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Abstract 
 

This paper addresses the allocation of link capacities in 
the automated design process of a network-on-chip based 
system. Communication resource costs are minimized 
under Quality-of-Service timing constraints. 

First, we introduce a novel analytical delay model for 
virtual channeled wormhole networks with non-uniform 
link capacities that eliminates costly simulations at the 
inner-loop of the optimization process. Second, we present 
an efficient capacity allocation algorithm that assigns link 
capacities such that packet delays requirements for each 
flow are satisfied. We demonstrate the benefit of capacity 
allocation for a typical system on chip, where the traffic is 
heterogeneous and delay requirements may largely vary, 
in comparison with the standard approach which assumes 
uniform-capacity links.1  
 
 
1. Introduction 
 

As the density of VLSI designs increases, the number of 
modules in a typical System on Chip (SoC) is expected to 
be significantly larger than today. Traditional 
interconnection schemes might no longer be adequate for 
these systems. The concept of Network on a Chip (NoC) 
(introduced in �[1], �[2]) suggests that different modules 
would be connected by a simple network of shared links 
and routers. As was analyzed in �[3], NoC power and area 
costs scale much better than shared bus, segmented bus or 
dedicated point to point connections.  

NoC is customized for a particular SoC through an 
automatic network design phase (e.g., �[4], �[5], �[6]). The 
goal of the link capacity design process is to minimize the 
network cost (in terms of area and power) while 
maintaining the required quality of service (QoS), defined 
in terms of acceptable packet delays for the specific 
system communication demands �[4]. This customization is 
based on adequate bandwidth allocation to each of the 
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network links: insufficient allocation will not meet 
performance requirements while lavish allocation will 
result in excessive power and area consumptions.  

Wormhole routing �[7] is an increasingly common 
interconnect scheme for NoC as it minimizes 
communication latencies, requires small buffer space and 
is simple to implement. However, performance evaluation 
and customization process of wormhole based NoCs 
heavily rely on simulations as no existing analysis (e.g., 
�[8]-�[15]) accounts for the combination of heterogeneous 
traffic patterns and virtual channels. Unfortunately, these 
are both fundamental characteristics of NoC interconnect. 

The use of simulations makes the task of searching for 
efficient capacity allocation computationally extensive and 
does not scale well with the size of the problem. On the 
other hand, a detailed exact analytical solution of a 
complex NoC is intractable and simplistic approximations 
may lead to inaccurate results. 

In this work, we propose a hybrid methodology to the 
network design problem that combines the best of both 
worlds. First, we propose a novel and simple analysis for a 
wormhole based NoC, which approximates the network 
behavior under a wide range of loads. Given any system 
(in terms of topology, routing and link capacities) and its 
communication demands (in terms of packets length and 
generation rate), the analysis estimates the delay 
experienced by every source-destination pair. To the best 
of our knowledge, this is the first analysis of a wormhole 
network with non-uniform link capacities. Next, we 
suggest a simple algorithm that applies the delay analysis 
to efficiently allocate capacities to network links, avoiding 
repetitive simulations at the inner-loop of the optimization 
process �[4]. Simulation is only used for final verification 
and fine tuning of the system. Using a design example we 
demonstrate that our algorithm considerably decreases the 
total NoC cost and significantly improves the speed of the 
customization process. 
 
2. NoC architecture   

 
Our NoC reference architecture, QNoC �[4], is a 

wormhole based network which guarantees quality of 



   

service (QoS) of different inter-module traffic types. 
QNoC is based on a two dimensional grid topology of 
irregular mesh and wormhole routing. In wormhole 
networks, each packet is divided into a sequence of flits 
which are transmitted over physical links one by one in 
pipeline fashion. A hop-to-hop credit mechanism assures 
that a flit is transmitted only when the receiving port has 
free space in its input buffer. QNoC is lossless, and 
packets traverse the network on a shortest path using a 
deadlock free XY routing. Another important feature of 
NoC is the ability to construct an asymmetric network with 
variable speed inter-router links. Different network links, 
connecting routers to other routers or modules, may have 
different bandwidths set during the design process to meet 
the QoS requirements. 

High performance wormhole based interconnect systems 
often include virtual channels (VCs) which increase NoC 
throughput �[16]. Furthermore, virtual channels must be 
included when links have different capacities to allow the 
multiplexing of several slow streams over a high 
bandwidth link. 

Flits of different VCs that contend for the same link 
bandwidth are time-multiplexed according to some 
arbitration policy. QNoC employs a simple policy in 
which flits of the active outgoing VCs are transmitted in a 
round-robin manner over the physical link. Previous work 
�[16] has showed that adding VCs increases maximal 
network throughput. As silicon cost of VC is moderate, we 
assume that physical links are split into an adequate 
number of VCs. In particular, we assume that a head flit 
acquires a channel instantaneously on every link it 
traverses. 

 
3. Wormhole delay model 
 

In a wormhole network, the transit time of a packet 
between a specific source-destination pair is composed of 
two components �[15]: the time it takes the head flit to 
reach the destination module (path acquisition time) and 
the time it takes the rest of the packet to exit the network 
(transfer time); Path acquisition time is affected by the 
complex interaction among different flows in the system 
and transfer time is affected by other flows sharing the 
same links (link's capacity is time multiplexed among all 
virtual channels sharing the link). 

Since NoC delay/cost tradeoffs are different from those 
of off-chip networks and since performance is a key issue, 
it is clear that NoCs should be designed to operate under a 
relatively light load. Consequently, for the sake of 
simplicity and computational efficiency, our analysis 
addresses low to medium loads and does not attempt to 
achieve high accuracy under very high utilizations. 

Our analysis focuses on the transfer of long packets, i.e. 
packets which are composed of a number of flits 

significantly larger than the number of buffers along their 
path.  From the simulations presented in �[4], it is clear that 
such packets (termed the block transfer class of service) 
are the ones that place the most stringent demand on NoC 
resources. However, our analysis can be easily extended to 
handle multiple classes of service.  

We consider a wormhole deadlock free fixed routing 
network that is composed of N routers connected by 
unidirectional links. The packets composing each source-
destination pair traffic identify a flow. 

Our model uses the following assumptions: 
1. Each flow generates fixed length packets using a 

Poisson process. (bursty traffic can be modeled by 
using artificially larger packet size.) 

2. Sources have infinite queues and sinks immediately 
consume flits arriving at their destination. 

3. Routers have a single flit input queue per VC. 
4. The propagation delay of flits through links and 

routers is negligible. 
5. Back pressure credit signal is instantaneous. 

 
3.1. Notation 
 

The network is characterized using the following 
notations: 

jC = capacity of link j [bits per second]  

l = flit size [bits] 
F = the set of all flows, from every source module 

1 s N� �  to every destination module 1 d N� �  
if = A flow from the set F  
im = the mean packet length of flow if F� [flits] 
i

� = average packet generation rate of flow if F�  
[packet/sec] 

i
� = the set of links composing the path of  flow if  

i
j� = the set of links that are subsequent to link j on 

flow i's path (a suffix of the path i
� ) 

 
The following notations are used to analyze packets' delay: 

iT = the mean transit time of packets of flow if  (the 
average time elapsed since a packet is created  
until its last flit exits the network) 

i
jt = the mean time to deliver a flit of flow i over link j 

(waiting for transmission and transmission times) 
i
j� = the total flit injection rate of all flows sharing 

link j except flow if  [flits/sec]. 
 

3.2. Wormhole analysis 
 

The delivery of a packet in a wormhole network 
resembles a pipeline traversal. When the number of parts 
composing the packet is considerably larger than the 
number of pipeline stages, the latency (the time it takes the 
first bits to exit the pipe) is insignificant compared to the 



   

total time, which in this case is mostly affected by the 
pipeline's throughput. Since packets are assumed to be 
considerably longer than the buffers along their path, and 
since each head flit instantaneously acquires a virtual 
channel on every link it arrives at, we ignore path 
acquisition time and approximate transmission time only. 

As in a classic pipeline, the transfer time is dominated 
by the stage with the smallest service rate. Since flits of 
different flows are interleaved on links, the approximation 
of i

jt  should account for the transmission time of other flits 

on the same link. We use a modification of the basic 
M/M/1 modeling �[17] as an approximation of the flit 
interleaving delay:  

1
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where i
j�  (defined above) is the bandwidth consumed by 

all flows other than flow i on link j. Formally: 
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Equation (1) models the mean interleaving delay 
experienced by flits of flow i on link j as a simple queue, 
without accounting for the bandwidth consumed by 
packets of flow i itself. This modification is based on the 
observation that flits of a flow are interleaved on a 
physical link due to the delivery of packets that belong to 
other flows only. By substituting (2) into (1) we get: 
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The total transfer time, which is dominated by the hop 
with the longest delay, can then be written as: 

max( | )i i i i
jT m t j �� ��     (4) 

The above approximation does not capture the inter-link 
dependencies and is generally too optimistic, for medium 
and high loads. Wormhole links loads affect each other 
mainly due to the back-pressure mechanism: a flit must 
wait for the arrival of a credit for its virtual channel from 
the following link. Therefore, flit delivery time over a link 
( i

jt ) is affected by the delivery time in subsequent links of 

the flow's path. To reflect the effect of flit delay on other 
links we replace (3) by the following equation which 
accounts for these inter-link dependencies. Our 
simulations (Section 5) show that this simple expression 
successfully estimates the resulting link delay:  
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� � ���    (5) 

where ( , )idist k j is the distance (measured in number of 
hops) between link j and k on the path of flow i. Formally: 

( , ) /i i i
j kdist k j � ��     (6) 

Equation (5) approximates the delay experienced by flits 
of flow i on link j by adding to the basic flit delay ( i

jt ) a 

term that takes into account the cumulative effect of the 
delay of subsequent links along the path. This term is 
weighted by two factors: the links' distance from link j 
( ( , )idist k j ) and the factor by which they are being utilized 
by flows other than flow i itself ( / )i

k kl C�� . The 
amendment is based on the observation that the increase in 
a link's delay is mainly caused by neighboring, congested 
links.  

As explained above, the mean total transit time of each 
flow is calculated using the longest interleaving delay on 
its path. Therefore, (4) is replaced by: 

max( | )i i i i
jT m t j �� ���     (7) 

In Section 5, we evaluate the quality of our approximated 
analysis against simulation studies. 
 
4. Capacity allocation 
 

Traditional wormhole networks employ links with 
uniform capacity set according to the traffic requirements. 
Since each link is not independently assigned the minimal 
capacity that is required to meet the end-to-end delay 
requirement, some links are much faster than needed, 
consuming unnecessary power and area. 

Given a network topology, a routing scheme, 
communication demands (in terms of packet generation 
rate and length) and QoS requirements, we suggest an 
algorithm that adjusts the capacity of each link, striving to 
minimize the total allocated capacity while assuring that 
each flow meets its performance requirement.  

In order to assign links capacities efficiently, we 
introduce the following notation: 
 

f
REQT = The required mean  transit time for flow f 

� = The amount of capacity [bits/sec] added to the 
network on each iteration 

 
The capacity assignment minimization problem can now 

be formalized as follows: 
 

 
Figure 1: Capacity assignment minimization 

problem. 
 

Given: 
F 

: ,f ff F m �
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: f
REQf F T
 �  

link j
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C�  is minimal  



   

Using this formulation, we suggest the algorithm 
described in Figure 2 to allocate link capacities. The 
algorithm takes a greedy approach: The initialization 
phase allocates a minimal preliminary capacity to each 
link in the network. The main loop analyses each source-
destination flow separately. It first uses the delay model 
(Section 3) to approximate the flow's delay given the 
current capacity allocation vector (line 5). If the delay is 
larger than required (line 6), the algorithm allocates a 
small, predefined amount ( � ) of extra capacity to the 
flow's path: It first assigns the extra capacity to each of the 
links along the path separately (lines 7-11) and 
approximates the resulting packet delay. It then searches 
for the link with the largest sensitivity to bandwidth 
addition, i.e. the link for which adding capacity results in 
the shortest delay overall (line 12). The extra capacity is 
added only to that link (line 13). When the algorithm 
terminates, all flows meet their required delay. 

In practice, the analytical model does not capture all of 
the complex dependencies and effects in a virtual 
channeled wormhole network. As a result, the mean delay 
of a few flows may be under-estimated and the capacity of 
some links might be too small. Therefore, the resulting 
assignment is verified using network simulation, and some 
extra capacity may still be added to these flows' path. 

 

 
Figure 2: Capacity allocation algorithm. 

 
5. Numerical results 
 

In order to evaluate the delay analysis and to 
demonstrate the benefit of using the capacity allocation 

algorithm, we present the following two examples: The 
first example considers a homogeneous system, in which 
every module injects the same amount of bandwidth into 
the network and packets' destinations are chosen randomly 
with uniform distribution. While this is not typical to SoC, 
this scenario is very often used to evaluate wormhole 
network analyses. The second example represents a more 
realistic traffic for a SoC, exhibiting a non-uniform 
communication pattern: modules communicate with only a 
subset of all possible destinations and different flows have 
different bandwidth and delay requirements. In particular, 
some modules send and receive packets from a single 
module (many-to-one and one-to-many patterns), 
emulating a SoC in which data is generated and destined at 
specific modules (for example, SoCs with a single main 
CPU or a single cache memory, or SoCs that use an off-
chip DRAM memory). As in typical SoCs, modules that 
exchange high bandwidth traffic are placed in proximity. 

For each example, we compare the analysis with 
simulation results for a varying utilization factor, by using 
a wide range of uniform allocation vectors. We then apply 
the suggested capacity allocation algorithm and present its 
benefit over uniform link capacities assignment.  

We have implemented a tool that automatically assigns 
link capacities given the network topology, routing 
scheme, communication demands and QoS requirements. 
This tool, which uses the aforementioned delay model and 
capacity allocation algorithm, is to be used by the chip 
interconnect designer to minimize the network resources. 
The system was simulated using the OPNET modeler �[18]. 
The model includes all the complex dependencies between 
different flows in wormhole networks (due to particular 
virtual channel arbitration schemes, path acquisition time, 
finite router queues, etc.).   

 
5.1. Homogeneous network example 
 

The network comprises of a regular four by four, two 
dimensional mesh with XY routing. Links have identical 
capacities; packets of each flow are generated by a Poisson 
process, with a mean rate 1 4.8 4e� � �  [packets/sec]; 
packets consist of 500 flits, each flit is 16 bit long.  

 
5.1.1. Delay analysis. As can be seen in Figure 3, though 
all flows inject the same bandwidth, the different distance 
and different aggregated load of links along their path 
results in a large diversity in the packet delays.  Assuming 
that all flows have identical requirements, the mean transit 
delay of some flows is much lower than needed; This slack 
can be trimmed by a more efficient link capacity scheme. 

Figure 4a compares the mean end-to-end packet delay of 
the analytical model with the simulation results as a 
function of the most utilized link utilization level (i.e. for a 
wide range of uniform capacity allocations). The analytical 

    /*assign initial capacities*/ 
1)  foreach link e: 

2)   eC �
: f

f f

f F e

m l
�

�
� �

� ��  

3)  end foreach 
 
4)  foreach flow f F� : 

      /*evaluate current transit delay*/ 
5)    fT �  Delay_Model ( , )C f  

6)    while ( f f
REQT T� ) 

        /*look for most sensitive link*/ 
7)      foreach fe �� : 

8)        :  j jj e C C
 
 ��  

9)        e eC C �� ��  

10)       f
eT � Delay_Model ( , )C f�  

11)     end foreach 

12)     { }f
e

e
e argmin T� �  /*get most sensitive link*/ 

13)     e eC C �� �� �      /*increase its capacity*/ 
14)   end while 
15) end foreach 
 



   

model closely follows the simulation results for a wide 
range of loads, way beyond the load that is expected to be 
found in a practical SoC (the mean absolute error reaches 
8% when utilization is over 90%). 
 

 
Figure 3: Mean flows delay in the homogeneous 

system. 
x and y axes mark the source and destinations modules 

respectably and z axis is the mean packet delay (longest delay 
is 2.5X longer than shortest one). 

 
Figure 4: Mean packet delay. 

Analytical model estimation and simulations results for the 
homogeneous system (a) and for the heterogynous system (b). 

x axis is the utilization of the most loaded link and y axis is 
the end to end delay normalized by the delay in a zero loaded 

system  (i.e. where no other flows exists). 
 
5.1.2. Capacity allocation results. In order to evaluate 
the suggested capacity allocation algorithm, we have 
compared it with uniform capacity allocation for a system 
with the same packet delay requirements (10uSec for each 
flow). By using simulations, we found that the total 
capacity needed in a uniform system is 74.4Gbits/sec 
(1.55Gb/sec per each one of the 48 inter-router links). 

Figure 5a presents the capacities as assigned by the 
algorithm. A total budget of 69.0Gb/sec was used, which 
reflects a moderate 7.2% saving of resources. Figure 6 
presents the resulting packet delay for each flow. Though 
less capacity is used, all flows still meet their delay 
requirement. As expected, the capacity allocation 
algorithm achieves a modest resources saving in the 
homogeneous example. Since all source-destination flows 
exist, it is impossible to reduce the capacity of a large 
number of links significantly without causing flows to miss 
their end-to-end delay requirement. Only the capacities of 
the leftmost links (both upward and downward) were 
considerably trimmed (e.g. links 00�10, 10�20 and 

20�30 in Figure 5a). This is because of their relatively 
light utilization following the XY routing scheme. 

 
Figure 5: Link capacities. 

Link capacities as assigned by the capacity allocation 
algorithm for the homogeneous system (a) and for the 

heterogeneous system (b). 
 

 
Figure 6: Mean flows delay. 

Delay in the homogeneous system when capacities are 
assigned by the capacity allocation algorithm. 

 
5.2. Heterogeneous network example 
 

The heterogeneous network comprises of a regular three 
by four, two dimensional mesh with XY routing. Table 1 
describes the flows' characteristics and delay requirements.  
  

Flow Inter-
arrival 

time 
[uSec] 

Packet 
length 
[flits] 

Total 
BW 

[Mb/sec] 

Required 
delay 
[uSec] 

01�12; 01�10; 
03�01; 10�01; 
12�01; 20�03 

66.67 500 120 10 

01�00; 12�22 66.67 500 120 5 
22�01; 23�13 33.30 500 240 10 
01�13; 21�01 500 500 16 10 
00�01 16.67 500 480 5 
01�02 16.67 500 480 10 
01�21 5000 500 1.6 15 

Table 1: Heterogeneous system  
 
5.2.1. Delay analysis. Figure 4b compares the mean end-
to-end packet delay of the analytical model with 
simulation results as a function of the most utilized link 
utilization factor. As can be seen from the figure, the 
model properly approximates the resulting delays in the 

(a) (b) 

(a) (b) 



   

low to medium utilization range. Since NoCs are not 
expected to operate at high utilization (Section 3), the 
higher error rates in this region do not present a problem. 
 
5.2.2. Capacity allocation results. Similarly to subsection 
5.1.2., we have compared the total budget assigned by the 
capacity allocation algorithm with a uniform assignment 
that meets the same requirements. Figure 5b presents the 
link capacities as assigned by the algorithm. While the 
uniform assignment consumes a total of 41.8Gb/sec 
(counting only links with non-zero flow), the algorithm 
used only 28.7Gb/sec, achieving a reduction of 30% in 
resources.  

Figure 7 presents the mean packet delay as 
approximated by the model and as evaluated by 
simulation. The figure also presents the maximal mean 
packet delay requirement for each flow. Though simple, 
the analytical model closely approximates the resulting 
packet delay and all flows meet their delay requirement. 

 
Figure 7: Capacity allocation results. 

Mean packet delay as approximated by the model and as 
extracted from simulation vs.  the maximal mean packet 

delay requirement.  
 
In this example, the capacity allocation algorithm was 

able to achieve a significant resource saving due to 
different bandwidth and requirements of the different 
flows, and due to the diversity in link loads. Since some 
flows have weaker requirements than others, it is possible 
to allocate relatively low capacity to some of the links, 
without causing any flow to violate its delay requirement. 
As a result, heterogeneous systems are more likely for a 
substantial resource saving than homogeneous ones. 
 
6. Summary 
 

Allocating different capacities to different links is an 
important phase in the design process of NoC-based 
systems. A good assignment algorithm would allocate 
network resources efficiently so that QoS and performance 
requirements are met but total cost is minimized.  

The paper includes two novel contributions: The first is 
a simple static timing analysis model that captures virtual 
channelled wormhole networks with different link 
capacities and eliminates the reliance on simulations for 

timing estimations. The paper also suggests an allocation 
algorithm that greedily assigns link capacities using the 
analytical model so that packets of each flow arrive within 
the required time.  Using a design example, we showed the 
potential benefit of automated link capacity allocation in a 
typical NoC-based SoC, where the traffic is heterogeneous 
and critical delay requirements vary significantly. 
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