
Delay Analysis of Wormhole Based

Heterogeneous NoC
Yaniv Ben-Itzhak1 Israel Cidon2 Avinoam Kolodny2

Electrical Engineering Department

Technion – Israel Institute of Technology

Haifa, Israel
1yanivbi@tx.technion.ac.il 2{cidon, kolodny}@ee.technion.ac.il

ABSTRACT

We introduce a novel evaluation methodology to analyze the
delay of a wormhole routing based NoC with variable link
capacities and a variable number of virtual channels per link. This
methodology can be utilized to analyze different heterogeneous
NoC architectures and traffic scenarios for which no analysis
framework has been developed before. In particular, it can replace
computationally-extensive simulations at the inner-loop of the
link capacities and virtual channels allocation steps of the NoC
topology optimization process. Our analysis introduces a set of
implicit equations which can be efficiently solved iteratively. We
demonstrate the accuracy of our approximation by comparing the
analysis results to a simulation model for several use-cases and
synthetic examples. In addition, we compare the analysis with
simulation results for a chip-multi-processor (CMP) using
SPLASH-2 and PARSEC traces for both homogeneous and
heterogeneous NoC configurations.

 Categories and Subject Descriptors

G.1.2 [Numerical Analysis]: Approximation – Nonlinear

approximation.

General Terms

Performance.

Keywords

Networks-on-Chip, Heterogeneous NoC, Analysis-Methodology,
Delay Evaluation.

1. INTRODUCTION
NoCs are designed to support a variety of SoC designs with
bandwidth and latency requirements for heterogeneous module-to-
module flows. In many cases, the SoC communication
characteristics are known at design time through specifications
that describe the data rates and timing restrictions of each
communicating pair. The NoC design parameters and topology
are then tailored to meet the given communication requirements,
spending minimum power and area. The NoC design process for
such systems heavily relies on extensive performance simulations,

where each intermediate NoC configuration is tested against the
requirements in a long ‘change and test’ search sequence. The use
of detailed simulations makes the task of searching for efficient
link capacities and virtual channels allocation computationally
intensive and it does not scale well with the size of the problem.
The use of approximated analysis of the NoC behavior replacing
simulations can dramatically save time and resources during
design. Costly simulations can be left for the final verification and
fine-tuning of the system.

This paper explores a novel delay analysis methodology for
heterogeneous wormhole based NoCs, with a variable number of
virtual channels per link and variable link capacities. The average
end-to-end latency per flow is analyzed by calculating its three
components: (1) The time it takes the head-flit to leave the
source queue (queuing time at the source); (2) The time it takes
the head-flit to reach the destination module (path acquisition
time) and (3) The time it takes the rest of the packet to leave the
network (transfer time).

SoC and CMPs are heterogeneous in terms of module-to-module
traffic requirements. Therefore, the appropriate NoC to support
such SoCs should be non-uniform in terms of link capacities and
virtual channels. However, exiting analysis methodologies [2, 5,
15, 16, 19, 10, 9, 13] are based on the assumption that NoCs are
homogeneous. Figure 1 illustrates the delay evaluation of a
heterogeneous NoC for two existing extreme analysis
methodologies: single-VC [2, 5, 15, 16] and "infinite-VCs”, i.e.
assuming that virtual channels are always available for any flow
[6, 12, 1]. Single-VC based methodologies can result in higher
latencies due to the over-estimation of path acquisition latencies
(i.e. acquiring VCs along the entire path).

Figure 1. Comparison of different methodology approaches

for a heterogeneous NoC. Single-VC ([2, 5, 15, 16]), "infinite"

number of VCs, i.e. assuming that VCs are always available

for any flow, ([6, 12, 1]) and our new proposed heterogeneous

NoC analysis methodology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NOCS’11, May 1–4, 2011, Pittsburgh, PA, USA.
Copyright 2011 ACM 978-1-4503-0720-8…$10.00.

Figure 2. Example for a NoC with non-uniform numbers of

VCs (Unless noted, links have sufficient number of VCs).

"Infinite-VCs” based methodologies are also imprecise for two
reasons. First, there is a wrong assumption that the path
acquisition latencies are instantaneous which under-estimate
realistic path acquisition latencies. Second, it is assumed that all
potential flows are concurrently multiplexed over each link; this
results in higher transfer latencies. Therefore, these two
methodologies are not capable of evaluating delay properly.
Hence, an analysis methodology for heterogeneous NoCs is
required.

Previous works have presented analysis methodologies for NoCs
with a single-VC [2, 5, 15, 16], a uniform (same for all links)
number of VCs [19, 10, 9, 13] and "infinite" number of VCs [6,
12, 1].

Huang et al. in [8] presented the only previously existing analysis
methodology for non-uniform numbers of VCs. However, their
analysis accounts for Head-of-line blocking probability and
therefore is incapable of calculating many performance metrics
such as end-to-end latency. It analyzes the traffic and estimates
the congestion on each channel independently rather than having a
global view of all the flows by taking into account the mutual
interaction between them. While we cannot directly compare our
end-to-end latency analysis to this work, our experience and
results show that one must consider the mutual interaction of
intersecting flows in order to get a reasonable delay
approximation. Guz et al. in [6] presented an analysis
methodology for non-uniform capacities of links. However, they
assume "infinite" number of VCs.

To our knowledge, no existing analysis accounts for the
combination of heterogeneous traffic patterns, non-uniform link
capacities, and variable numbers of VCs. In the sequel, we
illustrate some of the phenomena which can occur in a NoC with
non-uniform links including a variable numbers of VCs and
variable link capacities, and we address the challenges facing the
development of a sound analysis methodology in this case.

Figure 2 depicts a NoC example comprised of links with non-
uniform numbers of VCs. There are four flows which can be
transmitted over link 2 ����. However, since link 7 ���� has only
two VCs, no more than three flows can simultaneously enter link
2. This phenomenon affects the time it takes for a flow to acquire
a VC over link 2; therefore, we should take into account only
three waiting flows and not four. We address this phenomenon by
introducing the term aggregate effective number of flows over link �; it stands for the maximum number of flows that simultaneously
can enter any link �. Furthermore, the aggregate interleaving rate
experienced by a flow over link 2 depends on the effective
number of flows from each ingress link (i.e. links 1 and 7) and

their capacities. Therefore, we decompose the aggregate effective

number of flows over link � into the effective number of flows

from link �	to link �, where link � is any ingress link to link �.

Section 3.2 describes the definitions and section 4.2 describes

how and why to use it.

We present another phenomenon termed remaining path

acquisition time. Generally, the time for a flow`s head-flit to
acquire a VC over a link depends on the time that other interfering
flows occupy the link. Clearly, an interfering flow occupies the
VC as long as it is transferring; moreover, the interfering flow
occupies the VC also during the time it acquires VCs over
subsequent links along its path, i.e. the remaining path acquisition

time. In addition, we take into account that during the remaining

path acquisition time the interfering flow occupies a VC but is not
transmitted; therefore, it is not actually disturbing other
transmitting flows. This phenomenon is explained in detail in

section 4.2.

Furthermore, we make a distinction between the packet generation
rate into the source`s queue and the packet injection rate into the
NoC. The injection rates are the values that actually affect the
end-to-end NoC latencies and not the values of the generation
rates. Therefore, for given generation rates of the sources, our
analysis determines the actual injection rates, which can be lower

than the generation rates. Section 4.4 describes the procedure for

determining the injection rates.

These phenomena also have some relevance for a NoC with
uniform number of VCs. However, previous analyses of NoCs
with a uniform number of VCs did not take them into account.
Therefore, our analysis methodology also offers better
approximation for such NoC topologies.

This paper is organized as follows: Section 2 presents the

assumptions of our analysis. In section 3 we described the

notation, and formally define the terms: aggregate effective

number of flows over link � and effective number of flows from

link �	to link �. In section 4 we present details of our novel delay

evaluation analysis. Section 5 presents numerical validation

results of our analysis. We evaluate several use-cases, synthetic
examples and modeling of chip-multi-processor (CMP) with a
single shared cache.

2. BASICS OF DELAY ANALYSIS
In a wormhole routing network, the end-to-end latency �	
�	of a
packet of flow f, sent between a specific source-destination pair, is

the sum of the queuing time at the source ��
, the path

acquisition time ��
 and the transfer time ��
�. Formally,

	
 = �
 + �
 + �
.	 �1�	

The transfer time, �
, is affected by other flows sharing the
same links, since each link capacity is divided among all active

VCs sharing the link. The path acquisition time, �
, is affected by
an even more complex interaction among the flows, as a packet
may wait for the evacuation of VCs by other packets sharing links
with it, which in turn wait for the evacuation of VCs in other
links.

For simplicity, in this paper we use the assumptions that each
source generates a single flow and the propagation delay of flits
through routers is negligible. However, the analysis can be easily
extended for sources with multiple flows and for routers with non-
zero latency.

Other assumptions are: all flows generate packets according to a
Poisson process; sources have infinite packet queues and
destinations immediately consume arriving flits; routers have a
single flit input queue per VC; the wormhole back-pressure credit
signal is instantaneous; and the routing algorithm is deterministic.

3. NOTATIONS AND DEFINITIONS

3.1 General Notations and Definitions
We denote each unidirectional link by �� (� ∈ �1, … , |�|�, where |�| is the total number of links in the NoC). Link � ���� can be
either a unidirectional link between network routers or a
unidirectional access link that connects the module to the router.

We define ���� , ��� as the minimal number of routers connecting

links � and �.
Definition: !��� ≜ #��$���� , �� = 1%.
 !��� is defined as the group of all ingress links to �� 		(link ��.	
The network is defined using the parameters listed in Table 1.

Table 1. Parameter Definitions &��� Flit size [bits]. '
 The mean packet length of flow f [flits]. (
 Packet generation rate of flow f [packets/sec].

()*+,-./

Packet injection rate of flow f into the network
[packets/sec]. 012 Capacity of link � [bits/sec].

312 Number of VCs on link �.
4

Ordered set of consecutive links that compose the
path of flow f.

412

Set of subsequent links to link � over the path of

flow f, i.e. a suffix of the path 4
.

512 The group of flows sharing link �, 512 ≜ #&$�� ∈ 4
%.
516,12

The group of flows sharing link � from the ingress
link �. i.e.: 516,12 ≜ #&$�� ∈ 4
, �� ∈ 416
 , ���� , �� = 1%.

516,127

Effective number of flows from link �	to link �.
Defined in sub-section 3.2.

5127

Aggregate effective number of flows over link	�.
Defined in sub-section 3.2.

The source generates packets of flow f at a rate of (
. The
packets are queued at the source queue and injected into the
network in a FIFO manner. When the source queue is instable, the

packet injection rate of packets into the NoC, ()*+,-./

 is lower

than the packet generation rate, (
, i.e. (
 > ()*+,-./

. Clearly, ()*+,-./
 	is the value that affects the network NoC latencies (i.e.

path acquisition time plus transfer time) and not the value of (
.	In section 4.4 we describe an iterative procedure to evaluate ()*+,-./

 values for given values of (
.

3.2 Effective Number of Flows
A non-uniform numbers of VCs over the NoC can cause different
phenomena as illustrated by Figure 2. We take them into account

by using the following notations in our analysis:

516,127

 − Effective number of flows from link �	to link �.
The maximum number of flows that simultaneously can enter link � from the ingress link �.

5127

 − Aggregate effective number of flows over link �.
The maximum number of flows that can simultaneously enter link � from all ingress links. It is equal to the sum of 516,127

over all

ingress links.

Figure 2 presents an example for 516,127

, 5127

, 516,12and 512 . For

instance, since �� has only two VCs (i.e. 31� = 2), the maximum

number of flows that can enter simultaneously from �� to ��, 51;,1<7

,

is equal to two. However, there are three flows (numbered 2,3 and
4) that can be transmitted from �� to ��, denoted by the group 51;,1<. Similarly, since �� has only two VCs (i.e. 31� = 2), 51=7

 is

equal to two, and 51>7

 is equal to one because �= has only a

single VC.

We formally define 516,127

and5127

 using the recursive procedure

described in Appendix A. For a given link � and ingress link �, the

procedure finds, for each flow from link � to link �, 516,12, the link

with the minimum number of VCs over its path till link �. Since
these links can limit the number of flows that simultaneously can
enter link �, we sum up the number of VCs of those links. Finally, 516,127

is equal to the minimum between this value, the number of

flows from link � to link �,	31� 	and 5167

. After 516,127

 is calculated

for all ingress links to link j , � !�����, 5127

 can also be calculated.

4. END-TO-END LATENCY ESTIMATION
The analysis methodology approximates the average end-to-end

latency of flow f, 	
, which is composed of the queuing time at

source,	�
 , the path-acquisition time, �
, and the transfer time, �

(1).

In order to calculate �
, we add up the acquisition time of every

link � along flow f `s path, �12
 . Therefore,

�
 = ∑ �12
12ABC	 	.	 �2�	
The transfer time, �
, is dominated by the hop with the smallest
bandwidth available to flow f along its path, and is therefore
computed as following:

�
 = '
 ⋅ max H�12
I�� ∈ 4
J.	 �3�	
Where �12
 is the flit transfer time of flow f over link �.
Note: For very short packets (i.e. when the packet length is much
shorter than the number of buffers along its path), the

approximation of (3) is not sufficient. We need to calculate the

latency of the head-flit apart from the latency of the body-flits.
Thus, alternatively, the following equation can be used:

�
 = ∑ �12
12ABC	 + �'
 − 1 ⋅ maxH�12
I�� ∈ 4
J.		 �4�	
Finally, by substituting (2) and (3) into (1) we get the average

end-to-end latency of a packet of flow f,

	
 = �
 + ∑ �12
12ABC	 + '
 ⋅ max H�12
I�� ∈ 4
J.		 �5�	
In the following sub-sections, implicit equations are derived for �
 (4.1), �12
 (4.2) and �12
 (4.3). The aggregate effective number of

flows over link �, the effective number of flows from link �	to link � and the remaining path acquisition time phenomena result in
dependency between the equations. These equations are based on
heuristics and approximations. Finally, we solve by iterations the
set of implicit equations in order to evaluate the average end-to-
end latency of each flow. The variables and their corresponding
equations are listed in Table 2.

4.1 Queuing Time at the Source
We approximate the source queuing time using the M/D/1 queue
model [11]:

�
 = +CNOC
� P �+CNOC∙RC

ST�+CNOC�∙RCU	.	 �6�	
Clearly, when a flow does not share any of its links with
other flows, (6) is the exact mean queuing time, since the time

required to deliver a packet through the network (�
 + �
) is
deterministic. When a packet might be multiplexed with other
packets within the network, the service time is not deterministic
any more. However, thorough simulations [6] show that (6) is a
good approximation for the queuing time even for flows that are
frequently multiplexed.

4.2 Path Acquisition Time over a Link
The path-acquisition time of flow f over link �,	�12
 , is the time for the head-flit of the packet to acquire a VC over

the link. Clearly, path-acquisition is instantaneous whenever the
number of VCs of the link exceeds the number of flows that
traverse this link. This section addresses the case when there is
possible competition among the flows for the same VCs. In such a
case, the head-flits of different packets acquire VCs in FIFO
manner.

Figure 3. M/M/m/K queue model.

Figure 4. Rationale for using effective number of flows (An

example).

�12
 = W 0 5127

 Y 	312M/M/m/K	queue 5127

 > 	312`	.	 �7�	
We use 5127

(aggregate effective number of flows over link �) in

order to determine whether there are enough VCs to avoid
competition (7), rather than the total number of flows over link �, I512I.Our numerical examples and comparisons to simulations

show that this results in a much better numerical accuracy. Figure
4 presents an example for such a case. All the flows have the same
packet generation rate, and all the links have the same capacity
and a single VC (see Figure 4(a)). Figure 4(b) presents the end-to-
end latency of flow 1 reported by simulation, by the analysis and

by a modified analysis which substitutes 5127

 with I512I. For

instance, the modified analysis uses the number of all flows over �=, i.e. $51b$, instead of 51b7

 in order to estimated path acquisition

time of flow 1`s over �=. At first glance it seems that there are four

possible flows which can acquire a VC over �= �51b = �1,2,3,4��.

However, since flow 1 already “won” over the previous links
there is only one possible flow which can acquire this VC

(51b7

 = 1) and it is flow 1 itself; therefore, the path acquisition of

flow 1 over �= is instantaneous.

Assume that a packet head-flit of flow f arrives to link �. The
head-flit should wait until all previously queued head-flits acquire
a VC. Therefore, we approximate the time to acquire a VC using
the M/M/m/K (m-Servers, Finite storage) queue model (Figure 3).
The queuing time is an approximation for the time it takes for all
previously queued head-flits to acquire a VC. Therefore, the

queue consists of 312 	servers (i.e. ' = 312) and 5127

 − 1 waiting

positions (i.e. c = 5127

 − 1). The arrival rate is equal to the sum

of arrival rates of all flows that share link � with flow f, i.e.:

(= ∑ ()*+,-.///A�de2\C� 	.	 �8�	
The service rate is expressed by (9); it is equal to the average rate
that the flows group 51� occupies the VCs. The rate that flow k

occupy a VC is equal to the inverse of its transfer time, �/, plus
the path acquisition time along its subsequent path to the

Table 2. Variable Definitions

�

Queueing time at the source of
flow f [sec]

Equation (6)

�

Total path acquisition time of
flow f [sec]

Equation (2)

�12

Path acquisition time of flow f
over link �	[sec]

Equations

 (7), (8), (9), (10)

�

Total transfer time of flow f
[sec]

Equation (3) or (4)

(Depends on the
packet length)

�12

Flit transfer time of flow f over
link �	[sec]

Equations

(11), (12), (13), (14)

destination, ∑ �16/16ABe2h (remaining path acquisition time).

i =
∑ j 1�/ + ∑ �16/16ABe2h

k/∈de2
I512I 	 �9�	

Figure 5 illustrates the rationale for adding the remaining path

acquisition time expression. Assume that all the flows have the
same packet generation rate, and all the links have the same
capacity and a single VC (see Figure 5(a)). Figure 5(b) presents
the end-to-end latency versus the packet generation rate of the
flows for flow 2 reported by the simulation, the analysis and a
modified analysis that does not take into account the remaining

path acquisition time. It can be seen that ignoring this delay
results in gross inaccuracy. The path acquisition time of flow 2
depends on the time that flow 1 occupies �S; this time 	is equal to
its remaining path acquisition time (i.e. acquiring-VC over ��, 	�=and �>: 	�1<S +�1bS +�1nS) plus its transfer time (�S).

�12
 = opqr�sq	tuquq	v�wqopqr�sq	orr�p��	x��q = ∑ �y − '�z/{N|/}{NS�1 − P�N��λ 	.	 �10�	
Finally, using Little's law [11] we calculate the path-acquisition

time, �12
 (10).Where �z/� are the equilibrium probabilities of the

M/M/m/K queue model (Figure 3).

Figure 5. Rationale for using remaining path acquisition time

(An example)

4.3 Flit Transfer Time over a Link
Since flits from different flows are multiplexed over a link, the flit

transfer time of flow f over link �,	�12
 , should account for the flit-

transmission of other flows on the same link. �12
 is calculated by

modifying the basic M/M/1 service rate [11] to account for the
flows multiplexing:

�12
 = S�Ce6��e2T�e2C
 . �11�

Where �12
 [flits/sec] is the effective bandwidth consumed by all

flows other than flow f on link �.

�12
 = ��
���� (�e2TS,de2�CCTS)

de2�CCTS ∑ �16,12
16∈ �)�12 ; 5127

 > 1
0 ; 5127

 = 1 ��

� (12)
�16,12

 [flits/sec] is the effective bandwidth consumed by all flows

other than flow f on link � from the ingress link �.
bw ≜ ∑ j +h+hN∑ Oe6he6��e2h k ()*+,-.// ⋅ '//∈Hde6,e2\
J (13)

�16,12
 =
���
�
��� bw ; 516,127

 = I516,12I

de6,e2�CC
Ide6,e2I bw ; �� ∉ 4
 & 516,127

 < I516,12I

de6,e2�CCTS
Ide6,e2\
I bw ; �� ∈ 4
 & 516,127

 < I516,12I���

�
��� (14)

Equation (13) addresses the effective bandwidth of all the

multiplexed flows from the ingress link �. Each such flow is not
transmitted over link � while it still acquires VCs along its path to
destination (i.e. during the remaining path acquisition time).
Therefore, the packet generation rate of the flow is multiplied by

the ratio �/ ��/ + ∑ �16/16ABe2h �� . Furthermore, �16,12
 depends on

whether all multiplexed flows from the ingress link � can be
transmitted simultaneously on link � or not. For the first case, �16,12
 is equal to the sum of the bandwidths over all the

multiplexed flows. For the latter case, the effective bandwidth is
lower since not all the flows can be transmitted over link �.

Therefore, �16,12
 is decreased by the ratio of 516,127

 I516,12I� . Hence,

(14) results in the effective bandwidth of the multiplexed flows

while taking into account the lack of VCs over previous links to
link � of the multiplexed flows. Finally, since flow f is already

being transmitted and consequently occupies a VC, we use (12) in

order to bound the total number of interleaved flows over link � by 31� − 1.

The total transfer time of flow f, �
, which is dominated by the
hop with the smallest per-flow rate, is calculated by (3). As

mentioned above, for very short packets (4) can be used instead.

Figure 6. The accuracy improvement of the iterative

procedure. (For end-to-end latency of flow 5 depicted in

Figure 5(a)).

4.4 Iterative Procedure for Finding ��� ¡¢£¤¥

The analysis consists of a set of implicit equations for the

variables, �
 , �12
 , �12
 , that can easily be solved (see Table 2).

Thereafter, we evaluate the end-to-end latency, 	
.As mentioned
above, the actual packet injection rate to the NoC could be lower
than the packet generation rate. Therefore, using the given packet

generation rate of flow f, (
, may cause inaccurate results. In

order to obtain the packet injection rate to the network, ()*+,-./

,

we first solve the equation set using the (
 values (i.e. ()*+,-./
 =(
). Thereafter, for every instable source queue, we use a lower ()*+,-./

 value and solve the equations again. We repeat this

procedure in an iterative manner until we achieve the minimal ()*+,-./

 that still causes instability at the source queue for each

proper flow.

Figure 6 illustrates the accuracy improvement of the iterative
procedure for flow 5 depicted in Figure 5(a). It presents the end-
to-end latency when taking into account the packet generation
rates and the packet injection rates obtained by the procedure. It
can be seen that using the packet injection rates significantly
improves the accuracy.

5. NUMERICAL RESULTS
The analysis was programmed using Matlab. For a given NoC
architecture (i.e. capacity and number of VCs of each link,
topology and routing) we generate the equations (see Table 2) and
solve them using a standard Matlab non-linear solver. Then, we
compare the analysis results to an event-driven (flit-level) NoC
simulator written in OMNeT++ [17]. The implemented simulator
supports any heterogeneous NoC configuration in terms of every
link capacity and number of VCs. The simulator executes
wormhole switching with VCs employing round-robin arbitration
and deterministic XY routing. We simulate an asynchronous and
ideal router (i.e. no internal latency for the NoC router) with a
single flit input-buffer for each VC.

5.1 Evaluation of Use Cases
In order to evaluate our analysis, we use a 4x4 2D mesh NoC with
a single VC for all links. We simulate a uniform traffic pattern
with the same packet generation rate for all the sources. Then, we
evaluate the end-to-end latency of the flow over the diagonal path
of the NoC (i.e. from the left-bottom tile to the right-top tile, ¦S,> → ¦>,S). Figure 7 presents the end-to-end latency of this flow

reported by simulation, our analysis and the analysis presented in
[6]. It can be seen that our analysis results in a better
approximation. The inaccuracy of our analysis is less than 8% for
offered load less than 5 Gbps; the inaccuracy of the saturation
threshold is less than 4%. Moreover, using the "infinite-VCs”
assumption results in inaccurate analysis [6].

In addition, we compare against the simulation the results of our
analysis for a multimedia application (MMS) introduced in [7].
This multimedia application used for the evaluation of end-to-end
latency for the methods proposed in [16] and [5]. We manually
map the application into 4x4 2D mesh NoC with a single VC for
all links. Figure 8 presents the average end-to-end latency as
reported by the simulation and our analysis. The difference
between our analysis and the simulation is less than 2%;
moreover, our analysis accurately computes the saturation
threshold. The same accuracy is also achieved for a NoC with two
VCs for all links.

5.2 Synthetic Example
In this section, we present a synthetic example of heterogeneous
NoC (see Figure 9); all flows have the same packet generation

Figure 7. End-to-end latency of the diagonal flow ¨©,ª → ¨ª,©

for 4x4 NoC with uniform traffic pattern, reported by:

simulation, our analysis and the "infinite-VCs" analysis

presented in [6].

Figure 8. Average end-to-end latency of multimedia

application (MMS) [7], reported by simulation and our

analysis.

rate. Figure 10 presents the end-to-end latency of each flow. As
can be seen, our analysis offers good approximation; the
inaccuracy of the saturation threshold is less than 4% for flow 1
and less than 2% for flows 2, 3 and 4.

5.3 Application and Benchmark-Based

Comparison
We evaluate the results of our analysis with trace-based CMP
traffic. We model a chip multi-processor (CMP) with a single
shared-cache (the cache line size is 256B) which acts as hot-
module. The traces of the benchmarks are produced using Simics
simulator [14] running SPLASH-2 [18] and PARSEC [4]
benchmarks. Then, we simulate the CMP using OMNeT++, where
each module generates packets according to a given trace.

Figure 9. Synthetic example of NoC with non-uniform

numbers of VCs and non-uniform capacities of links (Unless

noted links are 16Gbps and have sufficient number of VCs). «¬ = ©® ¯°±²; «¬© = ©¯°±²; ³¬´ = ©.

Figure 10. The end-to-end latency of the flows in Figure 9.

We evaluate the average end-to-end latency using our analysis.
Furthermore, we compare our analysis to the one presented in [6]
which assumes an "infinite" number of VCs.

Figure 11(a) presents the results of the simulation, our analysis
and the analysis presented in [6] for several benchmarks. First, we
consider a homogenous NoC topology (i.e. all links have the same
capacity and number of VCs). The results are averaged for several
homogenous NoC topologies. The evaluation of our analysis
provides a good end-to-end latency approximation. Moreover, it is
much more accurate than the results of [6].

Figure 11(b) presents the average end-to-end latency results for a
heterogeneous NoC topology. The results are averaged for several
heterogeneous NoC topologies. Our analysis offers more accurate
results than [6]. Moreover, the accuracy differences between our
analysis and [6] is higher in comparison with the homogenous
topologies.

In addition, we model the SoC applications presented in [3] for
homogenous and heterogeneous NoC topologies. The applications
are manually mapped into the NoC. Figure 12 presents the
average end-to-end latency results of the simulation, our
analysis and the analysis presented in [6]. The results are averaged
for several homogenous and heterogeneous NoC topologies
respectively. As can be seen, our analysis accurately computes the
end-to-end latency.

5.4 Run-Time Comparison
In this section, we demonstrate the run-time saving gained by
using our analysis compared to the simulation. The run-time is
measured for simulation executed with 15 cores and analysis
executed with a single core (i.e. the analysis uses 6.6% of the
resources in comparison with the simulation).

Table 3 presents the simulation run-time and our analysis run-time
for several cases presented along the paper. Our analysis offers
significant time and computing-resource saving (99.9% and
93.4% respectively).

6. CONCLUSION
A novel delay evaluation analysis to calculate the average end-to-
end latencies per flow of a heterogeneous NoC with variable link
capacities and number of VCs per link has been presented.
Several crucial phenomena in a heterogeneous NoC were
observed: the aggregate effective number of flows over link �, the

effective number of flows from link � to link � and the remaining

path acquisition time. The quality of our approximation was
improved by using these observations. Our analysis offers
accurate end-to-end latency evaluation for different NoCs
architectures and traffic scenarios.

Figure 11. A single shared cache NoC-based CMP with (a)

homogenous and (b) heterogeneous topologies. Comparison

between simulation, our analysis and the analysis presented in

[6] for SPLASH-2 and PARSEC benchmarks.

Figure 12. A single shared cache NoC-based CMP with (a)

homogenous and (b) heterogeneous topologies. Comparison

between simulation, our analysis and the analysis presented in

[6] for the applications presented in [3].

Table 3. Run-Time Comparison

(For Analysis Computing-Resource Saving of 93.4%)

Simulation

Run-Time [Sec]

Analysis

Run-Time [Sec]

Figure 4 3780 4.34

Figure 5 9615 5.4

Uniform traffic pattern (Figure 7) 13725 11.4

MMS (Figure 8) 12585 4.45

Synthetic example (Figure 9) 7455 4.7

7. REFERENCES
[1] M. Bakhouya, S. Suboh, J. Gaber, and T. El-Ghazawi.

Analytical modeling and evaluation of on-chip interconnects
using network calculus. In Proceedings of the 2009 3rd

ACM/IEEE International Symposium on Networks-on-Chip,
pages 74–79. IEEE Computer Society, 2009.

[2] P. Beekhuizen and J. Resing. Performance analysis of small
non-uniform packet switches. Performance Evaluation,
66(11):640–659, 2009.

[3] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar,
S. Stergiou, L. Benini, and G. De Micheli. NoC synthesis flow
for customized domain specific multiprocessor systems-on-
chip. IEEE Transactions on Parallel and Distributed Systems,
16(2):113–129, 2005.

[4] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th international

conference on Parallel architectures and compilation

techniques, pages 72–81. ACM, 2008.

[5] S. Foroutan, Y. Thonnart, R. Hersemeule, and A. Jerraya. An
analytical method for evaluating Network-on-Chip
performance. In Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2010, pages 1629–1632.
IEEE, 2010.

[6] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, and
A. Kolodny. Network delays and link capacities in
application-specific wormhole NoCs. VLSI Design, 2007,
2007.

[7] J. Hu and R. Marculescu. Energy-and performance-aware
mapping for regular NoC architectures. IEEE Transactions on

computer-aided design of integrated circuits and systems,
24(4):551–562, 2005.

[8] T. Huang, U. Ogras, and R. Marculescu. Virtual channels
planning for networks-on-chip. In Quality Electronic Design,

2007. ISQED’07. 8th International Symposium on, pages
879–884. IEEE, 2007.

[9] A. Kiasari, D. Rahmati, H. Sarbazi-Azad, and S. Hessabi. A
Markovian Performance Model for Networks-on-Chip. In
Parallel, Distributed and Network-Based Processing, 2008.

PDP 2008. 16th Euromicro Conference on, pages 157–164.
IEEE, 2008.

[10] J. Kim, D. Park, C. Nicopoulos, N. Vijaykrishnan, and
C. Das. Design and analysis of an NoC architecture from
performance, reliability and energy perspective. In
Proceedings of the 2005 ACM symposium on Architecture for

networking and communications systems, pages 173–182.
ACM, 2005.

[11] L. Kleinrock. Queueing systems, volume 1: theory, 1975.

[12] E. Krimer, M. Erez, I. Keslassy, A. Kolodny, and I. Walter.
Packet-level static timing analysis for NoCs. In Networks-on-

Chip, 2009. NoCS 2009. 3rd ACM/IEEE International

Symposium on, page 88. IEEE, 2009.

[13] M. Lai, L. Gao, N. Xiao, and Z. Wang. An accurate and
efficient performance analysis approach based on queuing
model for network on chip. In Computer-Aided Design-

Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM

International Conference on, pages 563–570. IEEE, 2009.

[14] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hållberg, J. H\"ogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform.
COMPUTER,, pages 50–58, 2002.

[15] N. Nikitin and J. Cortadella. A performance analytical model
for Network-on-Chip with constant service time routers. In
Computer-Aided Design-Digest of Technical Papers, 2009.

ICCAD 2009. IEEE/ACM International Conference on, pages
571–578. IEEE, 2009.

[16] U. Ogras and R. Marculescu. Analytical router modeling for
networks-on-chip performance analysis. In Design,

Automation & Test in Europe Conference & Exhibition,

2007. DATE’07, pages 1–6. IEEE, 2007.

[17] A. Varga et al. The OMNeT++ discrete event simulation
system. In Proceedings of the European Simulation

Multiconference (ESM’2001), pages 319–324, 2001.

[18] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological

considerations. In Proceedings of the 22nd annual

international symposium on Computer architecture, pages
24–36. ACM, 1995.

[19] Y. Wu, G. Min, M. Ould-Khaoua, H. Yin, and L. Wang.
Analytical modelling of networks in multicomputer systems
under bursty and batch arrival traffic. The Journal of

Supercomputing, 51(2):115–130, 2010.

Appendix A

We define 516,127

and 5127

 using the following recursive procedure:

The procedure gets �� and returns 516,127

and 5127

. It uses a global

array called EffFlows. It contains two values for each flow:
number of VCs of a link and link identifier,

(e.g.,µ&&5�¶·¸(&, 1) = 31 / , µ&&5�¶·¸ (&, 2) = �/). Before

using the procedure, we initialize EffFlows to NaN (i.e. Not a
Number).

We find the group of ingress links to link � (��) , # !(��)%, (line

(1)). For each link � (��), we recursively execute the procedure
(line (3)). Then, for each of the flows over link �we check whether 5167

>31 � and if this link has the minimum number of VCs along

the path (until link �). If yes, we set EffFlows entries to 31� and ��
respectively (lines (4)-(8)). We find all groups of flows over both
links � and � which have the same EffFlows entry, {¸�'q�¦5}

(line (9)). We set 516,127

 to the minimum between: sum of VCs

entries of EffFlows of the ¸�'q�¦5 flows group, number of

flows from link � to link �, 31� and 5167

 (line (10)). Finally, we

calculates 5127

 (line(12)).

Initialization:

Set global array EffFlows to NaN.

P516,127

 , 5127

U= Effective Number of Flows Calc (��) {

(1) zrqp��!y¸12 ≜ H��I�� ∈ 4
, �� ∈ 416
, ���� , �� = 1, & ∈ 51�J

(2) for each �� ∈ zrqp��!y¸12 {

(3) P51¹,167

, 5167

U = Effective Number of Flows Calc(��)
(4) if (5167

 > 31�)
(5) for each y ∈ º&|& ∈ 51� , µ&&5�¶·¸(&, 1) = ¦�¦ ¶r µ&&5�¶·¸(&, 1) ≥ 31� ¼

(6) µ&&5�¶·¸(&) = {31�, ��}

(7) end

(8) end

(9) ¸�'q�¦5 = º��eh,1h½' ∈ ��eh,1h ⇔ ' ∈ 516⋂512 ,µ&&5�¶·¸(') = {31/ , �/} ¼

(10) 516,127

 = min P∑ 31/�Âeh,eh∈ÃO{*�Äd , I516⋂512I , 31� , 5167

U

(11) end

(12) 5127

 = ∑ 516,127

16∈�)�12

}

