
Asynchronous Bit-stream Compression (ABC)
Arkadiy Morgenshtein, Avinoam Kolodny, Ran Ginosar

Electrical Engineering Department, Technion – Israel Institute of Technology, Haifa, 32000, Israel

[arkadiy@tx.technion.ac.il]

Abstract - Asynchronous signaling is used for high-

speed data communication in large Systems-on-Chip in.
The bandwidth limitations of serial link dictate a need
for real-time compression techniques. In this paper we
propose a new technique of Asynchronous Bit-stream
Compression (ABC), based on Level Encoded Dual-
Rail protocol. The ABC method is based on transitions
added to LEDR protocol which allow simple
identification of the compression code and ease its
separate treatment in the receiver. This compression
allows a significant saving in the transmission time and
power without losing data. The concept of ABC is
described in this paper together with the proposed
architecture of its hardware components. Simulations
results are presented for several data patterns with
various differentiation rates. Application of ABC results
in reduction of transmission time by 9% to 54%
depending on type of source data.

I. INTRODUCTION
Data communication in large Systems-on-Chip can be

performed by serial links in order to reduce the wiring
area and power Error! Reference source not
found.Error! Reference source not found.�[1]�[3]. In order
to maintain similar throughput as in case of parallel link,
the data in serial link has to be transferred at much
higher bit-rate. This may be problematic if synchronous
communication protocol is considered, because of the
difficulty in implementation of ultra-fast clock generator
and accompanying circuits needed for synchronization.
Asynchronous signaling is used in order to allow high-
speed communication without the need for clock
generation �[3]Error! Reference source not found.. One
of the popular asynchronous protocols is Level Encoded
Dual Rail (LEDR) protocol which eliminates the need
for handshake signaling �[5].

The relatively low bandwidth of a single wire is the
major limiting factor in serial link performance. In order
to increase the throughput of the data in the serial link
and to utilize the limited bandwidth in the most efficient
manner, encoding techniques can be applied to the data.
One of the most effective techniques for overcoming the
bandwidth limitations of serial link is the real-time
compression �[7].

In this paper we propose a new technique of
Asynchronous Bit-stream Compression (ABC), based

on utilization of previously unused transitions in the
state machine of Level Encoded Dual-Rail protocol. The
proposed technique allows significant savings in terms
of transmission time and power consumption in
asynchronous serial link, by effectively detecting and
compressing sequences of identical symbols in the bit
stream.

The paper is composed of the following sections. The
Asynchronous Bit-Stream Compression technique is
described in Section �II. Section �III presents the
architecture of ABC. The results of ABC application to
variety of data patterns are given in Section �IV. The
work is summarized in Section �V.

II. ABC CONCEPT
The concept of LEDR is illustrated in �Fig. 1a. The

basic LEDR state machine is based on two signals of
state (S) and phase (P). If the value of the signal is
different from the previous state, S is toggled; if the
value is same as before, P is toggled. In this manner, the
transitions between the sequent symbols can be
identified, while only one of the signals S or P is
toggling at each transition. Note, that in LEDR machine
none of the transitions occur between states with change
in more than one signal at same time.

�� ��

�� ��

�
�
��

�

�

�

� � �

� � 	
 � �

�� ��

�� ��

�
�
��

�

�

�

� � � ��

��� ���

Fig. 1. Comparison of ABC and LEDR state machines

The state machine for communication protocol with
Asynchronous Bit-stream Compression in presented in
�Fig. 1b. ABC is based on LEDR state machine, while
utilizing the four missing transitions in the LEDR. The
additional transitions (00�11 and 10�01) are
implemented to encode the sequences of identical
signals. These transitions are used to indicate the
beginning of the compression and its end in the data
flow. The fact that the transitions are different from the

standard LEDR protocol allows simple identification of
the code, without need for additional signaling. The
implementation of the ABC signals has relatively low
hardware penalty due to basing on the existing state
machine.

The application of the ABC technique can be
described using the following algorithm:

a. Identify a sequence of identical bits
b. Mark the beginning of the sequence by one of the

ABC transitions
c. Transmit the length of the sequence
d. Mark the end of the encoding by one of the ABC

transitions.

The Asynchronous Bit-stream Compression is
exemplified in �Fig. 2. In the LEDR protocol the data is
encoded using State and Phase signal. In case of
appearance of long sequence of bits with identical
value, the Phase signal continues triggering to represent
the different bits. In this case, both the transmission
time and the power consumption caused by Phase
transactions can be saved by applying the ABC
technique. As can be seen from the example, when a
sequence is identified, it is encoded by ABC to a string
containing the number of signals in the sequence framed
by two specific ABC transitions. The new ABC
transitions allow simple identification of the code and
ease its separate treatment in the receiver. This
compression allows a significant reduction of number of
transitions in the link without loss of data.

Fig. 2. Example of transitions saving in ABC.

III. ABC ARCHITECTURE
The ABC algorithm requires implementation of

specific hardware elements that will be responsible for
the processing of the data before and after the
transportation along the link. In this section we describe
the architecture of the ABC transmitter and receiver.

ABC Transmitter - The architecture of ABC
transmitter is shown in the block diagram in �Fig. 3. The
transmitter is composed of three major modules – the
sequence detector, the controller and the ABC state
machine. The block diagram contains also the input
register and the serializer, which are typical components
of the serial link.

Fig. 3. Block diagram of ABC transmitter.

The architecture of ABC transmitter is presented here
for 32-bit register. The modules described below are
developed for this data length. However, the concept
can be easily extended to larger number of data bits.

Sequence detector – The detection is preformed using
two sequence detectors operating in parallel in order to
reduce the processing time. Each sequence detector is
scanning a 16-bit part of the register by a “window”
containing eight 2-bit XOR gates. Each XOR compares
a pair of sequent bits in the register. Once a sequence of
identical bits is identified, the sequence detector stores
the index of sequence and its length in the sequence
registers. Note that a single sequence can start in one
part of the register and end at the other. In this case it is
identified by the sequence detectors as two sequences
and the indexes of each sequence in the each part are
stored by the related sequence detector in the sequence
registers.

Controller – Once the indices of the sequences are
stored in the registers, there is a need to check if these
are separate sequences, or parts of a longer sequence.
This operation is performed by the sequence stapler.
When the sequences parts are combined, the final
indexes of all sequences and their lengths are stored in
registers. The indexes are used during the transmission
by the sequence counter for signaling to the MUX and
the encoder when the compression starts (signals index
and compression_enable) and what is the length of the
sequence to be encoded (signal sequence_length).

ABC state machine – The state machine of Dual Rail
encoder is modified to contain the additional transitions
of ABC as was shown in �Fig. 1b. The encoder has two
operation modes: a) regular LEDR protocol for
uncompressed data, b) ABC mode for compressed data.
The transition between the modes is performed
according to the signal from the controller. The
beginning and the end of the compression are
symbolized by ABC transitions. After the compressed
sequence is transmitted, the controller sets the index of
the MUX to point on the bit following the sequence in

the register and the transmission continues in regular
LEDR mode until the index of next sequence is reached.

ABC Receiver – The architecture of ABC receiver is
shown in �Fig. 4. The presented structure contains the
output register of the link. The operation of the receiver
in this case combines the decoding of the data from
dual-rail to single-bit flow controlled by clock generated
from the S and P signals, conversion of the data from
serial to parallel format and decompression of the
sequences that were processed by ABC.

Clock generator – This module translates the
transitions in S and P signals into clock pulses. The
clock is used for synchronization of the data storage in
the output register, as well as the controlling the state
machine. The additional function integrated in the
clock generator is the identification of the ABC
transitions used for signaling of compression beginning.
When the ABC transition is identified the
compression_start signal is toggled in the input to FSM,
causing it to switch to a different operation mode.

Enabling decoder – The conversion of the data from
serial to parallel is performed here by providing the
Data signal to all the cells of the register and controlling
the enable signal of each cell in order to write the data
to the related location in the register. These enable
signals are set by the enabling decoder. When the data is
received in regular LEDR mode, the enabling decoder
allows only one enable signal to be activated in every
cycle. When ABC mode is activated for decompression,
the enabling decoder activates the enable signals
starting from the index comp_from till the index
comp_till. This type of operation allows a fast storage
of the sequence data during the decompression, while
all the cells get the same value in a single clock cycle.

Receiver FSM – The structure of the receiver final
state machine is shown in �Fig. 5. The operation starts at
the Count mode, in which with each clock pulse an
internal counter is increased by one. The counter
controls the enabling decoder in order to enable one
register cell for writing during each clock cycle. When
ABC compression is identified and comp_start signal is
toggled, the FSM switches to Comp_Decode mode. It
stays in this mode until all the bits of sequence length
code are received. After the length is known, the FSM
switches to Comp-Write state and creates two signals for
the indexes of sequence beginning and end –
comp_from and comp_till. These signals are entered to
the enabling encoder to enable the related cells in the
register for writing. At the next clock the FSM returns
to the regular operation mode.

Design Considerations – The proposed architecture of
the ABC ink interfaces has some specific parameters
that have to be considered during the design of the link.
While the packet size was considered here as 32 bit, the
design considerations described here can be easily
adjusted to different packet sizes as well.

�
�

�
��

�
�
��

�
��

��
��

�
��

Fig. 4. Block diagram of ABC receiver.

Fig. 5. Receiver final state machine

As was shown, the detection of the sequence is
performed using 8-bit sets of XOR gates on 16-bit
portion of the data. The detection process will last for 8
clock cycles. This consideration may influence the
design of the system while several architecture
alternatives can be proposed.
a. The ABC transmitter can be modified by addition

of a register. In this case two packets will be
contained in the transmitter. The detection of the
sequences in one packet can be performed
simultaneously with the transmission of the other
packet. In this manner, a maximal throughput will
be maintained, traded off with increased area and
power consumption.

b. The transmission of the packet can be delayed by 8
clock cycles in order to allow the scanning of all
the bits and detection of the sequences. In this case,
no additional register is needed, but there is a
penalty in terms of transmission time.

c. The transmission time, area and power can be saved
by compromising on the compression efficiency of
ABC. The first 8 bits of the packet can be
transmitted without compression, while at the same
time, scanning and detection of the sequences is
performed on the remaining 24 bits.

In this work we adopt the third option for ABC
transmitter implementation. This architecture defines
the maximal length of the sequence that can be detected
and treated as function of packet length, sequence
detector size and the size of XOR “window”:

� �
max _ _seq packet Seq detector XOR windowL L L L� � � (1)

The number of sequences that can be detected is also a
parameter that can be controlled during the design. The
maximal number of sequences that can be detected in a
packet is a function of the relation between the sizes of
sequence detector, the packet length and the XOR
“window”:

max

_ _
2

_ _ _

packet Seq detector packet XOR window
seq

Seq detector XOR window Seq detector

L L L L
N

L L L

�
� �

 (2)
In this work, each sequence detectors is capable of

identifying up to two sequences. As can be seen, in the
proposed transmitter architecture up to four sequences
can be detected in 32-bit packet. These numbers, of
course, can be changed for different architecture, or
different implementation of the sequence detector.

IV. RESULTS
ABC system containing transmitter, receiver and 32-

bit registers was designed using VHDL code. The
evaluations of the system showed that transmission time
of the uncompressed packet is 655ns. In case of a packet
with maximal compression rate with 24-bit sequence of
identical bits out of 32 bits in the packet, the
transmission time was reduced to 295ns, resulting in
55% improvement.

The specific improvement rate in transmission time of
each packet depends on the number and lengths of
sequences in the packet. The example in �Fig. 6 shows
the results of simulation of ABC with a series of random
packets with various number and lengths of sequences.
As can be seen, the compression rate differs among the
packets, while the transition time is between maximum
655 nsec and minimum 295 nsec.

Fig. 6. Receiver final state machine

The effectiveness of ABC compression can be best
exemplified by a visual example, while applying the
compression to image data. In order to evaluate the
effectiveness of ABC, three images were chosen with
various differentiation levels (�Fig. 7). The images were
represented in 32-bit format and the value of each pixel
was treated as a separate packet. The data blocks were
transmitted through the serial link, while measuring the
transmission time with and without the ABC
compression.

Fig. 7. Images with differentiation varying from high (a)
to low (c) used for compression effectiveness evaluation.

Image (a) (b) (c)
Image size [kb] 25 10 6.5

TX original [ms] 0.51 0.20 0.13
TX by ABC [ms] 0.47 0.13 0.06
TX reduction [%] 9 36 54

Table 1. Results of ABC effectiveness evaluation.

The results of ABC compression are presented in
�Table 1. The transmission time was reduced by 9% to
54% for images with high and low differentiation,
respectively. The reduction of the number of transitions
by ABC would also reduce dynamic power.

V. SUMMARY
Asynchronous Bit-stream Compression (ABC) was

proposed in this paper, based on Level Encoded Dual-
Rail protocol. The compression allows a significant
saving in the transmission time and power without
losing data. The concept of ABC is described in this
paper together with the proposed architecture and
design considerations. Simulations results are presented
for several data patterns with various differentiation
rates. Application of ABC reduces the transmission time
by 9% to 54% depending on type of source data.

REFERENCES
[1] I. Saastamoinen, T. Suutari, J. Isoaho, J. Nurmi,

"Interconnect IP for gigascale SoC", ECCTD, pp.
116-120, 2001.

[2] T. Suutari, J. Isoaho and H. Tenhunen, ”High-speed Serial
Communication With Error Correction Using 0.25 µm
CMOS Technology,” ISCAS, pp. 618-621, 2001.

[3] I.B. Dhaou, E. Dubrova, H. Tenhunen, “Power efficient
inter-module communication for digit-serial DSP
architectures in deep-submicron technology”, Multiple-
Valued Logic, pp. 61-66, 2001.

[4] A. Morgenshtein, I. Cidon, A. Kolodny, R. Ginosar,
“Comparative Analysis of Serial and Parallel Links in
Networks-on-Chip”, SoC, Finland, pp. 185-188, 2004.

[5] R. Dobkin, I.Cidon, R.Ginosar, A.Kolodny,
A. Morgenshtein, "Fast Asynchronous Bit-Serial
Interconnects for NoC", CCIT #529, Technion.

[6] M.T. Dean, T. Williams et al. “Efficient Self-Timing with
Level-Encoded 2-Phase Dual-Rail (LEDR),” ARVLSI, pp.
55-70, 1991.

[7] S. Ogg, B. Al-Hashimi, “Improved Data Compression for
Serial Interconnected Network on Chip through Unused
Significant Bit Removal”, VLSID, pp. 525-529, 2006.

