
Distributed Adaptive Routing Convergence to
Non-Blocking DCN Routing Assignments

Eitan Zahavi, Isaac Keslassy, and Avinoam Kolodny

Abstract—With the growing popularity of big-data applica-
tions, Data Center Networks (DCN) increasingly carry larger
and longer traffic flows. As a result of this increased flow
granularity, static routing cannot efficiently load-balance traffic,
resulting in an increased network contention and a reduced
throughput. Unfortunately, while adaptive routing can solve this
load-balancing problem, DCN designers refrain from using it,
because it also creates out-of-order packet delivery that can
significantly degrade the reliable transport performance of the
longer flows.

In this paper, we show that by throttling each flow bandwidth
to half of the network link capacity, a distributed adaptive
routing algorithm is able to converge to a non-blocking routing
assignment within a few iterations, causing minimal out-of-
order packet delivery. We present a Markov chain model for
distributed adaptive routing in the context of Clos networks
that provides an approximation for the expected convergence
time. This model predicts that for full-link-bandwidth traffic,
the convergence time is exponential with the network size, so
out-of-order packet delivery is unavoidable for long messages.
However, with half-rate traffic, the algorithm converges within a
few iterations and exhibits weak dependency on the network size.
Therefore, we show that distributed adaptive routing may be used
to provide scalable and non-blocking routing even for long flows
in a rearrangeably-non-blocking Clos network under half-rate
conditions. The proposed model is evaluated and approximately
fits the abstract system simulation model. Hardware implemen-
tation guidelines are provided and evaluated using a detailed flit-
level InfiniBand simulation model. These results, providing fast
convergence to non-blocking routing assignment, directly apply
to adaptive-routing systems designed and deployed in various
DCNs.

Index Terms—Data Center Networks, Big Data, Adaptive
Routing

I. INTRODUCTION

A. Background

Nearly all currently-deployed state-of-the-art Data Center
Networks (DCNs) rely on layer-3 Equal Cost Multipath
(ECMP) routing to evenly distribute traffic and utilize the
aggregated capacity provided by the multi-tier network [1].
ECMP routing is deterministic and static, because it is based
on constant hash functions of the flow identifier. The obtained
bandwidth from these techniques is close to the network cross-
bisectional bandwidth as long as flow granularity is small, i.e.
the routing algorithm spreads many flows that are either short
or of low-bandwidth.

E. Zahavi is with Mellanox Technologies LTD and the Department of
Electrical Engineering, Technion, Israel. Email: ezahavi@tx.technion.ac.il.

I. Keslassy and A. Kolodny are with the Department of Electrical Engi-
neering, Technion, Israel. Emails: {isaac, kolodny}@ee.technion.ac.il

Received: January 15, 2013 Revised: May 17, 2013

In recent years a new challenge has emerged for DCNs:
support “big-data” applications like MapReduce [2] [3]. In
measurements conducted on the Shuffle and Data-Spreading
stages of MapReduce applications, it was shown that up to
50% of the run time may be consumed by these stages [4].
In fact, these stages transmit the intermediate computation
results with sizes up to 10s of gigabytes between each pair of
servers participating in the computation. Therefore, the long
and high-bandwidth flows characterizing these phases break
the nice traffic spreading provided by the ECMP hash function
for many low-bandwidth flows. Under such hash-based traffic
spreading, the probability of over-subscription follows the
balls-and-bins max-load distribution [5]. The contending flows
result in low effective bandwidth [6].

Adaptive routing can provide a solution to this contention
problem [7] [8]. In fact, adaptive routing, which changes the
routing assignments based on the current load, can reach effi-
cient traffic spreading in the DCN, even when flow granularity
is high. In particular, distributed adaptive routing systems, in
contrast to centrally managed ones, rely on some distributed
feedback mechanism which translates network congestion
into hints for the involved switches to modify the routing
assignments. Based on these hints, the traffic is adaptively
steered towards less congested parts of the network and thus
throughput is improved. Nevertheless, when using adaptive
routing, switches need to know little about the global state
of the network or about the states of other switches, and
therefore be implemented in DCNs for big-data applications.
This property of adaptive routing is key for its scalability for
large systems, where global state is large and hard to be up-
to-date in all switches.

Unfortunately, adaptive routing also causes high out-of-
order packet delivery in long flows, produced by the mod-
ification of the forwarding path of different packets of the
same message [9]. This out-of-order packet delivery greatly
degrades window-based transport protocols like TCP (or
any other packet window-based transport protocol) and can
result in a significant degradation of throughput and la-
tency [10] [11]. Some studies propose the use of re-order
input-buffers and limit the number of in-flight packets to
control their cost [7] [10]. However, limiting the number of
in-flight packets degrades bandwidth and increases latency.

Another challenge for adaptive routing is that previous
network states cannot be used for deciding about the new
routing when the entire traffic pattern changes synchronously.
Unfortunately, this is the exact behavior of BSP model pro-
grams as well as for the shuffle stages of a MapReduce. So
for adaptive routing to be effective it needs to react before



the traffic pattern changes. Due to these limitations, adaptive
routing is often considered irrelevant for DCNs running big-
data applications.

This paper presents the conditions under which a dis-
tributed adaptive routing system can cause minimal out-of-
order packet delivery for big-data applications, while achiev-
ing high throughput.

B. Related Work

The network contention caused by a relatively small number
of high-bandwidth flows is also a long outstanding problem
of static routing in High Performance Computing (HPC)
clusters. Scientific applications running on these clusters re-
semble big-data applications, because most parallel scientific
applications are coded according to the BSP model [12],
where computation and communication are separated into
non-overlapping phases [13]. Under such a model, network
contention directly impacts the overall program runtime since
the slowest flow dictates the length of the entire communi-
cation phase [14] [15]. For these reasons, efforts have been
made to provide adaptive-routing, together with heuristics and
mechanisms to improve both throughput and latency [16] [17].
Most commercial interconnection networks like Cray Black-
Widow [18], IBM BlueGene [19] and the InfiniBand-based
Mellanox InfiniScale switch devices [20] provide adaptive
routing. The most scalable systems are designed such that
each switch knows little or nothing about the traffic or queues
of the other elements in the network. Such systems are thus
denoted oblivious adaptive routing. Mechanisms were also
proposed to enhance the adaptive-routing hardware in switches
by relying on a complete or partial view of the entire network
state [21] [8]. Nevertheless, to maintain scalability, even when
complex feedback mechanisms are suggested, the self-routing
principle, where each switch makes its own independent
decisions, is maintained in most published work.

Adaptive-routing stability was studied in the context of the
Internet [22] [23]. In these studies, a centralized adaptive-
routing algorithm is employed to optimize the network perfor-
mance for some figure of merit. The computed routing slowly
changes when compared to the traffic message times. The
stability of such systems is then defined as the ability to avoid
fluctuations in routing assignments when a computed routing
is applied. Thus, adaptive-routing stability is different from
our definition of adaptive-routing convergence, i.e. the ability
of the system to reach a non-blocking routing assignment for
any given traffic permutation.

Cell switching techniques are proposed [24] as means to
provide load balancing and avoid network congestion. How-
ever, as they rely on packet splitting and re-assembly, they
are thought of as having higher latency and to require larger
buffers on the network edge. For these reasons this paper
focuses on packet switching solutions.

A very common DCN topology is the fat-tree, which
resembles a folded-Clos network, with the exception that
not all routes have to go through the roots of the network.
Routing in Clos networks was mostly studied in the context
of systems where a centralized control unit allocates virtual

(a) (b)

Fig. 1. Centralized Routing versus Self Routing: (a) In a centrally controlled
Clos, input switches request an output-port assignment for each arriving flow
from the central controller. (b) In a distributed adaptive routing system, a
Self Routing (SR) unit within each input switch provides that decision in an
autonomous manner.

circuits to injected flows [25] (see Figure 1(a)). Consequently,
previous studies focused on the topological network properties
that allow for a central algorithm to provide non-blocking
routing assignment for a set of source-destination pairs were
defined. These properties define strict sense non-blocking
(SNB) as the case where new pairs can be introduced without
impact on previously routed flows. Similarly, the conditions
for rearangeable non-blocking (RNB) [26] were defined
for the case where introducing new pairs may require some
changes to previous routing. The central controller ability
to rearrange existing flows in order to fit some more flows
into the network is similar to the distributed adaptive routing
concept of routing reassignment in case of network contention.
When packet switching was proposed as an alternative to
virtual circuits, research in Clos networks focused on the
properties obtained for multi-rate traffic injected into a network
of multiple-capacity links [27] [28]. In Clos networks, the term
n-rate represents the number of different ratios of the traffic
bandwidth to the system link capacity. In our work, we also
use the idea of setting the bandwidth of flows as a fraction of
the link capacity.

Unfortunately, the centralized controller approach used for
Clos routing does not scale with the cluster size, and therefore
can hardly apply to our DCNs: To estimate the time available
for the central controller for handling a single flow, consider a
DCN of 10K nodes each running 10 VMs. An optimistically
long flow length of 64KB on 40Gbps link provides 12.8µsec
flow lifetime. Further, if we assume communication is only
10% of application runtime, the flows arrival rate is 1/128µsec
on average. Under the above conditions the central routing
unit has to handle a request rate of ˜109[req/sec] which allows
roughly 2 operations per request on a 2GHz CPU. Even a
parallel routing algorithm will have to use more than a single
operation for handling a request.

For this reason, a distributed adaptive routing approach
was also proposed in Clos networks, and denoted as “self-
routing” [29]. In this approach, each switch can make its



own routing decisions such that no central control unit is
required (see Figure 1(b)). The self-routing study [29] was
mainly focused on reducing the non-scalable overhead of the
central routing controller. A probability analysis conducted by
[30] on some specific self-routing Clos systems also provides
an upper-bound on the number of contending flows (with
high probability), and thus provides an upper-bound for the
expected network queue length and service time. Our work is
different as it shows that under some conditions, adaptive-
routing can actually converge into a non-blocking routing
assignment where no queues build up.

C. Contributions

To the best of our knowledge, no work in the literature
examines the conditions under which adaptive routing con-
verges to a non-blocking forwarding assignment and in case
of convergence, we also know of no result on its convergence
speed.

By analyzing convergence time, we are able to show that
under some traffic conditions the adaptive-routing can con-
verge to a non-blocking routing assignment within a very
short time. After this convergence time, there is no out-
of-order delivery and no network contention. Indeed, there
will be some performance degradation due to re-transmission
of the first few packets of the message. However, even for
256KB messages, re-transmission would introduce very small
bandwidth degradation for the entire flow.

Even though our analysis is focused on permutation traffic
patterns, other traffic patterns that exhibit end-point congestion
(allow for more than one flow to be concurrently destined to
a single destination) may also benefit from fast distributed-
adaptive-routing convergence, once congestion control mech-
anisms are incorporated to mitigate the excessive bandwidth
sent to that destination.

To reach the above conclusion we have developed approx-
imate Markov process models for Clos self-adaptive-routing
systems. The importance of these approximated models is the
insight they provide about the reason of slow convergence.
The models show that for full-link-bandwidth flows, adaptation
due to congestion on one link will likely create congestion on
another. Thus, it is unlikely that the system converges to a non-
blocking steady state. However, for half-link-bandwidth flows,
the probability for one routing adaptation to create congestion
on some other link is much lower and thus such system
converges in few iterations. These models are then compared
to a simulation of a simple distributed adaptive routing system.
We further define a set of features that are practical to
implement and provide converging oblivious-adaptive-routing
system. The proposed hardware is then evaluated by simula-
tion. We claim the following contributions:

• We present an approximate Markov chain model for a
three-level Clos network to evaluate the convergence rate
of the adaptive-routing process.

• We study the convergence time for the case where the
bandwidth of each flow equals the link capacity. The con-
vergence time under such conditions for rearrangeably-
non-blocking Clos networks is more than exponential

with the number of input switches, so it typically does
not converge within any practical message size.

• Conversely, for the case where each flow bandwidth
equals half the link capacity, the model shows fast conver-
gence with weak dependency on the network size. Under
these conditions, adaptive routing causes very little out-
of-order packet delivery.

• We propose a set of implementable system features that
provide an oblivious-adaptive-routing. A detailed simula-
tion model of InfiniBand hardware, enhanced with these
mechanisms, confirms the above results.

The rest of the paper is organized as follows: Section II
first provides a description of an oblivious-self-routing system.
Then, Section III analyzes that system using a Markov chain
model for predicting the convergence time. Next, Section IV
discusses implementation guidelines for adaptive routing sys-
tem, and Section V provides an evaluation of both the model
and the proposed implementation. A discussion and conclu-
sions are finally presented in Section VI.

II. A DISTRIBUTED ADAPTIVE-ROUTING SYSTEM MODEL

In this section, we introduce and define our architecture
model and adaptive routing algorithm, before analyzing their
performance in the next section. Consider a 1-rate and uniform
symmetrical Clos network. Assume that it has r input (and
output) switches, of n×m ports each, and denote it as CLOS(n,
r, m). Further assume that all links have an equal capacity,
and that all flows have an equal bandwidth demand, such that
this bandwidth equals 1/p of the link capacity. For instance,
p = 2 means that each flow bandwidth requires half of the
link capacity.

Assume that the network carries a full-permutation traffic
pattern, i.e. each source sends a continuous flow of data to
a single destination, and each destination receives data from
a single source. For some traffic patterns and routing assign-
ments there are at most p flows going through any network
link (this can be guaranteed for some specific topologies [31]).
However, when more than p flows are routed through a link,
we declare these flows as bad flows, and that link as a bad
link. We consider the routing as a good routing if there are no
bad links in the system.

We now want to define the adaptive-routing algorithm.
There are many different adaptive-routing systems defined in
studies and implemented by hardware, as described in the
related work section. Most of these systems are hard to model
mathematically. Some use complex criteria for selecting output
ports [17], some use state history, and some even rely on the
distribution of the global network state [8]. Since we seek to
learn about the conditions under which convergence is fast
enough to support big-data applications, we want to define an
adaptive-routing system that is simple enough to be modeled.

Assume that the adaptive-routing system behaves as follows:
At t = 0, a new full-permutation traffic pattern is applied
at the input switches. Each input switch assigns an output
port to each of its flows (on Clos and folded Clos topologies
this output port defines the complete route to the destination).
The output port assignment performed by the input switches



is semi-random as a reasonable approach for spreading their
traffic with no global knowledge about the flows in other
switches. The assignment is termed semi-random since, as
input switches do know their own flows, they never assign
more than p flows to any of their outputs. This means that bad
links are only possible between the middle and output switches
where flows from multiple input switches may congest.

Once the initial routing is defined, the system iterates
synchronously through the following phases. Each iteration
takes exactly one time slot. First, in the middle of each slot j,
i.e. at time t = j+0.5, each output switch selects a random bad
flow that belongs to its input link with the largest number of
flows. It then sends to the input switch at the origin of this bad
flow a request to change its routing. The notification process
happens before the end of the iteration period t = j + 1.

Then, at the start of each time slot t = j + 1, when an
input switch receives a bad-flow notification, it moves that
flow to a new randomly-selected output port. If that new port
is already full, the input switch swaps the moved flow with
another flow on that output port to avoid congestion. As a
result, the swapped flow may cause a new oversubscription on
some middle-switch-to-output-switch link. The system keeps
adapting routes and iterating through these two steps until no
more bad links exist.

In the above model the middle switches do not perform any
adaptive routing. All input switches are active at the beginning
of each iteration period, and all output switches at the middle
of each iteration period. Packets continuously flow through the
network during the routing adaptation in order to provide the
output switches with the information about the flows routed
through their links.

III. ANALYSIS

This section presents Markov chain models for the con-
vergence time of the system presented in Section II. Even
for that simple system, an accurate model is hard to provide
since the system state should represent all the flows on all the
links. Since the size of the Markov model grows exponentially
with the number of flows and the number of links, we must
provide an approximation instead. The first model below takes
the unrealistic but simplifying assumption that each output
switch may be treated as an independent system. Due to the
interdependency of the output-switch convergence times, as
imposed by the input switches, this model is only useful to
describe the convergence process of a single output switch.

Then, to better predict the convergence time, we present two
other models, for full- and half-bandwidth flows. These models
track the dependency between the output switches, and focus
on the last stages of convergence when that inter-dependency
has its greatest impact. Finally, in the evaluation section, we
will use a simulation program that mimics the analyzed system
behavior to evaluate these approximations.

A. Balls-and-Bins Model

As shown in Figure 2, we propose a balls-and-bins model
to represent all the links that feed into the same output switch:
each input link is considered as a bin, and each flow as a ball.

(a)

(b)

Fig. 2. A balls-and-bins representation: (a) A single output switch of the
Clos network with 2 flows contending on its second link from the top. (b) A
balls-and-bins representation of the m output-switch input links as bins and
the n flows as balls. For the case where the bandwidth of each flow equals
the link bandwidth (p = 1), the state variable e represents the total number
of empty bins, b the number of bad bins and g the number of good bins.

We start with a random spreading of the n balls into the m
bins, and want to obtain the expected time t at which there
are at most p balls in each bin. Inspecting the changes to
flows routed through the links feeding into a specific output
switch, there are two processes that happen concurrently: (a)
an improvement process and (b) an induced-move process.

An improvement process describes the sequence of events
starting by an output switch request to move one of its worst-
link bad flows and ending by that bad flow move to a new
input link of that switch. In the balls-and-bins representation
of the output switch this would cause the movement of one
of the worst bad-bin balls into some new bin (not necessarily
an empty one).

With a slight but significant difference, the induced-move
process describe the sequence of events where an arbitrary
flow on some output switch Oi moves due to a bad-flow
adaptation request sent by another output switch Oj . Such a
sequence happens when the input switch receiving the request
swaps the two flows. In the balls-and-bins representation of the
output switch Oi this would cause the movement of a good
or bad ball into some new bin. Such a move is induced by a
change of state of another balls-and-bins system.

Figure 3 provides an example for how the improvement in
one output switch causes an induced move on the other. The
distribution of induced moves on the different output switches
follows the random throw of k balls into r bins, where k is the



(a) (b)

(c) (d)

Fig. 3. Improvement and Induced Moves: (a) An example system with
congestion on the second input from top of switch O2. (b) Output switch O2
initiates an Improvement process by requesting the move of the flow from
input-switch I3. The input switch I3 randomly selects the new output port
connected to middle-switch M4 for that flow. Since another flow, to O1 was
routed through the port to M4, I3 swaps the two flows (to O2 and O1 through
M2 and M4). This change actually improves the state of output switch O2.
(c) The routing change done by I3 has moved the congestion to the second
input of output-switch O1. (d) The swap of ports in (b) caused an Induced
ball move on O1.

number of output switches that have not reached their steady
state.

B. A Single Output-Switch Markov Chain Model for Full-Link
Bandwidth per Flow

This sub-section presents an approximate Markov chain
model for a single output switch in the case of full-link band-
width per flow (i.e., p = 1). Based on the system symmetry,
this model considers each output switch independently.

To model the interactions between output switches, the
model assumes that each time an output switch kicks some
bad ball, an induced move will happen with probability of
n/m. As depicted in Figure 4, we define a state variable e
that represents the number of empty bins, and another state
variable g that counts the number of good bins. So the Markov
state for the single output switch can be represented using the
pair (e, g). To simplify the analysis, this model makes the
following additional approximations. First, induced moves are
modeled as evenly distributed over all output switches, such
that all the r output-switch systems are identical and can be
treated as uncorrelated. Second, in order to avoid the need to
have n − 1 state variables to count the number of bins with
2, 3, ... n balls (which explodes the state space), the model
assumes all bad bins are of the same height.

The balls-and-bins is modeled using two concurrent pro-
cesses that affect the state of the balls:

Fig. 4. An approximated model assuming a uniform distribution of bad
balls in bad bins: In the shown case, the Improvement process must take one
of the balls in the left-most bin, as it is the worst bin. The Induced-Move
process may move any ball. In the shown case, if a bad ball is selected by
the Induced-Move process from a bad bin with 2 balls (i.e. bin 2, 3 or 4) and
then falls on an empty bin, 2 good bins are created and g increases by 2. Else
if it is selected from the first bin and then falls on an empty bin, the first bin
does not become good and g only increases by 1.

The improvement process: Each output switch selects one
of the balls in one of the bins with the highest number of balls,
and randomly places it into a bin. As long as there are any bins
with at least 3 balls, it is guaranteed that the number of bad
bins cannot decrease by this process (since the selected bin
will only lose one ball). The probability for the selected ball
to fall on an empty, good or bad bin depends on the number
of such bins.

The induced-move process: This process takes a random
ball and randomly places it in some bin. The probability for
such moves to occur depends on the number of empty links
on the input switches. Since there are only n flows spread on
m links, and the selection of the flow to be moved is random,
the distribution of the moved flows to input switches should
follow the distribution of throwing n balls into m bins. In
order to avoid the complexity of using this distribution, the
model relies on the approximation of the average probability
of an induced move, which is n/m.

To predict if the induced move changes the number of good
bins by +1, −1 or −2, we should have tracked the exact
number of bins with 0, 1 and 2 balls. As shown in the example
of Figure 4, if the moved ball is from bins with just 2 balls
and it falls in an empty bin, g is increased by 2. But if the
bad ball is from a bin with more than 2 balls, the number
of good bins is only increased by 1. However, to compute
the number of bins with 2 balls using a Markov chain, we
would need to also track the number of bins with 3 balls; and
so forth. If we define these n state variables, the state space
explodes. As the distribution of the number of balls per bin
is expected to be a sharp function, such that the probability
drops significantly with the number of balls, we claim that
a reasonable approximation is to assume that all the bad bins
have the same number of balls. In fact, the output switch policy
of re-routing a ball from the bin with the highest number of
balls further strengthens this assumption.

Let us consider each state transition induced by the request
of some other output switch to improve its state. The ball se-
lected may be a good or bad ball, and we assume by symmetry
that it may be moved into any bin with the same probability.
The probability for a good ball to be selected is g/n. The
probability for a bad ball is the complementary (n−g)/n. The
possible moves and their respective probabilities are described
in Table I. The combined impact of the two processes is
obtained by considering each possible pair of the Improve and



(a)

(b)

Fig. 5. Approximated Last Step model of a single output-switch: (a) A single
bad state implies a lower bound on convergence time as it does not let the bad
state degrade further than the last step. (b) The set of r state pairs describes
the entire system.

Induced-move state transitions, and adding their probability
product to the Markov state transition matrix.

C. Last-Step Model for Flows of Full Link Bandwidth

A full model of the entire Markov matrix of all states
of all output switches is infeasible due to its size. In order
to obtain an approximation for the convergence time, we
suggest inspecting the r output switches just before they reach
convergence. We call this the Last-Step model.

As we suspect that the long convergence times are a result
of the induced moves forced by one output switch on another,
we focus the model on the last steps of convergence. Only
when all the output switches reach together their good state,
they stop forcing each other back into bad states. The model
only uses a single bad state that is closest to the good state.
In that sense, it is an optimistic model, as a sequence of bad
induced moves is not modeled and the output switch stays
close to its good state. Yet, we will later show that it correctly
models the exponential convergence time of our system.

Figure 5(a) shows the Markov states of a single output
switch. There are only two states for an output switch: 0 (good)
and 1 (bad). Only a single bad bin is possible one step away
from the good state as shown on the balls-and-bins systems
drawn below the state graph. The probabilities for transition
represent the improvement and induced move processes, but
their values depend on the other output switches states. The

Markov system contains r approximated output switch sub-
systems each with a single state variable which is either 1
(bad) or 0 (good) as shown in Figure 5(b). Since all the
combinations of output switch states are possible, the number
of system states is the multiplication of all the output switches
states. Since each output has only two states the system state
can be encoded as a binary variable of r bits, such that bit
Si represents the state of output switch i. The resulting state
space has 2r system states. Consequently, the entire system
has a single absorbing state which is when all the bits of the
binary representation are 0. We can also assume all output
switches start with some bad bins so the initial state value
is 2r − 1. Before the observing state is reached, the total
number of output-switches with some bad-balls, denoted by
U , equals the number of 1’s in the state binary value. Each
one of these U sub-systems will initiate a ball move which
may cause an induced move on some other sub-system. We
assume the induced moves are equally spread, and thus the
probability for an output switch to leave a good state B equals
the probability for an induced moves to throw a ball in that
output switch (since any ball move will change the state to a
bad state):

B =
U

r
(1)

The probability to stay in a good state denoted A is:

A = 1−B = 1− U

r
(2)

The probability to move from a bad state to a good state is
denoted C, and is built from the impact of the two processes
Cimp and Cind for the probabilities for such move caused
by improve or induced process respectively. The improvement
process always selects a bad ball and thus improvement
depends on the number of empty bins:

Cimp = (m− n+ 1)/m (3)

For the induced-move process to cause a move from bad to
good state we need to multiply the probability of an induced
move by the probability a bad ball will be selected, and by
the probability the move will be into an empty bin:

Cind =
U

r

2

n

(m− n+ 1)

m
(4)

Combining the two contributions we get:

C = Cimp + Cind − CimpCind (5)

The probability to stay in bad state D is thus:

D = 1− C (6)

To build the Markov state transitions matrix the present state
is represented as a binary variable: S = Sr−1Sr−2 . . . S1S0

and the next state is represented as Q = Qr−1Qr−2 . . . Q1Q0.
Define E as the number of digits j where Sj = Qj = 0,

F the number of digits j where Sj = 0 ̸= Qj , G the number
of digits j where Sj = Qj = 1 and H the number of digits
j where Sj = 1 ̸= Qj . The probability to move from state
S to state Q is thus the multiplication of the probabilities of



TABLE I
POSSIBLE STATE CHANGES WITH p = 1 AND THEIR PROBABILITY

Fig. 6. For p = 2 we introduce new state variables: e=the number of empty
bins, o= the number of bins with a single ball, t=the number of bins with two
balls. b=the number of “bad” bins

each one of the sub-systems to change or stay in their previous
state:

Pij = AEBFCHDG (7)

D. Last-Step Model for Flows of Half Link Bandwidth

As we realize by the previous section that the exponential
convergence time is a result of the high probability for a bad
induced move when flows use the full link bandwidth, we look
for ways to reduce that probability. Intuitively, restricting flows
to only use half the link bandwidth using p = 2 greatly reduces
the probability for a bad induced-move. This is because all the
cases where two flows are routed through the same link are
valid, and only cases with three of more flows are not. In this
section we take the same approach of modeling the last-step
before convergence in order to obtain an approximation of the
convergence time.

Unlike the Last-Step model for p = 1 that has just one
absorbing state for the output switches, the case of two flows
per link has several good states. As illustrated in Figure 6, to
distinguish these states we introduce the following variables
describing the ball distributions in each output switch: e, the
number of empty bins; o, the number of bins with one ball;
and t, the number of bins with two balls.

(a)

(b)

Fig. 7. The Markov model for the case of p = 2 has many observing states.
As we are interested in the slowest convergence for p = 2 we focus on the
observing state with the highest probability for bad induced move - B: (a) The
absorbing state with maximal B, and (b) its neighbor bad state. The moved
ball is shadowed.

It can be shown that for a state to be good the total number
of balls in good (1 or 2 balls) bins must equal the number of
balls n:

n = 2t+ o (8)

m = e+ t+ o (9)

Or:
t = e− (m− n) (10)

o = m− 2× e+ (m− n) (11)



As we are interested in the worst number of iterations
to convergence (for the p = 2 case only) we need to find
the absorbing state (o,t) with highest probability B for bad
induced move. B, as a function of o and t is the probability
to select a ball from a single bin and move it on a 2-balls
bin, plus the probability to select a a ball from 2-balls bin and
place it on another 2-balls bin:

B =
o

n

t

m
+
2t

n

(t− 1)

m
=

t

nm
(o+2t−2) =

t

nm
(n−2) (12)

By calculating t′ which zeros out the derivative of Equa-
tion 12 versus t we conclude the maximal B is obtained for
t′ = n/2 as shown in Figure 7(a). For that state the maximal
B is:

Bmax =
n/2− 1

m
=

n

m
(
1

2
− 1

m
) (13)

To reach convergence all the sub-systems need to reach
the observing state shown in Figure 7(a), from the nearest
bad-state shown in Figure 7(b). Similar to the p = 1 case,
the probability C is then the sum of the probabilities of the
improvement and the induced-move processes to move the sub-
system from bad to good state:

Cimp =
m− t

m
= 1− n/2− 2

m
(14)

Cind = U
3

n

m− t

m
(15)

The probability for induced moves with p = 2 has to
take into account the probability for a ball to move without
requiring a swap. To that end we could use the balls-and-bins
distribution to predict the probability for a bin to have more
than two balls. The construction of the Markov state transition
matrix follows the same procedure as in Section III-C.

IV. IMPLEMENTATION GUIDELINES

This section discusses the feature set required for the
implementation of an oblivious-adaptive-routing system. To
enable an efficient hardware implementation, the proposed
mechanisms differ from the model described in Section II in
several aspects.

The first implementation detail deals with the implications
of folding the Clos network to form a Folded-Clos network,
i.e. a Fat-Tree. To create a Fat-Tree a Clos network is folded
along the middle-switches axis so the input and output Clos
switches are implemented by the same Fat-Tree switches. So,
these switches are required to support full-duplex rather than
half-duplex links.

To meet the required behavior described in Section II, the
switches need to extend their deterministic routing and provide
random assignment of output ports for flows. The dynamic
routing engine needs to be “sticky” and remember previous
assignments, such that routing changes only occur if required.
The adaptation is triggered either by receiving an Explicit
Adaptation Request (EAR) from an output switch, or when
congestion is observed on the previously assigned output port.

Reassignment of a flow output port is only allowed on
Clos input switches (Fat-Tree up-going ports of the leaf-level
switches). The Fat-Tree switches implement a configurable
marking of ports as up-port to limit adaptation to these ports
without the need to hard-code port assignments.

In real networks, the adaptation delay, from the moment
an EAR is produced until the routing is changed, is not
negligible. The main reason is the need to time-multiplex
the request with the data packets already being sent on the
same port. Such a delay means that if EARs are generated
without waiting for the impact of previous EARs, unnecessary
adaptations are performed, which reduces the probability to
reach a non-blocking routing assignment. To overcome that
effect, a timer is used to throttle the number of routing
reassignments. Furthermore, introducing “sampling” into the
EAR generation increases the probability of larger flows to be
rerouted in case of congestion. This increases the probability
of resolving the congestion point with less adaptations.

While the analyzed model requires all flows to have the
exact same bandwidth, a real system has to deal with a mixture
of flows with arbitrary bandwidth. In practice this means that
the implementation cannot declare congestion by counting
“flows” assuming they are all of the same bandwidth. Instead,
it makes more sense to evaluate a transmit-port congestion, in
mechanisms similar to those proposed by the IEEE 802.1Qau
known as QCN [32].

Another difference between our analyzed model and a real-
life implementation involves the concurrency of bad-flow re-
routes. Congestion-based bad-link detection means that the
knowledge about bad links is not available at the receiving
switch (the output switch in our model), but in the middle
switch. In the model used in previous sections, the output
switch requires this information in order to choose a single
worst bad-flow to be re-routed. Selecting the worst bad-link
implies the existence of a protocol for each middle switch
to notify the output switches to which it connects about bad
links and their severity. To avoid the latency and complexity
of such a protocol, the proposed implementation does not
enforce a single bad-flow transition per output switch per
iteration. Instead, the responsibility for requesting re-routing
of bad flows is given to the middle switches that use the same
QCN-like monitoring to detect congestion. When congestion
is detected, the middle switches send EAR requests to the
relevant input switches. These notifications do require a special
signaling protocol to be delivered. The algorithms for EAR
generation and forwarding, as well as for determining when
to adapt to output congestion, are depicted in Algorithms 1
and 2. Algorithm 1 is run by the switches for output ports
(ports towards the network output). Algorithm 2 is only run
by the input switches.

Finally, it is suggested to add a mechanism to dynamically
throttle input flows as a function of the need to perform
distributed-adaptive-routing. With such a mechanism the sys-
tem enjoys the full link bandwidth for permutations which are
non-blocking under static routing and applies adaptive routing
and flow bandwidth throttling only when congestion occurs.
In our evaluation we did not incorporate such a mechanism.



Algorithm 1 On Queue or De-Queue of Data Flits (numFlits,
TP, RP, to DEST)

Update number of flits queued for the Transmit Port (TP)
if enough time from port change for this flow and TP is congested
then

if Switch is a middle switch then
Send EAR though the Receive Port (RP) flits were received
on

else
if TP is an up-going-port then

Adapt the output port for DEST
Possibly swap with another DEST if the new output port
is busy

end if
end if

end if

Algorithm 2 On Receiving an EAR (RP, DEST)
if RP is an up-going-port then

Adapt the output port for DEST
Possibly swap another DEST if the new output-port is busy

end if

V. EVALUATION

A. Traffic Matrix

Evaluation of the worst convergence time using simulations
relies on the ability to check many traffic-matrix permutations.
As the number of possible permutations is extremely large, it
is important to focus on the permutations that are presumed to
have the worst convergence time, or at least a large one. These
so-called worst permutations are derived by contrasting them
to the set of permutations that are fastest to converge. In the
fastest converging permutations, all flows originating on the
same input switch are destined to the same output switch. For
such permutations it is enough that each input switch spreads
its own outputs to avoid bad links and provide good routing.
Such assignment is possible if m × p ≥ n (this is also the
rearangeable non-blocking condition for 1-rate Clos with p
flows per link). Therefore, intuitively, a permutation where
each output switch receives flows from different input switches
will be among the hardest to converge, as it will require the
most synchronization between the input switches, which do
not talk to each other.

B. Analyzed System Simulation Model

A dedicated simulation program was written to model the
system described in Section II. The data structure used is a
simple matrix M [s, d], where (s, d) represents the source and
destination for each flow, and the value of M [s, d] denotes
the middle switch assigned to the (s, d) flow. The simulation
algorithm is depicted in Algorithm 3. The program optionally
either starts from a fully randomized permutation or from
a random one that meets the condition of a so-called worst
permutation, as described above. Each point of simulation
result is obtained by simulating a batch of 1000 permutations
and then continues to simulate new batches until the average
number of iterations required to converge changes by less than
1%.

Algorithm 3 Distributed Adaptive Routing Simulation Main
Loop

Draw a random or worst permutation as dst[src]
for all (src, dst) pair do

M [src, dst] = mod(src, n)
end for
Iterations = 0
while Any bad link (depends on p) do

Iterations++
Randomly select one (src, dst) from the worst link for each
out-switch
for all Bad (src, dst) selected, in random order do

Randomly select a new value for M [s, d]
Move the (src, dst) to the new middle switch
Optionally swap with previous flow on that link

end for
end while
Report Iterations

The models of Sections III-B, III-C and III-D were coded
in Matlab 1, to form an observable Markov chain matrix
following the theory presented in [33].

The first comparison made is for the rearrangeable non-
blocking topologies, in the case where p = 1 , i.e. there
is at most one flow per link. The number of iterations to
reach convergence is provided in Figure 8(a). As expected,
the Independent output switch model of Section III-B is vastly
optimistic, while the Last-Step model of Section III-C is closer
to the simulated results. The Last-Step model is pessimistic for
very small n as it assumes all output switches start in a bad
state, which is not the case for very small n.

For the strictly non-blocking case in Figure 8(b), it can be
seen that the simulation predicts convergence times many or-
ders of magnitude smaller than the rearrangeable non-blocking
case, but still mostly above 10. The Independent output-switch
model is optimistic, and the Last-Step model is pessimistic,
probably due to its assumption that all output switches start
at a bad state. In this case of a strictly non-blocking topology,
due to the over-provisioning of the network, there are higher
chances that some output switches will start in a good state.
Also note that the change of slopes on the simulation curve
may be attributed to the change between even and odd port
numbers, and note that routing in Clos best fits even number
of ports.

To strengthen the point that the systems are dependent, we
show the dependency of the convergence time on the number
of parallel output switches in Figure 9(a). The convergence is
plotted for different values of r and a fixed n = m = 6. It
can be observed that the dependency on r is exponential. The
Last-Step model shows a lower slope, which we suspect is a
result of the approximation of using a single bad state. Note
that the Independent model does not depend on r at all, which
exhibits yet another limitation of this model.

The Last-Step Markov model of Section III-D for the case of
half-link capacity flows was simulated on a rearrangeable non-
blocking topology and the number of iterations to convergence
is provided in Figure 9(b). The number of iterations required

1The network size in the presented Matlab-based evaluation is limited by
the exponential state space nature of Markov representations and the capacity
of our version of Matlab.



(a)

(b)

Fig. 8. Expected convergence time for p = 1, i.e. at most one flow
per link. The plots compare the approximations of the Independent single-
output-switch model and the Last-Step model, against simulated results of
worst permutations, in the cases where (a) the topology is rearrangeable non-
blocking with m = n = r . and (b) the topology is strictly non-blocking
with m = 2n = 2r.

to reach convergence is shown to be very small even for
large values of n. As can also be seen, the Markov model
is optimistic for larger networks. We attribute this behavior to
the approximation used by this model, which defines a single
bad state for each output-switch sub-system.

C. Implementable System Simulation Model

A large compute cluster would have been the obvious
choice for the evaluation of an implemented adaptive routing
system. However, hardware that implements our proposed
Explicit Adaptation Request messaging described above was
not available to us. Instead, we used a flit-level simulator
for InfiniBand that accurately models flow dynamics, network
queuing and arbitration, as described below.

The OMNet++ [34] based InfiniBand flit-level simulation
model [35] is commonly used for predicting bandwidth and
latency for InfiniBand networks [31] [36] [37]. In order to
evaluate the proposed implementation guidelines presented in
Section IV, a new packet-forwarding module was added to the
switches. This module implements all the algorithms to detect
link capacity overflow, provide flow re-route, swap output

(a)

(b)

Fig. 9. (a) The dependency on r of the number of iterations to convergence
for p = 1 and constant m = n = 6. (b) Comparison of time to convergence
for Clos(n = m = r) in the case of half-link-rate flows (p = 2) using the
Last-Step Model and a dedicated simulation model.

ports, and introduce a signaling protocol to carry the Explicit
Adaptation Requests (EAR) between switches.

The overhead and timing of the EAR protocol is accurately
modeled by encapsulating EARs as 8-byte messages similarly
to the flow-control packets of InfiniBand, and sending them
through the regular packet send queues.

The simulations performed are of two topologies containing
1152 hosts: The rearrangeable non-blocking topology is a
folded CLOS(24, 48, 24) equivalent to the XGFT(2; 24,48;
1,24) (eXtended Generalized Fat-Tree) topology. The strictly
non-blocking topology has double the number of middle
switches, i.e. is a folded CLOS(24, 48, 48), equivalent to
an XGFT(2; 24,48; 1,48) fat-tree. The strictly non-blocking
topology is simulated to provide a fair comparison to the case
of half-rate flows (p = 2), as it provides double the links. The
model assumes a link capacity of 40Gbps, and hosts may send
data at that speed or be throttled to 20Gbps +/- 0.8Gbps.

The traffic pattern applied to the system is a sequence of
random permutations. In each permutation each host sends
data to a single random destination and receives data from
a single random source. The hosts progress through their
sequence of destinations in an asynchronous fashion sending
256KB to each destination.

The simulation tracks the number of routing changes per-



(a) Strictly non-blocking 40Gbps flows (b) Rearrangeable non-blocking 20.8Gbps flows

(c) Rearrangeable non-blocking 19.2Gbps flows (d) Many permutations of 19.2Gbps flows

Fig. 10. The number of re-routing events on each input switch of the 1152-node fat tree, accumulated over 10µsec time-periods with 256KB messages, for (a)
a strictly non-blocking topology with flows of 40Gbps, (b) a rearrangeable non-blocking topology with 20.8Gbps flows, and (c) a rearrangeable non-blocking
toplogy with 19.2Gbps flows. The plots in (a) and (b) focus on a single 150µsec permutation period and show that convergence is not met - adaptations do
not stop throughout the entire permutation, while in (c), for the rearrangeable non-blocking 19.2Gbps case, convergence is reached within 40µsec. Finally,
(d) shows a longer time period including a set of random permutations of 256KB that are applied to the rearrangeable non-blocking 19.2Gbps case. The
convergence time is roughly 1/10 of the permutation time.

TABLE II
SIMULATION RESULTS FOR A 1152-HOSTS CLUSTER

formed by each switch in periods of 10µsec, as well as the
final throughput at each of the network egress ports. The ratio
of packets delivered out-of-order to those provided in-order
is also measured. Another measured variable is the out-of-
order packet window size, defined as the gap in the number

of packets, as observed by the receiving host. This variable is a
clear indication for the feasibility of implementing a re-order
buffer. The bandwidth, latency and out-of-order percent and
window size results are presented in Table II. The values are
taken as average, max or min value over all receivers of the
average or max value measured on each receiving host. For
example, the min of average throughput means that each egress
port throughput is averaged over time, and the reported number
is the minimal value over all the egress ports. To establish a fair
comparison we focus on the results of the two cases when only
half of the network resources are used: strictly non-blocking
40Gbps (first data column) and rearrangeable non-blocking
19.2Gbps (third data column).

We can see that although the bandwidth provided by the
strictly non-blocking case with p = 1 is higher, any transport
that would require retransmission due to out-of-order delivery
would actually fail to work on the strictly non-blocking case
with p = 1, since only one out of three packets is provided
in order (ratio of about 2). The latency of the network is also
impacted by not reaching a steady state, thus showing a much
longer latency.

The routing convergence provided by the p = 2 case is



most visible when inspecting the number of routing changes
per 10µsec. Figure 10 shows on each line the number of adap-
tations conducted by a specific switch in each 10µsec period.
Figures 10(a) and Figure 10(b) shows the accumulative num-
ber of adaptations per switch during the first permutation for
strictly non-blocking 40Gbps and rearrangeable non-blocking
20.8Gbps respectively. Figure 10(c) show the accumulative
number of adaptations per switch during the third permuta-
tion and for rearrangeable non-blocking 19.2Gbps. It can be
observed that routing is constantly changing for the cases of
the strictly non-blocking 40Gbps and the rearrangeable non-
blocking 20.8Gbps, and stabilizes fast for the case of the RNB
19.2Gbps. A long sequence of 256KB message permutations
on rearrangeable non-blocking 19.2Gbps is shown in Fig-
ure 10(d). By inspecting the cumulative number of adaptations
of all the network switches and measuring the length of the
adaptation period after each permutation, it can be observed
that adaptive-routing reaches a non-blocking assignment for
all permutations in less than 80µsec.

To further demonstrate the singularity around half-
bandwidth flows, as concluded by our last-step model, we
run the set of random permutations on the rearrangeable
non-blocking topology with 1152 nodes, for several flow
bandwidths, from 1/5- to full-link bandwidth. We measure the
convergence time from the beginning of the permutation and
the total number of adaptations over all permutations. Both the
time for convergence (in a resolutions of 10µsec) and the total
number of adaptations are shown in Figure 11. Figure 11(a)
shows clearly that convergence does not happen within the
256KB permutation period when the flow bandwidth is above
half of the link bandwidth. When flow bandwidth values
are smaller, it can be observed that the convergence time is
not monotonically decreasing. This can be attributed to the
dependency of the EAR generation on the queue build-up time,
which depends on the flow bandwidth. For the simulated 32KB
per input buffer and 40Gbps links, just filling up the buffer
would take about 20µsec for 2 flows of 1/5 link bandwidth.

Figure 11(b) further depicts the total number of adaptations
within the entire run. It shows that the number of adaptations
grows by half an order of magnitude as the flow bandwidth
increases from 1/5 link bandwidth to half link bandwidth, and
then by 1.5 orders of magnitude just crossing the half link
bandwidth point.

Figure 12(a) shows the percentage of packets that are
delivered out-of-order for the same topology and set of per-
mutations described above. It can be observed that while there
almost no out-of-order packets for the cases of flow bandwidth
< 20Gbps, once the flow bandwidth increases above that
value, a significant percentage of packets are delivered out-
of-order. For many transports (TCP and InfiniBand Reliable-
Connected) such events cause significant reduction of goodput.

Finally, we compare the average and minimal (over all end-
ports) output bandwidth for static destination-based routing
to the throughput and goodput obtained by the distributed
adaptive routing system. We use the same network and apply
the same set of random permutations of 256KB size messages.
The simulations utilize either static routing (D-Mod-K) or
distributed adaptive routing. The bandwidth as a function

of the offered flow bandwidth is plotted in Figure 12(b).
The graphs show that while the static routing bandwidth
saturates at 19Gbps, the distributed adaptive routing supports
the offered flow bandwidth up to a throughput of 28Gbps. The
comparison of the average and the minimal bandwidth on all
network outputs highlights another advantage of the distributed
adaptive routing system which provides equal service and
does not favor some outputs over the others. The adaptive-
routing system provides a significant improvement in goodput
over the deterministic routing. Note that for 20Gbps flows the
distributed-adaptive-routing provides the minimal goodput of
20Gbps while the worst network outputs only reach 17Gbps
when the applied flow bandwidth is ˜30Gbps. Also note that
the permutations used in our evaluations are far from being
the worst possible permutations. On the simulated network,
these adversarial permutations would saturate at 1/24 of the
link bandwidth. These results are also assuming no transport
penalty for congestion, i.e. a perfect TCP congestion control
or lossless network being used for the static routing case.

VI. DISCUSSION AND CONCLUSIONS

In this paper we find sufficient conditions allowing dis-
tributed oblivious-adaptive-routing to converge to a non-
blocking routing assignment within a very short time, thus
making it a viable solution for adaptive routing for medium-
to-long messages on fat-trees.

Convergence is shown to require flows that do not exceed
half of the link capacity, which raises the question of whether
it is worth to pay that high price. Note that actually in our pro-
posed Adaptive Routing only the edge links of the network are
operated at half the core network link bandwidth. Many of the
network links do route more than one flow and thus utilize the
full link capacity. To deal with the contention caused by high-
volume correlated flows, an alternative approach would be to
rely on a centralized traffic engineering engine that can throttle
traffic as necessary or perform re-routes. However, such an
approach may have scalability issues. As the number of flows
correlates to the number of cluster nodes, a central unit is
likely to become a bottleneck. Additional approaches [8] to
provide adaptive routing based on protocols that convey the
system state to each switch are also less scalable due to the
state size on every switch, the number of messages to provide
state updates, and the synchronous change of traffic which
makes previous states irrelevant.

The developed approximate model provides the insight that
the origin of the long convergence time is the interdependency
of re-route events on the different output switches, as imposed
by the topology. It was shown that the time it takes to
converge to a non-blocking routing is exponential with the
number of input or output switches. For that reason, the
probability of creating bad links on a single output switch has
a major impact on the convergence time. For rearangeable-
non-blocking CLOS, limiting the traffic flows to half or less
of the link bandwidth reduces this probability for creating bad
links to less than 0.5, and therefore provides fast convergence.

Finally, we propose a simple system architecture for the
signaling needed for adaptation, and simulate it to show how



(a) (b)

Fig. 11. Simulated cluster of 1152 nodes, running a a set of random permutations of 256KB for different flow bandwidths. (a) shows the average and range
of convergence time from the start of the permutation period. It can be seen that flow bandwidth above half the link bandwidth simply does not converge. (b)
depicts the total number of adaptations throughout the entire simulation period on a logarithmic scale.

(a) (b)

Fig. 12. (a) The average percentage of out-of-order (OOO) packets at the network outputs. A a dramatic increase can be observed above 20Gbps offered
flow bandwidth. (b) The obtained average and minimal throughput and goodput over all network outputs, as a function of the offered flow bandwidth. It is
clearly seen that while the average bandwidth for static destination routing is saturating at roughly at 17Gbps the adaptive routing system throughput reaches
a peak at 28Gbps and its goodput maximizes at half the link bandwidth at 20Gbps. Goodput for AR is calculated as the throughput times the percentage of
in-order packets. The minimal goodput (on the worst network output) is not plotted as it overlaps with the average curve.

it converges within 20-80µsec on a 1152-host network. The
insights provided by this research should help in providing a
self-routing solution to long messages in data-center applica-
tions of various fields.

We leave an evaluation of larger topologies like 3-level
fat-trees or Dragonflies as future work. Finally, we plan to
extend our evaluation for cases of mixed flow-bandwidth and
duration.

ACKNOWLEDGMENT

We would like to thank Marina Lipshteyn of Mellanox and
Israel Cidon, Yossi Kanizo and Erez Kantor from the Technion
for their support and insight. This work was partly supported
by the Intel ICRI-CI Center, the Israel Ministry of Science
and Technology, and the European Research Council Starting
Grant No. 210389.

REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: dynamic flow scheduling for data center networks,” in Pro-
ceedings of the 7th USENIX conference on Networked systems design
and implementation, ser. NSDI’10. Berkeley, CA, USA: USENIX
Association, 2010, p. 1919.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, ser. EuroSys ’07. New York, NY, USA:
ACM, 2007, p. 5972.

[3] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., Oct.
2010.

[4] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Manag-
ing data transfers in computer clusters with orchestra,” in Proceedings
of the ACM SIGCOMM 2011 conference, ser. SIGCOMM ’11. New
York, NY, USA: ACM, 2011, p. 98109.

[5] M. Raab and A. Steger, “Balls into bins a simple and tight analysis,”
Randomization and Approximation Techniques in Computer Science, pp.
159–170, 1998.

[6] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Un-
derstanding TCP incast throughput collapse in datacenter networks,”
in Proceedings of the 1st ACM workshop on Research on enterprise



networking, ser. WREN ’09. New York, NY, USA: ACM, 2009, p.
7382.

[7] J. C. Martnez, J. Flich, A. Robles, P. Lpez, and J. Duato, “Supporting
fully adaptive routing in InfiniBand networks,” in Proceedings of the
17th International Symposium on Parallel and Distributed Processing,
ser. IPDPS ’03. Washington, DC, USA: IEEE Computer Society, 2003,
p. 44.1, ACM ID: 838493.

[8] C. Minkenberg, M. Gusat, and G. Rodriguez, “Adaptive routing in data
center bridges,” in Proceedings of the 2009 17th IEEE Symposium
on High Performance Interconnects. Washington, DC, USA: IEEE
Computer Society, 2009, p. 3341, ACM ID: 1634466.

[9] C. Gomez, F. Gilabert, M. Gomez, P. Lopez, and J. Duato, “Determin-
istic versus adaptive routing in fat-trees,” in 2007 IEEE International
Parallel and Distributed Processing Symposium, Long Beach, CA, USA,
Mar. 2007, pp. 1–8.

[10] M. Koibuchi, J. C. Martinez, J. Flich, A. Robles, P. Lopez, and
J. Duato, “Enforcing in-order packet delivery in system area networks
with adaptive routing,” Journal of Parallel and Distributed Computing,
vol. 65, no. 10, pp. 1223–1236, Oct. 2005.

[11] W. Wu, P. Demar, and M. Crawford, “Sorting reordered packets with
interrupt coalescing,” Computer Networks, vol. 53, no. 15, pp. 2646–
2662, Oct. 2009.

[12] A. V. Gerbessiotis and L. G. Valiant, “Direct bulk-synchronous parallel
algorithms,” J. Parallel Distrib. Comput., vol. 22, no. 2, p. 251267, Aug.
1994.

[13] T. Hoefler, P. Kambadur, R. Graham, G. Shipman, and A. Lumsdaine,
“A case for standard non-blocking collective operations,” in Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
ser. Lecture Notes in Computer Science, F. Cappello, T. Herault, and
J. Dongarra, Eds. Springer Berlin / Heidelberg, 2007, vol. 4757, pp.
125–134.

[14] T. Hoefler, T. Schneider, and A. Lumsdaine, “Multistage switches are
not crossbars: Effects of static routing in high-performance networks,”
in 2008 IEEE International Conference on Cluster Computing. IEEE,
Oct. 2008, pp. 116–125.

[15] X. Yuan, “On nonblocking folded-clos networks in computer communi-
cation environments,” in Parallel & Distributed Processing Symposium
(IPDPS), 2011 IEEE International. IEEE, May 2011, pp. 188–196.

[16] N. Jiang, J. Kim, and W. J. Dally, “Indirect adaptive routing on large
scale interconnection networks,” ACM SIGARCH Computer Architecture
News, vol. 37, p. 220231, Jun. 2009, ACM ID: 1555783.

[17] J. Kim, W. J. Dally, and D. Abts, “Adaptive routing in high-radix clos
network.” ACM Press, 2006, p. 92.

[18] S. Scott, D. Abts, J. Kim, and W. J. Dally, “The BlackWidow high-
radix clos network,” in Proceedings of the 33rd annual international
symposium on Computer Architecture, ser. ISCA ’06. Washington,
DC, USA: IEEE Computer Society, 2006, p. 1628.

[19] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Gi-
ampapa, P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken,
M. Tsao, and P. Vranas, “Blue Gene/L torus interconnection network,”
IBM Journal of Research and Development, vol. 49, no. 2.3, pp. 265–
276, Mar. 2005.

[20] G. BLOCH, D. CRUPNICOFF, M. KAGAN, I. BUKSPAN, I. RABEN-
STEIN, A. WEBMAN, and A. MARELLI, “High-performance adaptive
routing,” U.S. Patent, 2012, publication number: US 2011/0096668 A1
U.S. Classification: 370/237.

[21] M. Gusat, D. Crisan, C. Minkenberg, and C. DeCusatis, “R3C2: reactive
route and rate control for CEE,” in High-Performance Interconnects,
Symposium on. Los Alamitos, CA, USA: IEEE Computer Society,
2010, pp. 50–57.

[22] E. J. Anderson and T. E. Anderson, “On the stability of adaptive
routing in the presence of congestion control,” in INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies, vol. 2. IEEE, Apr. 2003, pp. 948–
958 vol.2.

[23] D. Gamarnik, “Stability of adaptive and non-adaptive packet routing
policies in adversarial queueing networks,” in Proceedings of the thirty-
first annual ACM symposium on Theory of computing, ser. STOC ’99.
New York, NY, USA: ACM, 1999, p. 206214.

[24] A. Smiljanic, “Rate and delay guarantees provided by clos packet
switches with load balancing,” IEEE/ACM Transactions on Networking
(TON), vol. 16, no. 1, pp. 170–181, 2008.

[25] A. Jajszczyk, “Nonblocking, repackable, and rearrangeable clos net-
works: fifty years of the theory evolution,” Communications Magazine,
IEEE, vol. 41, no. 10, pp. 28–33, 2003.

[26] V. E. Benes, Mathematical theory of connecting networks and telephone
traffic. Academic press New York, 1965, vol. 332.

[27] D. Z. Du, B. Gao, F. K. Hwang, and J. H. Kim, “On multirate
rearrangeable clos networks,” SIAM J. Comput., vol. 28, no. 2, p.
463470, 1998.

[28] S. Liew, M.-H. Ng, and C. Chan, “Blocking and nonblocking multirate
clos switching networks,” Networking, IEEE/ACM Transactions on,
vol. 6, no. 3, pp. 307–318, 1998.

[29] B. Douglass and A. Oruc, “On self-routing in clos connection networks,”
Communications, IEEE Transactions on, vol. 41, no. 1, pp. 121–124,
1993.

[30] A. Youssef, “Randomized self-routing algorithms for clos networks,”
Computers & Electrical Engineering, vol. 19, no. 6, pp. 419–429, Nov.
1993.

[31] E. Zahavi, “Fat-trees routing and node ordering providing contention free
traffic for MPI global collectives,” Journal of Parallel and Distributed
Computing, no. Communication Arch for Scalable Systems, 2008,
pending.

[32] N. Finn, “802.1Qau-2010,” Tech. Rep., 2010. [Online]. Available:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5454061

[33] S. Karlin and H. M. Taylor, An Introduction to Stochastic Modeling,
Third Edition, 3rd ed. Academic Press, Feb. 1998.

[34] A. Varga, “OMNET++,” 2004. [Online]. Available:
http://www.omnetpp.org/

[35] “InfiniBand(TM) Simulation Macro Model Macro
http://www.omnetpp.org/omnetpp/doc details/2070-infiniband.”

[36] E. G. Gran, M. Eimot, S. A. Reinemo, T. Skeie, O. Lysne, L. P. Huse,
and G. Shainer, “First experiences with congestion control in InfiniBand
hardware,” in 2010 IEEE International Symposium on Parallel & Dis-
tributed Processing (IPDPS). IEEE, Apr. 2010, pp. 1–12.

[37] E. G. Gran, E. Zahavi, S.-A. Reinemo, T. Skeie, G. Shainer, and
O. Lysne, “On the relation between congestion control, switch arbitration
and fairness.” IEEE, May 2011, pp. 342–351.

Eitan Zahavi is a Ph.D. candidate at the Technion
Electrical Engineering department. He is also a
senior principal engineer in Mellanox Technologies.
Eitan earned his B.Sc. and M.Sc. in Electrical Engi-
neering from the Technion, Israel in 1987 and 2012
respectively. During twenty years in the industry
worked in Intel as a Circuit designer, EDA developer
and architect. Co-founder of Mellanox at 1999 and
since then leads the company Design Automation
group and architects InfiniBand networks with focus
on their management aspects. His recent research

interests include High Performance Computing interconnects and Data Center
Networks. Serves as a co-chair of the InfiniBand trade association Manage-
ment Working Group.

Isaac Keslassy (M’02, SM’11) received his M.S.
and Ph.D. degrees in Electrical Engineering from
Stanford University, Stanford, CA, in 2000 and
2004, respectively. He is currently an associate pro-
fessor in the Electrical Engineering department of
the Technion, Israel. His recent research interests
include the design and analysis of high-performance
routers and multi-core architectures. The recipient of
the European Research Council Starting Grant, the
Alon Fellowship, the Mani Teaching Award and the
Yanai Teaching Award, he is an associate editor for

the IEEE/ACM Transactions on Networking.

Avinoam Kolodny received his doctorate in micro-
electronics from Technion - Israel Institute of Tech-
nology in 1980. He joined Intel Corporation, where
he was engaged in research and development in the
areas of device physics, VLSI circuits, electronic
design automation, and organizational development.
He has been a member of the Faculty of Electrical
Engineering at the Technion since 2000. His current
research is focused primarily on interconnects in
VLSI systems, at both physical and architectural
levels.


