slower by 23% then the baseline

NoC in transactions that require DRAM to L2 page replacement. The fairness provided

by GANA actually hurts these long transactions since every single packet out of the 64

packets making the cache page is considered ‘‘new’’ and thus the complete page

replacement is slower than the baseline.

The optimization of GANA for CMP traffic and the simulation of the complete

PARSEC benchmark as well as various placements of the L2 and DRAM cores are

considered for future work.

5. GLOBAL ARBITER NOC ARCHITECTURE SCALABILITY

GANA provides significant area, power, throughput and fairness benefits as shown in the

previous section, however being based on a central scheduler that is known to be unable

to scale to infinite number of cores. There are two scalability limiters: The first one is the

logic complexity of the central arbiter which affects the number of cycles required for a

single arbitration. The number of cycles required for arbitration limits the NoC

throughput for short packets. The second limiter is the required wire density around the

central unit. To quantify these limitations, we have conducted a detailed implementation

of GANA using synthesis at TSMC 45nm technology for GANA with N in the range 4 to

10 (16 to 100 cores). From these experiments we conclude that GANA easily scales in

current technology up to ~100 cores. With next generation technology nodes, it is

expected that wire density will increase, enabling the support of several hundred cores.

From latency perspective we show that GANA is scalable compared to mesh based NoC.

The rest of this section describes in details the above physical implementation scalability

aspects, provides analysis of the throughput and latency and show why the latency of

GANA scales equally to the mesh NoC.

 (a) (b)

Fig. 15. (a) CMP Model containing 24 Processing Element Cores with L1, 8 L2 caches and 4 DRAM

interfaces and the L2 transaction completion histograms for a baseline and GANA based NoCs. (b) L2 Read

Latency histograms.

5.1 Physical Implementation Scalability

The proposed GAU was implemented in Verilog and synthesized using Synopsys Design-

Compiler Topographical using 45nm TSMC technology without using Low-VT cells

(which is a common tradeoff of power versus speed for this process. If required, low-VT

cells can be used to speed-up the design significantly). To meet a clock cycle of 750MHz

the different phases are performed in different clock cycles. The propagation phase

involves paths that traverse 2N hops. Each hop involves multiplexers and routing

comparators, N 2-input age sorters and N 4-input age sorters. To overcome the inherent

delay of such a large combinatorial circuit, several clock cycles are allocated for the

propagation phase (which results in the dependency of scheduling cycle time on N). The

FFR for 64bit schedule-ahead and maximal packet length of 31 flits meets the timing for

1GHz in a single cycle. The total number of cycles S required for a single arbitration is 4

cycles for N=4, growing with N by a factor of N 2⁄ cycles. These measurements provide

an empirical result for 45nm technology:

 𝑆 = 𝑁/2 (1)

With the expected minor speedup in the move to 28nm technology we can safely use

(1) for larger N values.

For comparison, several NoC router microarchitecture papers discuss the critical path.

In most of them, the critical path is within the virtual channel and switch allocator stages

of the router. However, unlike GANA, multi-cycle arbitration is not a practical solution in

such routers because any added arbitration latency must be multiplied by the number of

hops.

Figure 16(a) shows the area of the synthesized GAU in [um2] and (b) the power in

[mW] for N ranging from 4 to 8 (and T ranging from 16 to 64). It can be seen that the

area and power are close to linear with the number of modules. Introduction of the 28nm

technology is expected to scale area by 0.5 which should allow doubling the logic fit

within the GAU without area increase.

Routing porosity at the GAU interface is another potential scalability challenge to

consider. It was shown that the total number of transmission request lines is O(N
2
log(N)),

although hyper quadratic, for our implementation of NoC with N ≤ 10 on TSMC 45nm

there is no issue to route 100 15bit busses into an area of 900,000um2, as it leads to a

sustainable pin density of 0.32um on 5 metals. With future technologies providing

dimensions scalability of 0.7, in accordance to Moore’s law, the number of modules

GANA can handle will grow. Future opportunities in sharing request lines or building

hierarchical GAU’s may also be needed if scalability to thousands of modules will be

required.

The implementation provided in 45nm and the expected 28nm properties, serve as an

indication that GANA is expected to scale to several hundred nodes in the future

technology.

Another aspect of the tightly synchronized architecture is the need to use a

synchronous clock. In large VLSI devices, there is actually no need to fully synchronize

the clocks and a Globally Asynchronous Locally Synchronous (GALS) methodology

based on mesochronous clocking is used. For such structures, clock phase can be

predictable and well controlled via the usage of adaptive clock phase synchronizers [13].

Therefore, synchronization poses the same scalability issues to GANA and the common

NoC.

5.2 Throughput and Latency Analysis

The simulation results for various traffic patterns demonstrate GANA’s performance

under complex traffic patterns. In this section, we provide closed-form analytical

expressions under some simple traffic assumptions (such as zero load and average latency

to a random destination). The purpose of such modeling is to gain insight into scalability

(a) (b)

Fig. 16 Area and power of synthesized GAU for 750MHz TSMC 45nm for N=4,5,6,7,8 with Propagate

stage of 2,2,3,3,4 cycles respectively

issues. The following notation and assumptions are used in the analysis: The topology is

an N x N mesh with XY routing. Flits progress through the baseline network with L

cycles latency per hop. The GAU takes S cycles for each arbitration loop. It can schedule

as many as N2 requests in every loop as long as they do not intersect. It is also possible to

pre-schedule up to F cycles in advance. The latency of the transmission request for

reaching the GAU and for the grant to get back to the NI is at most N cycles.

Since the GAU arbitration takes S NoC cycles, it can maintain full wire speed only for

packets with at least S flits. As the GAU is able to schedule all the outstanding requests in

parallel as long as they do not intersect at a link, the same rule can maintain the

bandwidth for all flows under the no contention condition.

Under very low utilization, the average path latency can be expressed by the average

path length. The average path length is proportional to the average distance between all

possible pairs:

1

(𝑁4−𝑁2)
∑ ∑ ∑ ∑ |𝑟1 − 𝑟2| + |𝑐1 − 𝑐2|𝑁

𝑐2=1
𝑁
𝑟2=1

𝑁
𝑐1=1

𝑁
𝑟1=1 (2)

That evaluates to:

2𝑁

3
 (3)

The latency per hop of common NoCs L is in the range of 2 to 4. So the resulting

average path latency in cycles is:

 𝛼𝑁 |
4

3
≤ 𝛼 ≤

8

3
 (4)

For GANA, the latency is the time it takes the transmission request to get to the GAU,

plus the GAU scheduling latency, plus the time it takes the grant to reach back to the

source, plus a single cycle per hop. The average distance of NI from the GAU is N/2-1.

Consequently, the average GANA latency (assuming single clock cycle per hop) is:

𝑆 + 2 (
𝑁

2
− 1) +

2𝑁

3
= 𝑆 − 2 +

5

3
𝑁 (5)

For the maximal path, the number of hops is 2N-2. For the common NoC of 2 to 4

cycle latency per hop this means latency of:

 4𝑁 − 4 < 𝐶𝑜𝑚𝑚𝑜𝑛 𝑁𝑜𝐶 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑝𝑎𝑡ℎ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 < 8𝑁 − 8 (6)

For GANA the same number hops will consume less latency on the data path (2N-2

cycles) but require the request to propagate to the GAU (N-1 cycles), S number of cycles

for arbitration and then the response will need to propagate back to the sender (N-1

cycles):

𝐺𝐴𝑁𝐴 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑝𝑎𝑡ℎ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 4𝑁 − 4 + 𝑆 (7)

Figure 17 shows the plots of the average path and the maximal path zero-load

latencies comparing the fast (2 cycles/hop) and slow (4 cycles/hop) baseline NoC with

GANA computation latency as provided by (1). It can be seen that both GANA and the

baseline NoC show a linear dependency of the latency on N (square root of the number of

modules). For the average path, GANA performs a little slower than the fastest baseline

NoC. For the longest path GANA is 7.5% slower than the fastest NoC. For both path

lengths, a NoC that does not incorporate advanced opportunistic arbitration methods

[16][6] will have a higher latency than GANA.

5.3 Performance Scalability

In the previous sections we showed that GANA was able to keep the full speed line rate

for packets that are longer than S --- the number of NoC cycles for a single GAU

scheduling computation cycle. From (1), S is proportional to N/2. For example, a full line

rate can be maintained for a 10 x 10 NoC for packets of at least 5 flits. Under empty

network conditions, the maximal throughput for packets of length l < S is 𝑙 S⁄ of the link

bandwidth. In terms of scalability with the total number of modules T= N
2

,
 the minimal

packet length to reach full wire speed S is proportional to

√𝑇
2⁄ . (8)

Latency scalability under empty network condition can be deduced from the

equations presented in the previous section. From (1), (4) and (5) the ratio of the GANA

average path latency to 4-cycles/hop NoC latency is:

𝑁/2−2+

5

3
𝑁

8/3𝑁
=

13

16
−

3

4𝑁
 (9)

As N increases, the empty network average latency of GANA is close to 3/4
th
 of the

NoC. Similarly, the longest path empty network latency of GANA as compared to the

NoC is obtained from (1), (6) and (7):

4𝑁−4+𝑁/2

8𝑁−8
=

𝑁+8(𝑁−1)

16(𝑁−1)
=

1

2
+

1

16

𝑁

𝑁−1
 (10)

 (a) (b)

Fig. 17 Comparing GANA and NoC zero load latency for NoCs with 2 to 4 cycles latency per hop.

 a) Average Path Length; b) Maximal Path Length

Consequently, the ratio of the GANA longest path latency to that of a 4 cycles per hop

NoC is close to ½ as N is increased. For the fastest NoC with 2 cycles per hop GANA’s

latency is higher than the NoC latency.

6. CONCLUSION

A new Global Arbitration NoC Architecture has been shown to be viable for 45nm

technology with 10x10 NoCs and for further scale with the technology to several hundred

cores. GANA, which relies on the synchronous clocking supported by the monolithic

nature of NoCs, provides a lower cost solution as compared with a standard NoC. This

new architecture completely removes buffers and arbiters from the network routers,

saving a considerable amount of area and power. For an 8x8, GANA, 84% of the area and

24% the power are saved compared with a standard buffered NoC. We demonstrated

additional benefits of the global arbitration, such as a better fairness and the ability to

avoid blocking due to VC starvation imposed by hot-modules. Our evaluation shows that

GANA is superior to a baseline NoC in terms of throughput and equal in latency for all

tested communication patterns, including a standard set of traffic permutations and

random flows.

ACKNOWLEDGMENTS

REFERENCES

[1] BENINI L. AND MICHELI G.D. 2006, Networks on chips: technology and tools, Academic Press.
[2] CHEN Y., QIAO C., AND YU X. 2004, Optical Burst Switching (OBS): A New Area in Optical

Networking Research.
[3] DALLY W.J. AND TOWLES B. 2004, Principles and practices of interconnection networks, Morgan

Kaufmann.

[4] GOOSSENS K., DIELISSEN J., AND RADULESCU A. 2005, AEthereal Network on
Chip:Concepts, Architectures, and Implementations, IEEE Design and Test of Computers, vol. 22,
pp. 414-421.

[5] HANSSON A., SUBBURAMAN M. AND GOOSSENS K. 2009, AElite: A Flit-Synchronous
Network on Chip with Composable and Predictable Services.

[6] IZU C., BEIVIDE R., JESSHOPE C. AND ARRUABARRENA A. 1993, Experimental evaluation
of Mad Postman bidimensional routing networks, Microprocessing and Microprogramming, vol. 38,
pp. 33-41.

[7] KAHNG A., LI B., PEH L. AND SAMADI K. 2009, ORION 2.0: A fast and accurate NoC power
and area model for early-stage design space exploration, Design, Automation & Test in Europe

Conference & Exhibition, DATE '09., pp. 423-428.
[8] KIM J., PARK D., THEOCHARIDES T., VIJAYKRISHNAN N. AND DAS C.R. 2005, A Low

Latency Router Supporting Adaptivity for On-Chip Interconnects," DAC '05: Proceeding of the 42nd
annual conference on Design Automation, pp. 559-564.

[9] KIM J., 2009, Low Cost Router Microarchitecture for On-Chip Networks, MICRO’09

[10] LEE M. M., KIM J., ABTS D., MARTY M., and LEE J. W., Approximating age-based arbitration in
on-chip networks, in PACT ’10: Proceedings of the 19th international conference on Parallel
architectures and compilation techniques, New York, NY, USA, 2010.

[11] MANEVICH R., CIDON I., KOLODNY A. AND WALTER I. 2010, Centralized Adaptive Routing
for NoCs, IEEE Computer Architecture Letters.

[12] MANEVICH R., WALTER I., CIDON I. AND KOLODNY A. 2009, Best of both worlds: A bus
enhanced NoC (BENoC), 3rd ACM/IEEE International Symposium on Networks-on-Chip, La Jolla,

CA, USA, pp. 173-182.
[13] MANGANO D., LOCATELLI R., SCANDURRA A., PISTRITTO C., COPPOLA M., FANUCCI

L., VITULLO F. AND ZANDRI D. 2006, Skew Insensitive Physical Links for Network on Chip, 1st

International Conference on Nano-Networks and Workshops, Lausanne, Switzerland, pp. 1-5.
[14] MICHELOGIANNAKIS G., SANCHEZ D., DALLY W.J. AND KOZYRAKIS C. 2010, Evaluating

Bufferless Flow Control for On-chip Networks, Networks-on-Chip, International Symposium on,
Los Alamitos, CA, USA: IEEE Computer Society, pp. 9-16.

[15] MOSCIBRODA T. AND MUTLU O. 2009, A Case for Bufferless Routing in On-Chip Networks,

ISCA'09.
[16] MULLINS R., WEST A. AND MOORE S. 2004, Low-Latency Virtual-Channel Routers for On-

Chip Networks, ACM SIGARCH Computer Architecture News, vol. 32, p. 188.
[17] NYCHIS G., FALLIN C., MOSCIBRODA T. AND MUTLU O. 2010, Next Generation On-Chip

Networks: What Kind of Congestion Control Do We Need?, 9th ACM Workshop on Hot Topics in

Networks, Montterey CA.
[18] SOTERIOU V., RAMANUJAM R.S., LIN B. AND PEH L. 2009, A High-Throughput Distributed

Shared-Buffer NoC Router, IEEE Computer Architecture Letters, vol. 8, pp. 21-24.
[19] VARGA A., OMNET++ URL reference: http://www.omnetpp.org/
[20] WALTER I., CIDON I., GINOSAR R. AND KOLODNY A. 2007, Access Regulation to Hot-

Modules in Wormhole NoCs, First International Symposium on Networks-on-Chip (NOCS'07),
Princeton, NJ, USA, pp. 137-148.

