

978-1-4799-6007-1/14/$31.00 ©2014 IEEE

Memristive Multistate Pipeline Register

Shahar Kvatinsky, Yuval H. Nacson, Yoav Etsion,
Avinoam Kolodny, and Uri C. Weiser

Department of Electrical Engineering
Technion – Israel Institute of Technology

Haifa 3200000, ISRAEL

skva@tx.technion.ac.il

Ravi Patel and Eby G. Friedman

Department of Electrical and Computer Engineering

University of Rochester
Rochester, New York 14627, USA

Abstract— Over the past years, new memory technologies such
as RRAM, STT-MRAM, and PCM have emerged. These
technologies employ devices located within the metal layers of
the chip, which are relatively fast, dense, and power efficient
and can be considered as 'memristors'. In this paper, we
present these emerging memory technologies as enablers to the
era of memory-intensive computing, which brings interesting
opportunities for novel architectural applications. As an
example, we present the multistate pipeline register (MPR), a
structure that stores the microarchitectural state of multiple
threads. We show that MPR can eliminate the need to flush the
pipeline upon a thread switch in Switch-on-Event (SoE) multi-
threading machines. We call the new microarchitectural
scheme, Continuous Flow Multi-Threading (CFMT), and
compare the performance and power consumption against
traditional SoE machines. Memristor-based CFMT exhibits an
average performance improvement of 32%, while reducing
power consumption by 8.5%, thereby significantly increasing
the performance to energy ratio.

Index Terms—Memristor, Memristive device, STT-MRAM,

PCM, RRAM, multithreading, CFMT, multistate register.

I. INTRODUCTION

In recent years, new memory technologies (e.g., RRAM, STT-
MRAM, and PCM) have emerged. Although these memories have
primarily been investigated as potential replacements for flash
memory, these emerging memories have also exhibited the
potential to replace other memory technologies, offering new
characteristics for the memory hierarchy [1]. These emerging
memory technologies are nonvolatile, relatively fast, low power,
and dense. While the physical mechanisms are different, all of
these technologies rely on resistance to represent the stored logical
state and can therefore be referred to as memristive devices [2] (or
for simplicity, as memristors [3])1.

One interesting shared characteristic of these emerging memory
devices is that these devices are fabricated between two layers of
metal. Memristors can therefore be fabricated above the CMOS
layers with good integration and extremely high density (the
memristors can be stacked on several layers to further increase
density). With many memory elements located above the CMOS
logic, a significant change in computer architecture is possible –
opening the era of Memory Intensive Computing. Memory
intensive computing does not only mean larger and faster
conventional memories (e.g., a cache or register file). Memory
intensive computing also includes new microarchitectures and
novel memory elements, which use the "sea of memory" located

1
 Although the use of the term memristor for these emerging memory

elements is still under debate, in this paper, we refer to any device that is
nonvolatile, dense, and resistance-based as a memristor.

above the standard CMOS circuits to enhance the performance of
processors while reducing power dissipation.

In this paper, a new memory structure – the Multistate Pipeline
Register (MPR) is presented to demonstrate a memory intensive
architecture. An MPR stores the data of different instructions in the
pipeline during execution, similar to regular pipeline registers.
Unlike regular pipeline registers, an MPR can store the state of
numerous different instructions from different threads. The high
number of threads stored in a single MPR is achieved due to the high
density of memristors and the short distance from the pipeline stages
to the MPR. In this paper, MPRs are used to reduce the penalty of a
thread switch on a Switch-on-Event multithreading (SoE) processor,
enabling a new microarchitecture – Continuous Flow Multithreading
(CFMT) [4]. CFMT achieves significantly higher performance than
SoE, and comparable performance to Simultaneous multithreading
(SMT), while keeping the complexity and power significantly lower
than SMT and similar to SoE. CFMT shows on average 32%
performance improvement as compared to Switch-on-Event
multithreading and up to a 75% improvement for floating point
benchmarks, while also reducing the energy by 8.5% [5].

II. RRAM-BASED MULTISTATE REGISTER

The introduction of massive amount of memory elements above
the CMOS logic creates an opportunity to store data created at the
CMOS level. The multistate register is a novel memory structure,
used to store multiple bits within a single element. One set of bits is
an active set, while the other sets are idle and stored for future usage.
The multistate register is a synchronous storage element, when the
procedure to change the active set is synchronized by a clock. The
basic logic structure of a multistate register is shown in Figure 1.

Although it is possible to design a CMOS SRAM-based multistate
register (or any other conventional memory technology), emerging
memory technologies enable high capacity multistate registers due to
the high density and low leakage. SRAM-based multistate register
has high area, while the equivalent RRAM-based multistate register
requires a relatively small area overhead. For example, a 64 state
multistate register of SRAM based on a 22 nm CMOS process is 83
times larger than RRAM-based multistate register. An RRAM-based
multistate register is shown in Figure 2 [6]. In this circuit, the
inactive bits are stored within the RRAM layer, where compatibility
with existing digital circuits is used to store the active bits within
standard CMOS D flip flops. The switching procedure between the
active set and idle sets is achieved in two phases – the previously
active set is initially written into the memristor layer following by
reading of the data from the desired idle set into the CMOS layer.

A multistate register can be used for different purposes. In this
paper, the application of multistate pipeline registers (MPR) is
described and demonstrated. In pipeline registers, the state of the
instruction from the preceding pipeline stage is stored and transferred
to the next pipeline stage. In an MPR, additional instructions are also
stored within the MPR in background. The basic functionality of the
pipeline is therefore unchanged. An opportunity exists to use the

Figure 2: RRAM-based single bit multistate register.

Figure 3: Continuous Flow Multithreading structure. A multistate
pipeline register (MPR) is located between each two pipeline stages
instead of a conventional pipeline.

Figure 1: The logic structure of a multistate register. The size of each set

is m bits, while n states are stored. The multistate register is
synchronized by a clock and can switch the active set.

MPR in multithreaded processors without the need for additional
buffers. In the next section, a novel microarchitecture –
Continuous Flow Multithreading (CFMT) [4], is described and
evaluated based on a memristive MPR. In CFMT, an MPR stores
multiple machine states of different threads, where a single thread
is active at a time, enabling higher throughput computing.

III. CONTINUOUS FLOW MULTITHREADING

Using MPRs as pipeline registers in multithreaded processors
can enhance performance by minimizing the switch penalty. In
conventional pipelines, the pipeline registers are located between
pipeline stages to store the state of the predecessor instructions
before moving the state to the next pipeline stage. Conventional
pipeline registers are replaced by MPRs, as shown in Figure 3. The
use of MPRs instead of regular registers saves the state of the
stalled threads in addition to the state of the active thread. The
mechanism of thread switching is therefore different from a
conventional SoE. Rather than flushing the pipeline, the states of
the consecutive instructions are stored within the MPRs, locally
near the relevant pipeline stage. Furthermore, rather than refilling
the pipeline, instructions from the new active thread are read from
the MPRs, significantly reducing the thread switch penalty to the
time required to read data from an MPR. Additionally, the novel
switching mechanism can contribute to power preserving if
reading and writing to the MPR is lower in energy than refilling
the entire pipeline and replaying the flushed instructions.

Lowering the thread switch penalty also enables new events to
trigger a thread switch. With a conventional SoE MT, it is
worthwhile to switch threads on events, when the latency is longer
than the time required to refill the pipeline. With CFMT, the
condition changes and it is effective to switch threads on events
when the latency is longer than the time to switch an active thread
within an MPR. This condition enables additional MCEs that in a
conventional SoE MT stall the pipeline. This improvement further
increases the performance of the processor.

In CFMT, the controller acts similar to a simple conventional
SoE MT. The simplicity of CFMT is achieved since an in-order
mechanism is used and only a single thread is active within the
pipeline at any particular time. While the control mechanism is
simple and the energy is low, CFMT offers significantly higher
utilization and performance that is comparable to state-of-the-art
multithreading mechanisms as an SMT.

IV. CONCLUSIONS

Emerging memory technologies are enabling the era of
memory intensive computing. Memory intensive architectures use
novel memory elements to store data not stored in conventional
architectures to enhance performance, while reducing energy.

As an example of memory intensive computing, the
combination of a novel memory structure, multistate pipeline
register (MPR), with a novel microarchitecture Continuous Flow
Multithreading (CFMT) exhibits a 40% performance improvement

with a reduction in energy, supporting the use of CFMT in low
power machines.

CFMT is a single example of a memory intensive architecture.
Numerous other applications of MPR and other memory elements
based on emerging memory technologies are possible, including
logic with memristors [7-11]. These novel architectures will improve
both performance and energy and extend CMOS by adding
complementary technology to CMOS.

REFERENCES

[1] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "The
Desired Memristor for Circuit Designers," IEEE Circuits and Systems

Magazine, Vol. 13, No. 2, pp. 17-22, second quarter 2013.
[2] L. O. Chua and S. M. Kang, “Memristive Devices and Systems,”

Proceedings of the IEEE, Vol. 64, No. 2, pp. 209- 223, February 1976.
[3] L. O. Chua, “Memristor – The Missing Circuit Element,” IEEE

Transactions on Circuit Theory, Vol. 18, No. 5, pp. 507-519, September
1971.

[4] S. Kvatinsky et al., "Memristor-based Multithreading," IEEE Computer

Architecture Letters, 2013 (in press).
[5] S. Kvatinsky, et al., "On the In-Die 3D Integration of Memory in

CMOS Metal Layers and Its Implications on Processor
Microarchitecture," unpublished.

[6] R. Patel, E. G. Friedman, A. Kolodny, and S. Kvatinsky, "Multistate
Register Based on Resistive RAM (ReRAM) – A Novel Digital
Circuit," IEEE Transactions on Very Large Scale Integration (in
review).

[7] S. Kvatinsky, et al., "Memristor-based Material Implication (IMPLY)
Logic: Design Principles and Methodologies," IEEE Transactions on

Very Large Scale Integration (VLSI) (in press).
[8] Y. Levy, et al., "Logic Operation in Memory Using a Memristive Akers

Array," Microelectronics Journal (in press).
[9] S. Kvatinsky, et al., "MAGIC – Memristor Aided LoGIC," IEEE

Transactions on Circuits and Systems II: Express Briefs (in review).
[10] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,

"Memristor-based IMPLY Logic Design Flow," Proceedings of the

IEEE International Conference on Computer Design, pp.142-147,
October 2011.

[11] S. Kvatinsky, et al., "MRL – Memristor Ratioed Logic," Proceedings of

the International Cellular Nanoscale Networks and their Applications,
pp. 1-6, August 2012.

