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ABSTRACT 

We introduce a novel evaluation methodology to analyze the 
delay of a wormhole routing based NoC with variable link 
capacities and a variable number of virtual channels per link. This 
methodology can be utilized to analyze different heterogeneous 
NoC architectures and traffic scenarios for which no analysis 
framework has been developed before. In particular, it can replace 
computationally-extensive simulations at the inner-loop of the 
link capacities and virtual channels allocation steps of the NoC 
topology optimization process. Our analysis introduces a set of 
implicit equations which can be efficiently solved iteratively. We 
demonstrate the accuracy of our approximation by comparing the 
analysis results to a simulation model for several use-cases and 
synthetic examples. In addition, we compare the analysis with 
simulation results for a chip-multi-processor (CMP) using 
SPLASH-2 and PARSEC traces for both homogeneous and 
heterogeneous NoC configurations. 

  Categories and Subject Descriptors 

G.1.2 [Numerical Analysis]: Approximation – Nonlinear 

approximation.  

General Terms 

Performance. 

Keywords 

Networks-on-Chip, Heterogeneous NoC, Analysis-Methodology, 
Delay Evaluation. 

1. INTRODUCTION 
NoCs are designed to support a variety of SoC designs with 
bandwidth and latency requirements for heterogeneous module-to-
module flows. In many cases, the SoC communication 
characteristics are known at design time through specifications 
that describe the data rates and timing restrictions of each 
communicating pair. The NoC design parameters and topology 
are then tailored to meet the given communication requirements, 
spending minimum power and area. The NoC design process for 
such systems heavily relies on extensive performance simulations, 

where each intermediate NoC configuration is tested against the 
requirements in a long ‘change and test’ search sequence. The use 
of detailed simulations makes the task of searching for efficient 
link capacities and virtual channels allocation computationally 
intensive and it does not scale well with the size of the problem. 
The use of approximated analysis of the NoC behavior replacing 
simulations can dramatically save time and resources during 
design. Costly simulations can be left for the final verification and 
fine-tuning of the system. 

This paper explores a novel delay analysis methodology for 
heterogeneous wormhole based NoCs, with a variable number of 
virtual channels per link and variable link capacities. The average 
end-to-end latency per flow is analyzed by calculating its three 
components: (1) The  time  it  takes  the  head-flit to leave the 
source queue (queuing time at the source); (2) The  time  it  takes  
the  head-flit  to reach  the  destination  module  (path  acquisition  
time)  and (3) The time it takes the rest of the packet to leave the 
network (transfer  time). 

SoC and CMPs are heterogeneous in terms of module-to-module 
traffic requirements. Therefore, the appropriate NoC to support 
such SoCs should be non-uniform in terms of link capacities and 
virtual channels. However, exiting analysis methodologies [2, 5, 
15, 16, 19, 10, 9, 13] are based on the assumption that NoCs are 
homogeneous. Figure 1 illustrates the delay evaluation of a 
heterogeneous NoC for two existing extreme analysis 
methodologies: single-VC [2, 5, 15, 16] and "infinite-VCs”, i.e. 
assuming that virtual channels are always available for any flow 
[6, 12, 1]. Single-VC based methodologies can result in higher 
latencies due to the over-estimation of path acquisition latencies 
(i.e. acquiring VCs along the entire path). 

 

Figure 1. Comparison of different methodology approaches 

for a heterogeneous NoC. Single-VC ([2, 5, 15, 16]), "infinite" 

number of VCs, i.e. assuming that VCs are always available 

for any flow, ([6, 12, 1]) and our new proposed heterogeneous 

NoC analysis methodology. 
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Figure 2. Example for a NoC with non-uniform numbers of 

VCs (Unless noted, links have sufficient number of VCs).  

"Infinite-VCs” based methodologies are also imprecise for two 
reasons. First, there is a wrong assumption that the path 
acquisition latencies are instantaneous which under-estimate 
realistic path acquisition latencies. Second, it is assumed that all 
potential flows are concurrently multiplexed over each link; this 
results in higher transfer latencies. Therefore, these two 
methodologies are not capable of evaluating delay properly. 
Hence, an analysis methodology for heterogeneous NoCs is 
required. 

Previous works have presented analysis methodologies for NoCs 
with a single-VC [2, 5, 15, 16], a uniform (same for all links) 
number of VCs [19, 10, 9, 13] and "infinite" number of VCs [6, 
12, 1].     

Huang et al. in [8] presented the only previously existing analysis 
methodology for non-uniform numbers of VCs. However, their 
analysis accounts for Head-of-line blocking probability and 
therefore is incapable of calculating many performance metrics 
such as end-to-end latency. It analyzes the traffic and estimates 
the congestion on each channel independently rather than having a 
global view of all the flows by taking into account the mutual 
interaction between them. While we cannot directly compare our 
end-to-end latency analysis to this work, our experience and 
results show that one must consider the mutual interaction of 
intersecting flows in order to get a reasonable delay 
approximation. Guz et al. in [6] presented an analysis 
methodology for non-uniform capacities of links. However, they 
assume "infinite" number of VCs. 

To our knowledge, no existing analysis accounts for the 
combination of heterogeneous traffic patterns, non-uniform link 
capacities, and variable numbers of VCs. In the sequel, we 
illustrate some of the phenomena which can occur in a NoC with 
non-uniform links including a variable numbers of VCs and 
variable link capacities, and we address the challenges facing the 
development of a sound analysis methodology in this case.  

Figure 2 depicts a NoC example comprised of links with non-
uniform numbers of VCs. There are four flows which can be 
transmitted over link 2 ����. However, since link 7 ���� has only 
two VCs, no more than three flows can simultaneously enter link 
2. This phenomenon affects the time it takes for a flow to acquire 
a VC over link 2; therefore, we should take into account only 
three waiting flows and not four. We address this phenomenon by 
introducing the term aggregate effective number of flows over link �; it stands for the maximum number of flows that simultaneously 
can enter any link �. Furthermore, the aggregate interleaving rate 
experienced by a flow over link 2 depends on the effective 
number of flows from each ingress link (i.e. links 1 and 7) and 

their capacities. Therefore, we decompose the aggregate effective 

number of flows over link � into the effective number of flows 

from link �	to link �, where link � is any ingress link to link �. 

Section  3.2 describes the definitions and section  4.2 describes 

how and why to use it. 

We present another phenomenon termed remaining path 

acquisition time. Generally, the time for a flow`s head-flit to 
acquire a VC over a link depends on the time that other interfering 
flows occupy the link. Clearly, an interfering flow occupies the 
VC as long as it is transferring; moreover, the interfering flow 
occupies the VC also during the time it acquires VCs over 
subsequent links along its path, i.e. the remaining path acquisition 

time. In addition, we take into account that during the remaining 

path acquisition time the interfering flow occupies a VC but is not 
transmitted; therefore, it is not actually disturbing other 
transmitting flows. This phenomenon is explained in detail in 

section  4.2. 

Furthermore, we make a distinction between the packet generation 
rate into the source`s queue and the packet injection rate into the 
NoC. The injection rates are the values that actually affect the 
end-to-end NoC latencies and not the values of the generation 
rates. Therefore, for given generation rates of the sources, our 
analysis determines the actual injection rates, which can be lower 

than the generation rates. Section  4.4 describes the procedure for 

determining the injection rates. 

These phenomena also have some relevance for a NoC with 
uniform number of VCs. However, previous analyses of NoCs 
with a uniform number of VCs did not take them into account. 
Therefore, our analysis methodology also offers better 
approximation for such NoC topologies.  

This paper is organized as follows: Section  2 presents the 

assumptions of our analysis. In section  3 we described the 

notation, and formally define the terms: aggregate effective 

number of flows over link � and effective number of flows from 

link �	to link �. In section  4 we present details of our novel delay 

evaluation analysis. Section  5 presents numerical validation 

results of our analysis. We evaluate several use-cases, synthetic 
examples and modeling of chip-multi-processor (CMP) with a 
single shared cache.  

2. BASICS OF DELAY ANALYSIS 
In a wormhole routing network, the end-to-end latency �	
�	of a 
packet of flow f, sent between a specific source-destination pair, is 

the sum of the queuing time at the source ��
, the path 

acquisition time ��
 and the transfer time ��
�. Formally, 

	
 = �
 + �
 + �
.	 �1�	
 

The transfer  time, �
, is  affected  by  other  flows  sharing  the 
same links, since each link capacity  is  divided among all active 

VCs sharing the link. The path acquisition time, �
, is affected by 
an even more complex interaction among the flows, as a packet 
may wait for the evacuation of VCs by other packets sharing links 
with it, which in turn wait for the evacuation of VCs in other 
links. 

For simplicity, in this paper we use the assumptions that each 
source generates a single flow and the propagation delay of flits 
through routers is negligible. However, the analysis can be easily 
extended for sources with multiple flows and for routers with non-
zero latency. 



Other assumptions are: all flows generate packets according to a 
Poisson process; sources have infinite packet queues and 
destinations immediately consume arriving flits; routers have a 
single flit input queue per VC; the wormhole back-pressure credit 
signal is instantaneous; and the routing algorithm is deterministic. 

3. NOTATIONS AND  DEFINITIONS 

3.1 General Notations and Definitions 
We denote each unidirectional link by �� (� ∈ �1, … , |�|�, where |�| is the total number of links in the NoC). Link � ���� can be 
either a unidirectional link between network routers or a 
unidirectional access link that connects the module to the router. 

We define ���� , ��� as the minimal number of routers connecting 

links � and �.  
Definition:  !��� ≜ #��$���� , �� = 1%. 
 !��� is defined as the group of all ingress links to �� 		(link ��.	 
The network is defined using the parameters listed in Table 1. 

Table 1. Parameter Definitions &��� Flit size [bits]. '
 The mean packet length of flow f  [flits]. (
 Packet generation rate of flow f  [packets/sec]. 

()*+,-./

 

Packet injection rate of flow f   into the network 
[packets/sec]. 012 Capacity of link � [bits/sec]. 

312 Number of VCs on link �. 
4
 

Ordered set of consecutive links that compose the 
path of flow f.     

412
  
Set of subsequent links to link � over the path of 

flow f, i.e. a suffix of the path 4
.  

512 The group of flows sharing link �,  512 ≜ #&$�� ∈ 4
%.  
516,12 

The group of flows sharing link � from the ingress 
link �. i.e.: 516,12 ≜ #&$�� ∈ 4
, �� ∈ 416
 , ���� , �� = 1%.  

516,127


 

Effective number of flows from link �	to link �. 
Defined in sub-section  3.2. 

5127


 

Aggregate effective number of flows over link	�.  
Defined in sub-section  3.2. 

 

The source generates packets of flow f at a rate of  (
. The 
packets are queued at the source queue and injected into the 
network in a FIFO manner. When the source queue is instable, the 

packet injection rate of packets into the NoC, ()*+,-./

 is lower 

than the packet generation rate, (
, i.e. (
 > ()*+,-./

. Clearly, ()*+,-./
 	is the value that affects the network NoC latencies (i.e. 

path  acquisition  time plus transfer  time) and not the value of (
.	In section  4.4 we describe an iterative procedure to evaluate ()*+,-./

 values for given values of (
. 

3.2 Effective Number of Flows  
A non-uniform numbers of VCs over the NoC can cause different 
phenomena as illustrated by Figure 2. We  take  them into account  

by using the following notations in our analysis: 

516,127

 − Effective number of flows from link �	to link �.  
The maximum number of flows that simultaneously can enter link � from the ingress link �.  

5127

 − Aggregate effective number of flows over link �. 
The maximum number of flows that can simultaneously enter link � from all ingress links. It is equal to the sum of 516,127



over all 

ingress links. 

Figure 2 presents an example for 516,127


, 5127



, 516,12and 512 . For 

instance, since �� has only two VCs (i.e. 31� = 2), the maximum 

number of flows that can enter simultaneously from �� to ��, 51;,1<7


, 

is equal to two. However, there are three flows (numbered 2,3 and 
4) that can be transmitted from �� to ��, denoted by the group 51;,1<. Similarly, since �� has only two VCs (i.e. 31� = 2), 51=7

 is 

equal to two, and 51>7

 is equal to one because �= has only a 

single VC.  

We formally define 516,127


and5127



 using the recursive procedure 

described in Appendix A. For a given link � and ingress link �, the 

procedure finds, for each flow from link � to link �, 516,12, the link 

with the minimum number of VCs over its path till link �. Since 
these links can limit the number of flows that simultaneously can 
enter link �, we sum up the number of VCs of those links. Finally, 516,127



is equal to the minimum between this value, the number of 

flows from link � to link �,	31� 	and 5167


. After 516,127



 is calculated 

for all ingress links to link j , � !�����, 5127


 can also be calculated. 

4. END-TO-END LATENCY ESTIMATION 
The analysis methodology approximates the average end-to-end 

latency of flow f, 	
, which is composed of the queuing time at 

source,	�
 , the path-acquisition time, �
, and the transfer time, �
 

(1).  

In order to calculate �
, we add up the acquisition time of every 

link � along flow f `s path, �12
 . Therefore,  

�
 = ∑ �12
12ABC	 	.	 �2�	
The transfer time, �
, is dominated by the hop with the smallest 
bandwidth available to flow f along its path, and is therefore 
computed as following: 

�
 = '
 ⋅ max H�12
I�� ∈ 4
J.	 �3�	
Where �12
  is the flit transfer time of flow f over link �. 
Note: For very short packets (i.e. when the packet length is much 
shorter than the number of buffers along its path), the 

approximation of (3) is not sufficient. We need to calculate the 

latency of the head-flit apart from the latency of the body-flits. 
Thus, alternatively, the following equation can be used: 

�
 = ∑ �12
12ABC	 + �'
 − 1 ⋅ maxH�12
I�� ∈ 4
J.		 �4�	
Finally, by substituting (2) and (3) into (1) we get the average 

end-to-end latency of a packet of flow f,  



	
 = �
 + ∑ �12
12ABC	 + '
 ⋅ max H�12
I�� ∈ 4
J.		 �5�	
In the following sub-sections, implicit equations are derived for �
  ( 4.1), �12
  ( 4.2) and �12
  ( 4.3). The aggregate effective number of 

flows over link �, the effective number of flows from link �	to link � and the remaining path acquisition time phenomena result in 
dependency between the equations. These equations are based on 
heuristics and approximations. Finally, we solve by iterations the 
set of implicit equations in order to evaluate the average end-to-
end latency of each flow. The variables and their corresponding 
equations are listed in Table 2.  

 

4.1 Queuing Time at the Source 
We approximate the source queuing time using the M/D/1 queue 
model [11]: 

�
 = +CNOC
� P �+CNOC∙RC

ST�+CNOC�∙RCU	.	 �6�	
Clearly,  when  a  flow  does  not  share  any  of  its  links with 
other flows, (6) is the exact mean queuing time, since the time 

required to deliver a packet through the network (�
 + �
) is 
deterministic. When a packet might be multiplexed with other 
packets within the network, the service time is not deterministic 
any more. However, thorough simulations [6] show that (6) is a 
good approximation for the queuing time even for flows that are 
frequently multiplexed. 

4.2 Path Acquisition Time over a Link 
The path-acquisition time of flow f over link �,	�12
 , is the time for the head-flit of the packet to acquire a VC over 

the link. Clearly, path-acquisition is instantaneous whenever the 
number of VCs of the link exceeds the number of flows that 
traverse this link.  This section addresses the case when there is 
possible competition among the flows for the same VCs. In such a 
case, the head-flits of different packets acquire VCs in FIFO 
manner.  

 

Figure 3. M/M/m/K queue model. 

 

Figure 4. Rationale for using effective number of flows (An 

example). 

�12
 = W 0 5127

 Y 	312M/M/m/K	queue 5127

 > 	312`	.	 �7�	
We use 5127



(aggregate effective number of flows over link �) in 

order to determine whether there are enough VCs to avoid 
competition (7), rather than the total number of flows over link �, I512I.Our numerical examples and comparisons to simulations 

show that this results in a much better numerical accuracy. Figure 
4 presents an example for such a case. All the flows have the same 
packet generation rate, and all the links have the same capacity 
and a single VC (see Figure 4(a)). Figure 4(b) presents the end-to-
end latency of flow 1 reported by simulation, by the analysis and 

by a modified analysis which substitutes 5127


 with I512I. For 

instance, the modified analysis uses the number of all flows over �=, i.e. $51b$, instead of 51b7


 in order to estimated path acquisition 

time of flow 1`s over �=. At first glance it seems that there are four 

possible flows which can acquire a VC over �= �51b = �1,2,3,4��. 

However, since flow 1 already “won” over the previous links 
there is only one possible flow which can acquire this VC 

(51b7

 = 1) and it is flow 1 itself; therefore, the path acquisition of 

flow 1 over �= is instantaneous. 

Assume that a packet head-flit of flow f arrives to link �. The 
head-flit should wait until all previously queued head-flits acquire 
a VC. Therefore, we approximate the time to acquire a VC using 
the M/M/m/K (m-Servers, Finite storage) queue model (Figure 3). 
The queuing time is an approximation for the time it takes for all 
previously queued head-flits to acquire a VC. Therefore, the 

queue consists of 312 	servers (i.e. ' = 312) and 5127

 − 1 waiting 

positions (i.e. c = 5127

 − 1). The arrival rate is equal to the sum 

of arrival rates of all flows that share link � with flow f, i.e.:  

( = ∑ ()*+,-.///A�de2\C� 	.	 �8�	
The service rate is expressed by (9); it is equal to the average rate 
that the flows group 51�  occupies the VCs. The rate that flow k 

occupy a VC is equal to the inverse of its transfer time, �/, plus 
the path acquisition time along its subsequent path to the 

Table 2. Variable Definitions 

�
  
Queueing time at the source of 
flow f [sec] 

Equation  (6) 

�
 
Total path acquisition time of 
flow f [sec] 

Equation (2) 

�12
  
Path acquisition time of flow f 
over link �	[sec] 

Equations 

 (7), (8), (9), (10) 

�
 
Total transfer time of flow f  
[sec] 

Equation (3) or (4) 

(Depends on the 
packet length) 

�12
  
Flit transfer time of flow f over 
link �	[sec] 

Equations  

(11), (12), (13), (14) 

 



destination, ∑ �16/16ABe2h  (remaining path acquisition time).  

i =
∑ j 1�/ + ∑ �16/16ABe2h

k/∈de2
I512I 	 �9�	

Figure 5 illustrates the rationale for adding the remaining path 

acquisition time expression. Assume that all the flows have the 
same packet generation rate, and all the links have the same 
capacity and a single VC (see Figure 5(a)). Figure 5(b) presents 
the end-to-end latency versus the packet generation rate of the 
flows for flow 2 reported by the simulation, the analysis and a 
modified analysis that does not take into account the remaining 

path acquisition time. It can be seen that ignoring this delay 
results in gross inaccuracy. The path acquisition time of flow 2 
depends on the time that flow 1 occupies �S; this time 	is equal to 
its remaining path acquisition time (i.e. acquiring-VC over ��, 	�=and �>: 	�1<S +�1bS +�1nS ) plus its transfer time (�S).   

�12
 = opqr�sq	tuquq	v�wqopqr�sq	orr�p��	x��q = ∑ �y − '�z/{N|/}{NS�1 − P�N��λ 	.	 �10�	
Finally, using Little's law [11] we calculate the path-acquisition 

time, �12
  (10).Where �z/� are the equilibrium probabilities of the 

M/M/m/K queue model (Figure 3). 

 
Figure 5. Rationale for using remaining path acquisition time 

(An example) 

4.3 Flit Transfer Time over a Link 
Since flits from different flows are multiplexed over a link, the flit 

transfer time of flow f over link �,	�12
 , should account for the flit-

transmission of other flows on the same link. �12
  is calculated by 

modifying the basic M/M/1 service rate [11] to account for the 
flows multiplexing:  

�12
 = S�Ce6��e2T�e2C
 . �11� 

Where �12
 [flits/sec] is the effective bandwidth consumed by all 

flows other than flow f on link �.  

�12
 = ��
���� (�e2TS,de2�CCTS)

de2�CCTS ∑ �16,12
16∈ �)�12 ; 5127

 >  1
0 ; 5127

 =  1 ��

�  (12) 
�16,12


 [flits/sec] is the effective bandwidth consumed by all flows 

other than flow f on link � from the ingress link �.  
bw ≜ ∑ j +h+hN∑ Oe6he6��e2h k ()*+,-.// ⋅ '//∈Hde6,e2\
J   (13) 

�16,12
 =
���
�
��� bw ; 516,127

 =  I516,12I

de6,e2�CC
Ide6,e2I bw ; �� ∉ 4
 & 516,127

 <  I516,12I

de6,e2�CCTS
Ide6,e2\
I bw ; �� ∈ 4
 & 516,127

 <  I516,12I���

�
���  (14) 

Equation (13) addresses the effective bandwidth of all the 

multiplexed flows from the ingress link �. Each such flow is not 
transmitted over link � while it still acquires VCs along its path to 
destination (i.e. during the remaining path acquisition time). 
Therefore, the packet generation rate of the flow is multiplied by 

the ratio �/ ��/ + ∑ �16/16ABe2h �� . Furthermore, �16,12
  depends on 

whether all multiplexed flows from the ingress link � can be 
transmitted simultaneously on link � or not. For the first case, �16,12
  is equal to the sum of the bandwidths over all the 

multiplexed flows. For the latter case, the effective bandwidth is 
lower since not all the flows can be transmitted over link �. 

Therefore, �16,12
  is decreased by the ratio of 516,127

 I516,12I� . Hence, 

(14) results in the effective bandwidth of the multiplexed flows 

while taking into account the lack of VCs over previous links to 
link � of the multiplexed flows. Finally, since flow f is already 

being transmitted and consequently occupies a VC, we use (12) in 

order to bound the total number of interleaved flows over link � by 31� − 1.  

The total transfer time of flow f, �
, which is dominated by the 
hop with the smallest per-flow rate, is calculated by (3). As 

mentioned above, for very short packets (4) can be used instead.  

 

Figure 6. The accuracy improvement of the iterative 

procedure. (For end-to-end latency of flow 5 depicted in 

Figure 5(a)).  

4.4 Iterative Procedure for Finding ��� ¡¢£¤¥
  

The analysis consists of a set of implicit equations for the 



variables, �
 , �12
  , �12
  , that can easily be solved (see Table 2). 

Thereafter, we evaluate the end-to-end latency, 	
.As mentioned 
above, the actual packet injection rate to the NoC could be lower 
than the packet generation rate. Therefore, using the given packet 

generation rate of flow f, (
, may cause inaccurate results. In 

order to obtain the packet injection rate to the network, ()*+,-./

, 

we first solve the equation set using the (
 values (i.e. ()*+,-./
 =(
). Thereafter, for every instable source queue, we use a lower ()*+,-./

 value and solve the equations again. We repeat this 

procedure in an iterative manner until we achieve the minimal ()*+,-./

 that still causes instability at the source queue for each 

proper flow. 

Figure 6 illustrates the accuracy improvement of the iterative 
procedure for flow 5 depicted in Figure 5(a). It presents the end-
to-end latency when taking into account the packet generation 
rates and the packet injection rates obtained by the procedure. It 
can be seen that using the packet injection rates significantly 
improves the accuracy.  

5. NUMERICAL RESULTS  
The analysis was programmed using Matlab. For a given NoC 
architecture (i.e. capacity and number of VCs of each link, 
topology and routing) we generate the equations (see Table 2) and 
solve them using a standard Matlab non-linear solver. Then, we 
compare the analysis results to an event-driven (flit-level) NoC 
simulator written in OMNeT++ [17]. The implemented simulator 
supports any heterogeneous NoC configuration in terms of every 
link capacity and number of VCs. The simulator executes 
wormhole switching with VCs employing round-robin arbitration 
and deterministic XY routing. We simulate an asynchronous and 
ideal router (i.e. no internal latency for the NoC router) with a 
single flit input-buffer for each VC.  

5.1 Evaluation of Use Cases 
In order to evaluate our analysis, we use a 4x4 2D mesh NoC with 
a single VC for all links. We simulate a uniform traffic pattern 
with the same packet generation rate for all the sources. Then, we 
evaluate the end-to-end latency of the flow over the diagonal path 
of the NoC (i.e. from the left-bottom tile to the right-top tile, ¦S,> → ¦>,S). Figure 7 presents the end-to-end latency of this flow 

reported by simulation, our analysis and the analysis presented in 
[6]. It can be seen that our analysis results in a better 
approximation. The inaccuracy of our analysis is less than 8% for 
offered load less than 5 Gbps; the inaccuracy of the saturation 
threshold is less than 4%. Moreover, using the "infinite-VCs” 
assumption results in inaccurate analysis [6]. 

In addition, we compare against the simulation the results of our 
analysis for a multimedia application (MMS) introduced in [7]. 
This multimedia application used for the evaluation of end-to-end 
latency for the methods proposed in [16] and [5]. We manually 
map the application into 4x4 2D mesh NoC with a single VC for 
all links. Figure 8 presents the average end-to-end latency as 
reported by the simulation and our analysis. The difference 
between our analysis and the simulation is less than 2%; 
moreover, our analysis accurately computes the saturation 
threshold. The same accuracy is also achieved for a NoC with two 
VCs for all links.  

5.2 Synthetic Example 
In this section, we present a synthetic example of heterogeneous 
NoC (see Figure 9);  all  flows  have the  same  packet  generation  

 

Figure 7. End-to-end latency of the diagonal flow ¨©,ª → ¨ª,© 

for 4x4 NoC with uniform traffic pattern, reported by: 

simulation, our analysis and the "infinite-VCs" analysis 

presented in [6].   
 

 

Figure 8. Average end-to-end latency of multimedia 

application (MMS) [7], reported by simulation and our 

analysis. 

rate. Figure 10 presents the end-to-end latency of each flow. As 
can be seen, our analysis offers good approximation; the 
inaccuracy of the saturation threshold is less than 4% for flow 1 
and less than 2% for flows 2, 3 and 4.  

5.3 Application and Benchmark-Based 

Comparison 
We evaluate the results of our analysis with trace-based CMP 
traffic. We model a chip multi-processor (CMP) with a single 
shared-cache (the cache line size is 256B) which acts as hot-
module. The traces of the benchmarks are produced using Simics 
simulator [14] running SPLASH-2 [18] and PARSEC [4] 
benchmarks. Then, we simulate the CMP using OMNeT++, where 
each module generates packets according to a given trace.  

 

Figure 9. Synthetic example of NoC with non-uniform  

numbers of VCs and non-uniform capacities of links (Unless 

noted links are 16Gbps and have sufficient number of VCs). «¬ = ©® ¯°±²; «¬© = ©¯°±²; ³¬´ = ©. 



 

Figure 10. The end-to-end latency of the flows in Figure 9. 

We evaluate the average end-to-end latency using our analysis. 
Furthermore, we compare our analysis to the one presented in [6] 
which assumes an "infinite" number of VCs. 

Figure 11(a) presents the results of the simulation, our analysis 
and the analysis presented in [6] for several benchmarks. First, we 
consider a homogenous NoC topology (i.e. all links have the same 
capacity and number of VCs). The results are averaged for several 
homogenous NoC topologies. The evaluation of our analysis 
provides a good end-to-end latency approximation. Moreover, it is 
much more accurate than the results of [6]. 

Figure 11(b) presents the average end-to-end latency results for a 
heterogeneous NoC topology. The results are averaged for several 
heterogeneous NoC topologies. Our analysis offers more accurate 
results than [6]. Moreover, the accuracy differences between our 
analysis and [6] is higher in comparison with the homogenous 
topologies.  

In addition, we model the SoC applications presented in [3] for 
homogenous and heterogeneous NoC topologies. The applications 
are manually mapped into the NoC. Figure 12 presents the   
average    end-to-end    latency    results    of   the simulation, our 
analysis and the analysis presented in [6]. The results are averaged 
for several homogenous and heterogeneous NoC topologies 
respectively. As can be seen, our analysis accurately computes the 
end-to-end latency.  

5.4 Run-Time Comparison 
In this section, we demonstrate the run-time saving gained by 
using our analysis compared to the simulation. The run-time is 
measured for simulation executed with 15 cores and analysis 
executed with a single core (i.e. the analysis uses 6.6% of the 
resources in comparison with the simulation). 

Table 3 presents the simulation run-time and our analysis run-time 
for several cases presented along the paper. Our analysis offers 
significant time and computing-resource saving (99.9% and 
93.4% respectively). 

6. CONCLUSION 
A novel delay evaluation analysis to calculate the average end-to-
end latencies per flow of a heterogeneous NoC with variable link 
capacities and number of VCs per link has been presented. 
Several crucial phenomena in a heterogeneous NoC were 
observed: the aggregate effective number of flows over link �, the 

effective number of flows from link � to link � and the remaining 

path acquisition time. The quality of our approximation was 
improved by using these observations. Our analysis offers 
accurate end-to-end latency evaluation for different NoCs 
architectures and traffic scenarios. 

 

Figure 11. A single shared cache NoC-based CMP with (a) 

homogenous and (b) heterogeneous topologies. Comparison 

between simulation, our analysis and the analysis presented in 

[6] for SPLASH-2 and PARSEC benchmarks. 

 

 

Figure 12. A single shared cache NoC-based CMP with (a) 

homogenous and (b) heterogeneous topologies. Comparison 

between simulation, our analysis and the analysis presented in 

[6] for the applications presented in [3]. 

 

Table 3. Run-Time Comparison 

(For Analysis Computing-Resource Saving  of 93.4%) 

 

Simulation  

Run-Time [Sec] 

Analysis 

Run-Time [Sec] 

Figure 4 3780 4.34 

Figure 5 9615 5.4 

Uniform traffic pattern (Figure 7) 13725 11.4 

MMS (Figure 8) 12585 4.45 

Synthetic example (Figure 9) 7455 4.7 
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Appendix A 
 

We define 516,127


and 5127



 using the following recursive procedure: 

 
The procedure gets �� and returns 516,127



and 5127


. It uses a global 

array called EffFlows. It contains two values for each flow: 
number of VCs of a link and link identifier, 

(e.g.,µ&&5�¶·¸(&, 1) = 31 /  , µ&&5�¶·¸ (&, 2) =  �/). Before 

using the procedure, we initialize EffFlows to NaN (i.e. Not a 
Number).  

We find the group of ingress links to link � (��) , # !(��)%, (line 

(1)). For each link � (��), we recursively execute the procedure 
(line (3)). Then, for each of the flows over link �we check whether 5167



>31 � and if this link has the minimum number of VCs along 

the path (until link �). If yes, we set EffFlows entries to 31� and �� 
respectively (lines (4)-(8)). We find all groups of flows over both 
links � and � which have the same EffFlows entry, {¸�'q�¦5} 

(line (9)). We set 516,127


 to the minimum between: sum of VCs 

entries of EffFlows of the ¸�'q�¦5 flows group, number of 

flows from link � to link �, 31� and 5167


  (line (10)). Finally, we 

calculates 5127


 (line(12)). 

Initialization: 

Set global array EffFlows to NaN.  

P516,127

 , 5127

U= Effective Number of Flows Calc (��) { 

(1) zrqp��!y¸12 ≜ H��I�� ∈ 4
, �� ∈ 416 
, ���� , �� = 1, & ∈ 51�J  

(2) for each �� ∈ zrqp��!y¸12 { 

(3)  P51¹,167

, 5167

U = Effective Number of Flows Calc(��) 
(4)  if (5167

 > 31�) 
(5)      for each y ∈ º&|& ∈ 51� , µ&&5�¶·¸(&, 1) = ¦�¦ ¶r µ&&5�¶·¸(&, 1) ≥ 31� ¼  

(6)  µ&&5�¶·¸(&) = {31�, ��}   

(7)     end 

(8) end 

(9)    ¸�'q�¦5 = º��eh,1h½' ∈ ��eh,1h  ⇔ ' ∈ 516⋂512 ,µ&&5�¶·¸(') = {31/ , �/} ¼  

(10)   516,127

 = min P∑ 31/�Âeh,eh∈ÃO{*�Äd , I516⋂512I , 31� , 5167

U  

(11) end 

(12) 5127

 = ∑ 516,127

16∈�)�12   

} 


