

Efficient Link Capacity and QoS Design for Network-on-Chip

Zvika Guz1, Isask'har Walter1, Evgeny Bolotin1, Israel Cidon2, Ran Ginosar2, Avinoam Kolodny2
Electrical Engineering Department, Technion, Haifa, Israel

 1{zguz, zigi, bolotin}@tx.technion.ac.il 2{cidon, ran, kolodny}@ee.technion.ac.il

Abstract

This paper addresses the allocation of link capacities in
the automated design process of a network-on-chip based
system. Communication resource costs are minimized
under Quality-of-Service timing constraints.

First, we introduce a novel analytical delay model for
virtual channeled wormhole networks with non-uniform
link capacities that eliminates costly simulations at the
inner-loop of the optimization process. Second, we present
an efficient capacity allocation algorithm that assigns link
capacities such that packet delays requirements for each
flow are satisfied. We demonstrate the benefit of capacity
allocation for a typical system on chip, where the traffic is
heterogeneous and delay requirements may largely vary,
in comparison with the standard approach which assumes
uniform-capacity links.1

1. Introduction

As the density of VLSI designs increases, the number of
modules in a typical System on Chip (SoC) is expected to
be significantly larger than today. Traditional
interconnection schemes might no longer be adequate for
these systems. The concept of Network on a Chip (NoC)
(introduced in �[1], �[2]) suggests that different modules
would be connected by a simple network of shared links
and routers. As was analyzed in �[3], NoC power and area
costs scale much better than shared bus, segmented bus or
dedicated point to point connections.

NoC is customized for a particular SoC through an
automatic network design phase (e.g., �[4], �[5], �[6]). The
goal of the link capacity design process is to minimize the
network cost (in terms of area and power) while
maintaining the required quality of service (QoS), defined
in terms of acceptable packet delays for the specific
system communication demands �[4]. This customization is
based on adequate bandwidth allocation to each of the

This work was partially supported by the Semiconductor Research
Corporation (SRC), Intel Corp., and the iSRC consortium.

network links: insufficient allocation will not meet
performance requirements while lavish allocation will
result in excessive power and area consumptions.

Wormhole routing �[7] is an increasingly common
interconnect scheme for NoC as it minimizes
communication latencies, requires small buffer space and
is simple to implement. However, performance evaluation
and customization process of wormhole based NoCs
heavily rely on simulations as no existing analysis (e.g.,
�[8]-�[15]) accounts for the combination of heterogeneous
traffic patterns and virtual channels. Unfortunately, these
are both fundamental characteristics of NoC interconnect.

The use of simulations makes the task of searching for
efficient capacity allocation computationally extensive and
does not scale well with the size of the problem. On the
other hand, a detailed exact analytical solution of a
complex NoC is intractable and simplistic approximations
may lead to inaccurate results.

In this work, we propose a hybrid methodology to the
network design problem that combines the best of both
worlds. First, we propose a novel and simple analysis for a
wormhole based NoC, which approximates the network
behavior under a wide range of loads. Given any system
(in terms of topology, routing and link capacities) and its
communication demands (in terms of packets length and
generation rate), the analysis estimates the delay
experienced by every source-destination pair. To the best
of our knowledge, this is the first analysis of a wormhole
network with non-uniform link capacities. Next, we
suggest a simple algorithm that applies the delay analysis
to efficiently allocate capacities to network links, avoiding
repetitive simulations at the inner-loop of the optimization
process �[4]. Simulation is only used for final verification
and fine tuning of the system. Using a design example we
demonstrate that our algorithm considerably decreases the
total NoC cost and significantly improves the speed of the
customization process.

2. NoC architecture

Our NoC reference architecture, QNoC �[4], is a

wormhole based network which guarantees quality of

service (QoS) of different inter-module traffic types.
QNoC is based on a two dimensional grid topology of
irregular mesh and wormhole routing. In wormhole
networks, each packet is divided into a sequence of flits
which are transmitted over physical links one by one in
pipeline fashion. A hop-to-hop credit mechanism assures
that a flit is transmitted only when the receiving port has
free space in its input buffer. QNoC is lossless, and
packets traverse the network on a shortest path using a
deadlock free XY routing. Another important feature of
NoC is the ability to construct an asymmetric network with
variable speed inter-router links. Different network links,
connecting routers to other routers or modules, may have
different bandwidths set during the design process to meet
the QoS requirements.

High performance wormhole based interconnect systems
often include virtual channels (VCs) which increase NoC
throughput �[16]. Furthermore, virtual channels must be
included when links have different capacities to allow the
multiplexing of several slow streams over a high
bandwidth link.

Flits of different VCs that contend for the same link
bandwidth are time-multiplexed according to some
arbitration policy. QNoC employs a simple policy in
which flits of the active outgoing VCs are transmitted in a
round-robin manner over the physical link. Previous work
�[16] has showed that adding VCs increases maximal
network throughput. As silicon cost of VC is moderate, we
assume that physical links are split into an adequate
number of VCs. In particular, we assume that a head flit
acquires a channel instantaneously on every link it
traverses.

3. Wormhole delay model

In a wormhole network, the transit time of a packet
between a specific source-destination pair is composed of
two components �[15]: the time it takes the head flit to
reach the destination module (path acquisition time) and
the time it takes the rest of the packet to exit the network
(transfer time); Path acquisition time is affected by the
complex interaction among different flows in the system
and transfer time is affected by other flows sharing the
same links (link's capacity is time multiplexed among all
virtual channels sharing the link).

Since NoC delay/cost tradeoffs are different from those
of off-chip networks and since performance is a key issue,
it is clear that NoCs should be designed to operate under a
relatively light load. Consequently, for the sake of
simplicity and computational efficiency, our analysis
addresses low to medium loads and does not attempt to
achieve high accuracy under very high utilizations.

Our analysis focuses on the transfer of long packets, i.e.
packets which are composed of a number of flits

significantly larger than the number of buffers along their
path. From the simulations presented in �[4], it is clear that
such packets (termed the block transfer class of service)
are the ones that place the most stringent demand on NoC
resources. However, our analysis can be easily extended to
handle multiple classes of service.

We consider a wormhole deadlock free fixed routing
network that is composed of N routers connected by
unidirectional links. The packets composing each source-
destination pair traffic identify a flow.

Our model uses the following assumptions:
1. Each flow generates fixed length packets using a

Poisson process. (bursty traffic can be modeled by
using artificially larger packet size.)

2. Sources have infinite queues and sinks immediately
consume flits arriving at their destination.

3. Routers have a single flit input queue per VC.
4. The propagation delay of flits through links and

routers is negligible.
5. Back pressure credit signal is instantaneous.

3.1. Notation

The network is characterized using the following
notations:

jC = capacity of link j [bits per second]

l = flit size [bits]
F = the set of all flows, from every source module

1 s N� � to every destination module 1 d N� �
if = A flow from the set F
im = the mean packet length of flow if F� [flits]
i

� = average packet generation rate of flow if F�
[packet/sec]

i
� = the set of links composing the path of flow if

i
j� = the set of links that are subsequent to link j on

flow i's path (a suffix of the path i
�)

The following notations are used to analyze packets' delay:

iT = the mean transit time of packets of flow if (the
average time elapsed since a packet is created
until its last flit exits the network)

i
jt = the mean time to deliver a flit of flow i over link j

(waiting for transmission and transmission times)
i
j� = the total flit injection rate of all flows sharing

link j except flow if [flits/sec].

3.2. Wormhole analysis

The delivery of a packet in a wormhole network
resembles a pipeline traversal. When the number of parts
composing the packet is considerably larger than the
number of pipeline stages, the latency (the time it takes the
first bits to exit the pipe) is insignificant compared to the

total time, which in this case is mostly affected by the
pipeline's throughput. Since packets are assumed to be
considerably longer than the buffers along their path, and
since each head flit instantaneously acquires a virtual
channel on every link it arrives at, we ignore path
acquisition time and approximate transmission time only.

As in a classic pipeline, the transfer time is dominated
by the stage with the smallest service rate. Since flits of
different flows are interleaved on links, the approximation
of i

jt should account for the transmission time of other flits

on the same link. We use a modification of the basic
M/M/1 modeling �[17] as an approximation of the flit
interleaving delay:

1

1i
j i

j jl

t
C

�
� ��

 (1)

where i
j� (defined above) is the bandwidth consumed by

all flows other than flow i on link j. Formally:

| f

i f f
j

f j f i

m
�

�
� 	

� � �� (2)

Equation (1) models the mean interleaving delay
experienced by flits of flow i on link j as a simple queue,
without accounting for the bandwidth consumed by
packets of flow i itself. This modification is based on the
observation that flits of a flow are interleaved on a
physical link due to the delivery of packets that belong to
other flows only. By substituting (2) into (1) we get:

| f

i
j f f

j
f j f i

l
t

C l m
�

�
� 	

�
� � ��

 (3)

The total transfer time, which is dominated by the hop
with the longest delay, can then be written as:

max(|)i i i i
jT m t j �� �� (4)

The above approximation does not capture the inter-link
dependencies and is generally too optimistic, for medium
and high loads. Wormhole links loads affect each other
mainly due to the back-pressure mechanism: a flit must
wait for the arrival of a credit for its virtual channel from
the following link. Therefore, flit delivery time over a link
(i

jt) is affected by the delivery time in subsequent links of

the flow's path. To reflect the effect of flit delay on other
links we replace (3) by the following equation which
accounts for these inter-link dependencies. Our
simulations (Section 5) show that this simple expression
successfully estimates the resulting link delay:

| (,)i
j

i i
i i k k
j j i

k k k

l t
t t

C dist j k��

��
� � ��� (5)

where (,)idist k j is the distance (measured in number of
hops) between link j and k on the path of flow i. Formally:

(,) /i i i
j kdist k j � �� (6)

Equation (5) approximates the delay experienced by flits
of flow i on link j by adding to the basic flit delay (i

jt) a

term that takes into account the cumulative effect of the
delay of subsequent links along the path. This term is
weighted by two factors: the links' distance from link j
((,)idist k j) and the factor by which they are being utilized
by flows other than flow i itself (/)i

k kl C�� . The
amendment is based on the observation that the increase in
a link's delay is mainly caused by neighboring, congested
links.

As explained above, the mean total transit time of each
flow is calculated using the longest interleaving delay on
its path. Therefore, (4) is replaced by:

max(|)i i i i
jT m t j �� ��� (7)

In Section 5, we evaluate the quality of our approximated
analysis against simulation studies.

4. Capacity allocation

Traditional wormhole networks employ links with
uniform capacity set according to the traffic requirements.
Since each link is not independently assigned the minimal
capacity that is required to meet the end-to-end delay
requirement, some links are much faster than needed,
consuming unnecessary power and area.

Given a network topology, a routing scheme,
communication demands (in terms of packet generation
rate and length) and QoS requirements, we suggest an
algorithm that adjusts the capacity of each link, striving to
minimize the total allocated capacity while assuring that
each flow meets its performance requirement.

In order to assign links capacities efficiently, we
introduce the following notation:

f
REQT = The required mean transit time for flow f

� = The amount of capacity [bits/sec] added to the
network on each iteration

The capacity assignment minimization problem can now

be formalized as follows:

Figure 1: Capacity assignment minimization

problem.

Given:
F

: ,f ff F m �
 �

: f
REQf F T
 �

link j
 , assign link capacities ()jC s.t.:

: f f
REQf F T T
 � �

|

:
f

f f
j

f j

link j m l C
�

�
�

 � � ��

j
C� is minimal

Using this formulation, we suggest the algorithm
described in Figure 2 to allocate link capacities. The
algorithm takes a greedy approach: The initialization
phase allocates a minimal preliminary capacity to each
link in the network. The main loop analyses each source-
destination flow separately. It first uses the delay model
(Section 3) to approximate the flow's delay given the
current capacity allocation vector (line 5). If the delay is
larger than required (line 6), the algorithm allocates a
small, predefined amount (�) of extra capacity to the
flow's path: It first assigns the extra capacity to each of the
links along the path separately (lines 7-11) and
approximates the resulting packet delay. It then searches
for the link with the largest sensitivity to bandwidth
addition, i.e. the link for which adding capacity results in
the shortest delay overall (line 12). The extra capacity is
added only to that link (line 13). When the algorithm
terminates, all flows meet their required delay.

In practice, the analytical model does not capture all of
the complex dependencies and effects in a virtual
channeled wormhole network. As a result, the mean delay
of a few flows may be under-estimated and the capacity of
some links might be too small. Therefore, the resulting
assignment is verified using network simulation, and some
extra capacity may still be added to these flows' path.

Figure 2: Capacity allocation algorithm.

5. Numerical results

In order to evaluate the delay analysis and to
demonstrate the benefit of using the capacity allocation

algorithm, we present the following two examples: The
first example considers a homogeneous system, in which
every module injects the same amount of bandwidth into
the network and packets' destinations are chosen randomly
with uniform distribution. While this is not typical to SoC,
this scenario is very often used to evaluate wormhole
network analyses. The second example represents a more
realistic traffic for a SoC, exhibiting a non-uniform
communication pattern: modules communicate with only a
subset of all possible destinations and different flows have
different bandwidth and delay requirements. In particular,
some modules send and receive packets from a single
module (many-to-one and one-to-many patterns),
emulating a SoC in which data is generated and destined at
specific modules (for example, SoCs with a single main
CPU or a single cache memory, or SoCs that use an off-
chip DRAM memory). As in typical SoCs, modules that
exchange high bandwidth traffic are placed in proximity.

For each example, we compare the analysis with
simulation results for a varying utilization factor, by using
a wide range of uniform allocation vectors. We then apply
the suggested capacity allocation algorithm and present its
benefit over uniform link capacities assignment.

We have implemented a tool that automatically assigns
link capacities given the network topology, routing
scheme, communication demands and QoS requirements.
This tool, which uses the aforementioned delay model and
capacity allocation algorithm, is to be used by the chip
interconnect designer to minimize the network resources.
The system was simulated using the OPNET modeler �[18].
The model includes all the complex dependencies between
different flows in wormhole networks (due to particular
virtual channel arbitration schemes, path acquisition time,
finite router queues, etc.).

5.1. Homogeneous network example

The network comprises of a regular four by four, two
dimensional mesh with XY routing. Links have identical
capacities; packets of each flow are generated by a Poisson
process, with a mean rate 1 4.8 4e� � � [packets/sec];
packets consist of 500 flits, each flit is 16 bit long.

5.1.1. Delay analysis. As can be seen in Figure 3, though
all flows inject the same bandwidth, the different distance
and different aggregated load of links along their path
results in a large diversity in the packet delays. Assuming
that all flows have identical requirements, the mean transit
delay of some flows is much lower than needed; This slack
can be trimmed by a more efficient link capacity scheme.

Figure 4a compares the mean end-to-end packet delay of
the analytical model with the simulation results as a
function of the most utilized link utilization level (i.e. for a
wide range of uniform capacity allocations). The analytical

 /*assign initial capacities*/
1) foreach link e:

2) eC �
: f

f f

f F e

m l
�

�
� �

� ��

3) end foreach

4) foreach flow f F� :

 /*evaluate current transit delay*/
5) fT � Delay_Model (,)C f

6) while (f f
REQT T�)

 /*look for most sensitive link*/
7) foreach fe �� :

8) : j jj e C C

 ��

9) e eC C �� ��

10) f
eT � Delay_Model (,)C f�

11) end foreach

12) { }f
e

e
e argmin T� � /*get most sensitive link*/

13) e eC C �� �� � /*increase its capacity*/
14) end while
15) end foreach

model closely follows the simulation results for a wide
range of loads, way beyond the load that is expected to be
found in a practical SoC (the mean absolute error reaches
8% when utilization is over 90%).

Figure 3: Mean flows delay in the homogeneous

system.
x and y axes mark the source and destinations modules

respectably and z axis is the mean packet delay (longest delay
is 2.5X longer than shortest one).

Figure 4: Mean packet delay.

Analytical model estimation and simulations results for the
homogeneous system (a) and for the heterogynous system (b).

x axis is the utilization of the most loaded link and y axis is
the end to end delay normalized by the delay in a zero loaded

system (i.e. where no other flows exists).

5.1.2. Capacity allocation results. In order to evaluate
the suggested capacity allocation algorithm, we have
compared it with uniform capacity allocation for a system
with the same packet delay requirements (10uSec for each
flow). By using simulations, we found that the total
capacity needed in a uniform system is 74.4Gbits/sec
(1.55Gb/sec per each one of the 48 inter-router links).

Figure 5a presents the capacities as assigned by the
algorithm. A total budget of 69.0Gb/sec was used, which
reflects a moderate 7.2% saving of resources. Figure 6
presents the resulting packet delay for each flow. Though
less capacity is used, all flows still meet their delay
requirement. As expected, the capacity allocation
algorithm achieves a modest resources saving in the
homogeneous example. Since all source-destination flows
exist, it is impossible to reduce the capacity of a large
number of links significantly without causing flows to miss
their end-to-end delay requirement. Only the capacities of
the leftmost links (both upward and downward) were
considerably trimmed (e.g. links 00�10, 10�20 and

20�30 in Figure 5a). This is because of their relatively
light utilization following the XY routing scheme.

Figure 5: Link capacities.

Link capacities as assigned by the capacity allocation
algorithm for the homogeneous system (a) and for the

heterogeneous system (b).

Figure 6: Mean flows delay.

Delay in the homogeneous system when capacities are
assigned by the capacity allocation algorithm.

5.2. Heterogeneous network example

The heterogeneous network comprises of a regular three
by four, two dimensional mesh with XY routing. Table 1
describes the flows' characteristics and delay requirements.

Flow Inter-
arrival

time
[uSec]

Packet
length
[flits]

Total
BW

[Mb/sec]

Required
delay
[uSec]

01�12; 01�10;
03�01; 10�01;
12�01; 20�03

66.67 500 120 10

01�00; 12�22 66.67 500 120 5
22�01; 23�13 33.30 500 240 10
01�13; 21�01 500 500 16 10
00�01 16.67 500 480 5
01�02 16.67 500 480 10
01�21 5000 500 1.6 15

Table 1: Heterogeneous system

5.2.1. Delay analysis. Figure 4b compares the mean end-
to-end packet delay of the analytical model with
simulation results as a function of the most utilized link
utilization factor. As can be seen from the figure, the
model properly approximates the resulting delays in the

(a) (b)

(a) (b)

low to medium utilization range. Since NoCs are not
expected to operate at high utilization (Section 3), the
higher error rates in this region do not present a problem.

5.2.2. Capacity allocation results. Similarly to subsection
5.1.2., we have compared the total budget assigned by the
capacity allocation algorithm with a uniform assignment
that meets the same requirements. Figure 5b presents the
link capacities as assigned by the algorithm. While the
uniform assignment consumes a total of 41.8Gb/sec
(counting only links with non-zero flow), the algorithm
used only 28.7Gb/sec, achieving a reduction of 30% in
resources.

Figure 7 presents the mean packet delay as
approximated by the model and as evaluated by
simulation. The figure also presents the maximal mean
packet delay requirement for each flow. Though simple,
the analytical model closely approximates the resulting
packet delay and all flows meet their delay requirement.

Figure 7: Capacity allocation results.

Mean packet delay as approximated by the model and as
extracted from simulation vs. the maximal mean packet

delay requirement.

In this example, the capacity allocation algorithm was

able to achieve a significant resource saving due to
different bandwidth and requirements of the different
flows, and due to the diversity in link loads. Since some
flows have weaker requirements than others, it is possible
to allocate relatively low capacity to some of the links,
without causing any flow to violate its delay requirement.
As a result, heterogeneous systems are more likely for a
substantial resource saving than homogeneous ones.

6. Summary

Allocating different capacities to different links is an
important phase in the design process of NoC-based
systems. A good assignment algorithm would allocate
network resources efficiently so that QoS and performance
requirements are met but total cost is minimized.

The paper includes two novel contributions: The first is
a simple static timing analysis model that captures virtual
channelled wormhole networks with different link
capacities and eliminates the reliance on simulations for

timing estimations. The paper also suggests an allocation
algorithm that greedily assigns link capacities using the
analytical model so that packets of each flow arrive within
the required time. Using a design example, we showed the
potential benefit of automated link capacity allocation in a
typical NoC-based SoC, where the traffic is heterogeneous
and critical delay requirements vary significantly.

7. References

[1] P. Guerrier and A. Greiner. A Generic Architecture for On-
Chip Packet-Switched Interconnections. Proc. DATE 2000
[2] W. J. Dally and B. Towles. Route Packets, Not Wires: On-
Chip Interconnection Networks. Proc. DAC 2001
[3] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny. Cost
Considerations in Network on Chip. Journal of Systems
Architecture, special issue on Network on Chip, Volume 50,
February 2004, pp. 105-128
[4] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNoC:
QoS Architecture and Design Process for Network on Chip.
Special issue on Networks on Chip, The Journal of Systems
Architecture, February 2004
[5] K. Goossens, J. Dielissen, O. P. Gangwal, S. G. Pestana, A.
Radulescu and E. Rijpkema. A Design Flow for Application-
Specific Networks on Chip with Guaranteed Performance to
Accelerate SOC Design and Verification. Proc. DATE 2005
[6] J. Hu and R. Marculescu. Application-Specific Buffer Space
Allocation for Networks-on-Chip Router Design. Proc. ICCAD
2004
[7] W.J. Dally and C. Seitz. The Torus Routing Chip.
Distributed Computing, vol. 1, no. 3, 1986, pp. 187-196
[8] H. Sarbazi-Azad, A. Khonsari and M. Ould-khaoua.
Performance Analysis of Deterministic Routing in Wormhole k-
ary n-cubes with Virtual Channels. Journal of Interconnection
Networks, 2002, vol. 3
[9] S. Loucif and M. Ould-khaoua. Modeling Latency in
Deterministic Wormhole Routed Hypercube under Hot-Spot
Traffic. The Journal of Supercomputing, March 2004
[10] C. Roche, P. Palnati and M. Gerla. Performance of
Congestion Control Mechanisms in Wormhole Routing
Networks. IEEE Infocom'97, Japan, 1997
[11] J. Kim, and C. R. Das. Hypercube Communication Delay
with Wormhole Routing. IEEE Trans. on Comp., 1994
[12] R. I. Greenberg and L. Guan. Modeling and Comparison of
Wormhole Routed Mesh and Torus Networks. IASTED, 1997
[13] B. Ciciani, M. Colajanni and C. Paolucci. Performance
Evaluation of Deterministic Wormhole Routing in k-ary n-cubes.
Journal of Parallel Computing, Dec. 1998
[14] J. T. Draper and J. Ghosh. A Comprehensive Analytical
Model for Wormhole Routing in Multicomputer Systems.
Journal of Parallel and Distributed Computing, 1994
[15] W. Dally. Performance Analysis of k-ary n-cube
Interconnection Networks. IEEE Trans. on Comp., June 1990
[16] W. Dally. Virtual Channels Flow Control. Proc. ISCA,
1990
[17] L. Kleinrock. Queuing Systems, volume 1: Theory, John
Wiley & Sons Inc, New York, 1975
[18] OPNET modeler (www.opnet.com)

