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Abstract— Over the past years, new memory technologies such 
as RRAM, STT-MRAM, and PCM have emerged. These 
technologies employ devices located within the metal layers of 
the chip, which are relatively fast, dense, and power efficient 
and can be considered as 'memristors'. In this paper, we 
present these emerging memory technologies as enablers to the 
era of memory-intensive computing, which brings interesting 
opportunities for novel architectural applications. As an 
example, we present the multistate pipeline register (MPR), a 
structure that stores the microarchitectural state of multiple 
threads. We show that MPR can eliminate the need to flush the 
pipeline upon a thread switch in Switch-on-Event (SoE) multi-
threading machines. We call the new microarchitectural 
scheme, Continuous Flow Multi-Threading (CFMT), and 
compare the performance and power consumption against 
traditional SoE machines. Memristor-based CFMT exhibits an 
average performance improvement of 32%, while reducing 
power consumption by 8.5%, thereby significantly increasing 
the performance to energy ratio.  

 
Index Terms—Memristor, Memristive device, STT-MRAM, 

PCM, RRAM, multithreading, CFMT, multistate register. 

I. INTRODUCTION 

In recent years, new memory technologies (e.g., RRAM, STT-
MRAM, and PCM) have emerged. Although these memories have 
primarily been investigated as potential replacements for flash 
memory, these emerging memories have also exhibited the 
potential to replace other memory technologies, offering new 
characteristics for the memory hierarchy [1]. These emerging 
memory technologies are nonvolatile, relatively fast, low power, 
and dense. While the physical mechanisms are different, all of 
these technologies rely on resistance to represent the stored logical 
state and can therefore be referred to as memristive devices [2] (or 
for simplicity, as memristors [3])1.  

One interesting shared characteristic of these emerging memory 
devices is that these devices are fabricated between two layers of 
metal. Memristors can therefore be fabricated above the CMOS 
layers with good integration and extremely high density (the 
memristors can be stacked on several layers to further increase 
density). With many memory elements located above the CMOS 
logic, a significant change in computer architecture is possible – 
opening the era of Memory Intensive Computing. Memory 
intensive computing does not only mean larger and faster 
conventional memories (e.g., a cache or register file). Memory 
intensive computing also includes new microarchitectures and 
novel memory elements, which use the "sea of memory" located 

                                                           
1
 Although the use of the term memristor for these emerging memory 

elements is still under debate, in this paper, we refer to any device that is 
nonvolatile, dense, and resistance-based as a memristor. 

above the standard CMOS circuits to enhance the performance of 
processors while reducing power dissipation. 

In this paper, a new memory structure – the Multistate Pipeline 
Register (MPR) is presented to demonstrate a memory intensive 
architecture. An MPR stores the data of different instructions in the 
pipeline during execution, similar to regular pipeline registers. 
Unlike regular pipeline registers, an MPR can store the state of 
numerous different instructions from different threads. The high 
number of threads stored in a single MPR is achieved due to the high 
density of memristors and the short distance from the pipeline stages 
to the MPR. In this paper, MPRs are used to reduce the penalty of a 
thread switch on a Switch-on-Event multithreading (SoE) processor, 
enabling a new microarchitecture – Continuous Flow Multithreading 
(CFMT) [4]. CFMT achieves significantly higher performance than 
SoE, and comparable performance to Simultaneous multithreading 
(SMT), while keeping the complexity and power significantly lower 
than SMT and similar to SoE. CFMT shows on average 32% 
performance improvement as compared to Switch-on-Event 
multithreading and up to a 75% improvement for floating point 
benchmarks, while also reducing the energy by 8.5% [5]. 

II. RRAM-BASED MULTISTATE REGISTER 

The introduction of massive amount of memory elements above 
the CMOS logic creates an opportunity to store data created at the 
CMOS level. The multistate register is a novel memory structure, 
used to store multiple bits within a single element. One set of bits is 
an active set, while the other sets are idle and stored for future usage. 
The multistate register is a synchronous storage element, when the 
procedure to change the active set is synchronized by a clock. The 
basic logic structure of a multistate register is shown in Figure 1. 

Although it is possible to design a CMOS SRAM-based multistate 
register (or any other conventional memory technology), emerging 
memory technologies enable high capacity multistate registers due to 
the high density and low leakage. SRAM-based multistate register 
has high area, while the equivalent RRAM-based multistate register 
requires a relatively small area overhead. For example, a 64 state 
multistate register of SRAM based on a 22 nm CMOS process is 83 
times larger than RRAM-based multistate register. An RRAM-based 
multistate register is shown in Figure 2 [6]. In this circuit, the 
inactive bits are stored within the RRAM layer, where compatibility 
with existing digital circuits is used to store the active bits within 
standard CMOS D flip flops. The switching procedure between the 
active set and idle sets is achieved in two phases – the previously 
active set is initially written into the memristor layer following by 
reading of the data from the desired idle set into the CMOS layer. 

A multistate register can be used for different purposes. In this 
paper, the application of multistate pipeline registers (MPR) is 
described and demonstrated. In pipeline registers, the state of the 
instruction from the preceding pipeline stage is stored and transferred 
to the next pipeline stage. In an MPR, additional instructions are also 
stored within the MPR in background. The basic functionality of the 
pipeline is therefore unchanged. An opportunity exists to use the 



 
 

 

Figure 2: RRAM-based single bit multistate register. 

 
Figure 3: Continuous Flow Multithreading structure. A multistate 
pipeline register (MPR) is located between each two pipeline stages 
instead of a conventional pipeline. 

 

Figure 1: The logic structure of a multistate register. The size of each set 

is m bits, while n states are stored. The multistate register is 
synchronized by a clock and can switch the active set.  

MPR in multithreaded processors without the need for additional 
buffers. In the next section, a novel microarchitecture – 
Continuous Flow Multithreading (CFMT) [4], is described and 
evaluated based on a memristive MPR. In CFMT, an MPR stores 
multiple machine states of different threads, where a single thread 
is active at a time, enabling higher throughput computing. 

III. CONTINUOUS FLOW MULTITHREADING 

Using MPRs as pipeline registers in multithreaded processors 
can enhance performance by minimizing the switch penalty. In 
conventional pipelines, the pipeline registers are located between 
pipeline stages to store the state of the predecessor instructions 
before moving the state to the next pipeline stage. Conventional 
pipeline registers are replaced by MPRs, as shown in Figure 3. The 
use of MPRs instead of regular registers saves the state of the 
stalled threads in addition to the state of the active thread. The 
mechanism of thread switching is therefore different from a 
conventional SoE. Rather than flushing the pipeline, the states of 
the consecutive instructions are stored within the MPRs, locally 
near the relevant pipeline stage. Furthermore, rather than refilling 
the pipeline, instructions from the new active thread are read from 
the MPRs, significantly reducing the thread switch penalty to the 
time required to read data from an MPR. Additionally, the novel 
switching mechanism can contribute to power preserving if 
reading and writing to the MPR is lower in energy than refilling 
the entire pipeline and replaying the flushed instructions. 

Lowering the thread switch penalty also enables new events to 
trigger a thread switch. With a conventional SoE MT, it is 
worthwhile to switch threads on events, when the latency is longer 
than the time required to refill the pipeline. With CFMT, the 
condition changes and it is effective to switch threads on events 
when the latency is longer than the time to switch an active thread 
within an MPR. This condition enables additional MCEs that in a 
conventional SoE MT stall the pipeline. This improvement further 
increases the performance of the processor. 

In CFMT, the controller acts similar to a simple conventional 
SoE MT. The simplicity of CFMT is achieved since an in-order 
mechanism is used and only a single thread is active within the 
pipeline at any particular time. While the control mechanism is 
simple and the energy is low, CFMT offers significantly higher 
utilization and performance that is comparable to state-of-the-art 
multithreading mechanisms as an SMT. 

IV. CONCLUSIONS 

Emerging memory technologies are enabling the era of 
memory intensive computing. Memory intensive architectures use 
novel memory elements to store data not stored in conventional 
architectures to enhance performance, while reducing energy. 

As an example of memory intensive computing, the 
combination of a novel memory structure, multistate pipeline 
register (MPR), with a novel microarchitecture Continuous Flow 
Multithreading (CFMT) exhibits a 40% performance improvement 

with a reduction in energy, supporting the use of CFMT in low 
power machines. 

CFMT is a single example of a memory intensive architecture. 
Numerous other applications of MPR and other memory elements 
based on emerging memory technologies are possible, including 
logic with memristors [7-11]. These novel architectures will improve 
both performance and energy and extend CMOS by adding 
complementary technology to CMOS. 
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