
Fast Asynchronous Shift Register for Bit-Serial Communication

Rostislav (Reuven) Dobkin, Ran Ginosar, Avinoam Kolodny
VLSI Systems Research Center, Technion—Israel Institute of Technology, Haifa 32000, Israel

rostikd@tx.technion.ac.il

Abstract

A fast asynchronous shift register is used as the
serializer and de-serializer in a novel bit-serial on-chip
communication link. The link employs two-phase
transition-based LEDR encoding. Acknowledgement is
generated only at the word level, rather than bit by bit.
The shift register is designed to achieve bit time of a
single gate delay. It is based on a wave-pipelined control
path and on transition latches. The circuit achieved 67
Gbps data rate when simulated on 65nm CMOS
technology and was immune to in-die process variations
of up to 10σ.

1. Introduction

Delays over global wires in large systems on chip
(SoC) do not scale with technology. This problem
challenges on-chip data communications in terms of
latency, throughput and power. Large SoCs typically
require multiple long data channels that interconnect far-
away modules. Bit parallel data links provide high data
rates at the cost of large chip area, routing difficulty, and
high power. In addition, such links are often utilized only
a small portion of the time, but dissipate leakage power at
all times. Leakage is incurred at the line drivers and also
at the repeaters, which are often necessary for long
interconnects.

Bit-serial communication offers an alternative to bit-
parallel interconnects, mitigating the issues of area,
routability, and leakage power, since there are fewer
wires, fewer line drivers, and fewer repeaters. However, in
order to provide the same throughput as an N-bit parallel
interconnect, the serial link must operate N times faster.

Point-to-point communications over long data links in
large SoCs may cross multiple clock domains, requiring
synchronization, whether the link is bit-parallel or serial.
A common timing mechanism for serial interconnects
injects a clock into the data stream at the transmitting side
and recovers the clock at the receiver. Such clock-data
recovery (CDR) circuits often require a power-hungry
PLL, which may also take a long while to converge on the
proper clock frequency and phase at the beginning of each

transmission. If the receiver and transmitter operate in
different clock domains, the transaction must also be
synchronized at the target, incurring additional time delay
and power. Alternatively, an asynchronous data link
employs handshake instead of clocks. Traditional
asynchronous protocols are relatively slow due to return-
to-zero (RTZ) requirement and the need to acknowledge
transitions [1] [1] [2] [2]. Recently proposed improvements
of conventional asynchronous protocols share data lines,
but their performance depends on wire delays [3] [3]. We
investigate a faster serial communication protocol which
is designed to overcome the wire delay limitation.

A non-return-to-zero (NRZ) asynchronous protocol is
investigated. Each bit is encoded by a single transition.
The protocol avoids the usual per-bit acknowledgment,
providing only per-word acknowledgement instead. The
minimal inter-bit separation time is a single gate delay
(FO4 inverter delay of the technology, e.g. 15 ps for high
performance 65 nm process). The throughput is not
bounded by wire delay any more, but rather by gate delay.
Simulations of our circuits show correct operation at the
maximal required data rate (67 Gbps on 65 nm CMOS).

The one gate delay data cycle requirement is
challenging the transmitter (serializer, line drivers), the
channel wires, and the receiver. In this paper we focus on
the shift-register in the serializer and de-serializer of the
transmitter and receiver, respectively.

Section 2 2 reviews previously published high speed
asynchronous shift registers and pipelines. Section 3 3
presents the architecture of the bit-serial data link. The
fast serializer and de-serializer are described in Section
 4 4, and the asynchronous shift-register design is detailed
in Section 5 5. The circuit is studied in Section 6 6, and
simulation results are discussed in Section 7 7.

2. Previous Work

Numerous high-speed asynchronous shift registers,
FIFOs and related pipelining techniques have been
published. The fastest designs employ QDI
 [2] [2] [4] [4] [5] [5], GasP [6] [6]— [9] [9], and Wave-
Pipelining [10] [10]— [13] [13]. Other fast circuits have
also been proposed [14] [14]— [17] [17].

Table 1: Data Cycle Mapping For Bit-Serial Versions of Several Pipelines

Name Data Cycle
(# of FO4 Inv. Delays)

Data Cycle
(# of Transitions)

Family Reference

PCHB 18.6* (0.8 Gbps at 250nm) 14 QDI [4] [4]
PCFB 21.3* (0.7 Gbps at 250nm) 12 QDI [4] [4]
RSPCHB 16.6* (0.9 Gbps at 250nm) 14 QDI [4] [4]
WCHB 14.9* (1.0 Gbps at 250nm) 10 QDI [4] [4] [5] [5]
RSPCFB 14.9* (1.0 Gbps at 250nm) 10 QDI [4] [4]
1-of-4 10.0 (0.6 Gbps at

350nm)*
6** QDI [2] [2]

STFB 9.3* (1.6 Gbps at 250nm) 6 QDI [5] [5]
RSDL 5.1* (4.2 Gbps at 180nm) 6 Dual Rail [14] [14]
asP* FIFO 3.6* (1.7 Gbps at 600nm) 6** GasP [6] [6]
GasP FIFO 7.0* (1.5 Gbps at 350nm) 6 GasP [7] [7] [8] [8] [9] [9]
Wave-Pipelined Shift-
Register

7.1* (3.0 Gbps at 180nm) Wave-
Pipe

 [12] [12] [13] [13]

Surfing 5.0 (2.1 Gbps at
350nm)*

6 Wave-
Pipe

 [10] [10] [11] [11]

MCML 3* (6.7 Gbps at 180nm) [16] [16]
Analog Pipeline 2-3 (4.8 Gbps at

180nm)*
 [14] [14]

This Work 1 or
less

(67 Gbps at 65nm) 1

*Estimated data cycle/rate according to reported maximal throughput/minimal data cycle and values listed in Table
2Table 2.

**Estimated.

Table 2: Examples of One-Gate Delay Values
Scaled with Technology

Technology FO4 Inverter
Delay*

Rate Upper
Bound

600 nm 165 ps 6.1 Gbps
350 nm 95 ps 10.5 Gbps
250 nm 67 ps 14.9 Gbps
180 nm 47 ps 21.3 Gbps
130 nm 33 ps 30.3 Gbps
90 nm 22 ps 45.5 Gbps
65 nm 15 ps 67 Gbps

*Delays are based on High Performance processes
 [18] [18]

Table 1Table 1 lists different pipeline techniques

according to their minimal data cycle. Some of the
techniques, e.g. wave-pipelining, are not applicable to
SR/FIFO implementations, since they cannot be stopped
by the input control signal and cannot store all internal
states (some waves disappear). Wave-pipelining is latch-
less technique that supports very high throughput, where
only the final result at the pipeline output is sampled. The

techniques that provide storage capability require data
cycles longer than a single gate delay. Table 2Table 2
provides reference gate-delay values for the high-
performance variant of several technology nodes. These
numbers are scaled for FO4 inverter delays, based on the
FO3 NAND delay model provided by the ITRS [18] [18].
They are used to compute data cycle in terms of the
number of FO4 inverter delays in Table 1Table 1. Next,
we introduce single gate-delay shift-register that meets the
high-rate requirements.

3. A High-Rate Serial Communication

Throughput of a communication line may be enhanced
by pipelining. Synchronous pipelines require clock
distribution and incur flip-flop latencies. Asynchronous
pipelines eliminate the clock and replace flip-flops by
lower latency latches, but incur handshake overhead due
to having to acknowledge each data transfer
 [2] [2] [4] [4] [5] [5]. Non-pipelined methods include source-
synchronous signaling, typically used for chip-to-chip
interconnects [19] [19]— [23] [23]. The principal
disadvantage is the need to embed a very fast clock in the

data at the transmitter and to extract it using a PLL-based
CDR circuit at the receiver. These circuits dissipate high
power, require large area, are sensitive to jitter and are

therefore less attractive for fast on-chip interconnects.
Wave pipelining may help speeding up the pipeline thanks
to eliminating some latches and clocks [24] [24] [25] [25].

Figure 1: Fast Bit-Serial Communication Scheme

We propose a novel serial communication scheme
(Figure 1Figure 1) that employs low-latency
synchronizers at the source and sink [26] [26], two-phase
NRZ Level Encoded Dual Rail (LEDR) asynchronous
protocol (allowing non-uniform delay intervals between
successive bits) [27] [27] [28] [28], serializer and
deserializer, line drivers and receivers, and differential
channel encoding. Acknowledgment is returned only once
per word, rather than bit by bit, enabling multiple bits in a
wave-pipelined manner over the serial channel. The wires
should be designed as wave-guides, enabling multiple
traveling signals. At signal propagation velocity of at least
c/10 on a well-designed wave-guide, and at a desired data
rate of one bit per 15ps (the expected FO4 inverter delay
at 65nm), a 1mm wire may carry at least two successive
bits simultaneously.

Relative to LEDR, other asynchronous data encodings
are slower. Four phase dual rail requires four successive
transitions per data bit. Bundled data encoding is sensitive
to the relative skew of the request and data lines, and
requires about 1.5 transitions per bit (one on request and
one half bit on average on the data line). The 1-of-4
protocol requires four successive transitions per two bits
 [2] [2]. Differential LEDR requires only two simultaneous
transitions per bit. It can also achieve higher reliability
 [29] [29]. The drawbacks of the LEDR code include a
possible asymmetric transition count over the two lines
(causing channel saturation and thus limiting the maximal
speed), the need for an encoder and a decoder, and the risk
of interline skew which may limit data rate.

Shift-Register (P)

Shift-Register (P) P

P

Parallel Load Load Enable

Data

T
TN

Data

Figure 2: Serializer. A Similar Circuit Drives the S
Lines

The LEDR code is defined as follows. A serialized
sequence B(i) of bits is encoded into a sequence S(i), P(i)
of State and Phase bits, respectively. S(i)=B(i) for all i.
Given P(0), if S(i+1)=S(i) then P(i+1) is the inverse of
P(i), otherwise P(i+1)=P(i). Since we employ differential
signaling, the serial channel comprises four wires (S, S', P,
P').

This paper focuses on fast asynchronous serializer and
de-serializer. Both are based on a very fast shift-register.
The architecture and circuit design of the modules are
discussed in the following sections.

4. Serializer and DeSerializer
Architecture

The Serializer Module is shown in Figure 2Figure 2.

Encoded parallel word bits (P and S) and their inverted
values (P' and S') are first loaded in parallel into four shift-
registers. Subsequently, for each incoming transition on T
and TN control lines, each shift-register shifts one bit out.
Note that the data is shifted both on rising and on falling
edges of T. The control signals T and TN are generated
using multi-phase clock generator similar to the one
described in [30] [30].

The de-serializer (Figure 3Figure 3) consists of a dual-
rail XOR gate for transition detection [31] [31], a shift-
register for data sampling and storage, another shift-
register for completion detection, and a parallel-load
output register. In LEDR encoding only one of the
differential pairs at the input (S, S', P, P') makes a
transition per bit. Each transition on either of the two
differential pairs is translated into a transition on the C,
CN control lines. Each transition causes a single shift at
the two shift-registers. Thus, the dual rail XOR retimes the
input data.

The Data Shift-Register (Data-SR) is constructed of
transition latches (XL). Bits propagate in the SR driven by
transitions. For the sake of achieving the fastest possible
shift-register operation, full handshake and
acknowledgement are avoided. Control transitions
propagate in a wave-pipelined manner, and are sensitive to
skew and delay variations. All delays along the pipe are
carefully balanced. Once all bits of a transmitted word
have been stored, bit-parallel decoding can take place at a
slower rate.

XL

P

P

D

X

X

Q

Y

Y

XL

Completion Detection Shift-Register
‘1’

S

S

Output Register

XOR

D

X

X

Q

Y

Y

XL

D

X

X

Q

Y

Y

Data Shift-Register

Req Ack

Reset

Data

C

CN

D

Figure 3: DeSerializer & Decoder Module
The upper shift-register in Figure 3Figure 3 detects the

completion of a full word reception. The Completion
Detection SR is reset at the beginning of each word and
has a fixed ‘1’ at its input.

LEDR decoding is combined with de-serialization
(S(i)=B(i) ∀i; see Section 3 3). Once a transmission is
completed, the Data-SR contains a decoded word that is
sampled into the output register by a signal from
Completion Detection SR. If a second (parallel) data SR is
added too, P bits may also be recorded, enabling codes

other than LEDR.
This The proposed asynchronous SR is designed to

provide a very high throughput, while storing the data and
accommodating varying delays between successive bits.
Below we compare this SR to other high-rate pipelines
and describe the shift-register structure and its operation
in detail.

5. High Data Rate Asynchronous Shift
Register

In order to obtain the desired speed we implement the
SR as shown in Figure 4Figure 4. The SR comprises
transition latches (XL). Each XL has a differential control
signal C, CN, a dual-rail inverting buffer for the controls,
and two separate data paths with internal latches. Each
latch consists of an inverter and a (weak) keeper. The
differential control lines C, CN are connected to the
transmission-gates (TG) of each XL, such that when one
TG is open, the other one in the same XL is closed, and
the situation is reversed in the next XL. The input data D
is forked into two parallel pipes before the first XL, so
that even bits are written into the bottom data-path and
odd bits are directed to the upper one. The control
transitions on C, CN propagate without stopping through
the control wave-pipeline shifting data in the pipe. Note
that the data is sampled and shifted both for the rising and
the falling edges of C/CN.

Figure 4Figure 4 shows the shift-register of the de-
serializer. The shift register in the serializer is very
similar: Its two outputs are combined (through

transmission gates) rather than the inputs. Data is loaded
in parallel into the latches via additional tri-state buffers.

On the arrival of a new data item, and the
corresponding transitions on C, CN, the data item is
written into either the top or the bottom latch of the first
XL. The control transitions continue to propagate, shifting
the data items that are already stored in the SR. To enable
this, the control transitions should propagate through the
XL at least as fast as the data. While data propagation
through the XL takes approximately one gate delay, the
propagation of the control transitions can be made
significantly faster. Our SPICE simulations of 65nm
CMOS show that the control transition delay through XL
is about twice shorter than the gate-delay, over all corners
and all simulated in-die variations. This is achieved thanks
to the fact that buffer fanout is much smaller than four,
especially when the buffer size is large relative to the TGs.
Therefore, during one data cycle of one FO4 gate delay,
the control transitions manage to propagate over two pipe
stages.

Figure 4: One Gate-Delay De-Serializer Shift-Register (Receiver)

Figure 5: SR Operation – One Bit Received. The red double arrow shows the moving control transition.
(a) Initial state. (b) Arrival of bit D1 and control transition. (c) D1 latches at first stage,

control transition moves to second stage. (d), (e) control transition keeps moving.

We demonstrate the operation of the SR by means of
Figure 5Figure 5 through Figure 7Figure 7. First, one bit
D1 is sent to the SR (Figure 5Figure 5). The bit
propagates into the bottom data path and is stored in the
first XL. By the time D1 appears at the XL output, the
subsequent TG is already open, preventing data
propagation into the next stage. The transition wave
(double-arrow) propagates without stopping through the
SR control wave-pipeline, alternating switch connections
at each stage. If there are no further transitions, D1 is
stored in the first SR stage and the upper first latch is
ready to receive new datum.

In Figure 6Figure 6 we demonstrate what happens when
another bit arrives after a long time. The SR initial state
here is the final state of Figure 5Figure 5. The new
transition copies D2 into the first stage of the upper data
path, opening the path to the second stage. In addition, it
closes the TG between the first and second stages of the

bottom path, enabling D1 propagation into the second
stage. Then, operation is stopped again.

In Figure 7Figure 7, inputs arrive at maximal rate, with
one gate delay separation between successive bits. This
demonstrates the maximal operating speed of the SR. Note
that control transitions move twice faster than the data.
Three bits, D3, D4, D5 are received at the highest rate.
When working at the highest rate and observing any single
datum, every other transition causes the datum to move
one stage forward. Thanks to the split at the input of the
SR, the data rate in each data path is twice as slow as the
input data rate. Data sampling operation, however, lasts
only one gate delay at each stage. When the SR is stopped
in Figure 7Figure 7, the bits are spread along the SR. All
bits are stored in two consecutive latches, except for the
first and last bits, which are stored in a single latch each.
In order to store a word of length W, the SR requires W-1
XLs.

Figure 6: SR Operation – Second Bit Received.
(a) Last state. (b) Arrival of bit D2 and second control transition. (c) D2 latches at first stage,

control transition moves to second stage, D1 transfers to second stage.
(d) Control moves on, D1 latched in both first and second stages (e) Final state

D1
D3

D2

D1

Transition 3

D3
D3

D2

D1

D3
D4

D2

D1

Transition 4

D2

D3

D4

D4

D1

D2

D1

D3
D5

D4

D3

D2

D1

Transition 5

D5
D5

D4

D3

D2

D1

D2

D5

D5

D4

D3

D4

D1

D2

D1

D5

D5

D4

D3

D4

D3

D2

D1

D5

D5

D4

D3

D4

D3

D2

D1

D2

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 7: SR Highest Rate Operation. The colored double arrows show successive control transitions.
(a) Arrival of bit D3 (b) D3 overwrites first latch of D1. (c) Arrival of D4; D2 and D1 are shifted forward.

(d) D4 sampled by first stage, D1 finishes right shift, D3 starts right shift. (e) D5 arrives, D3 fully copied,
D2 starts the right shift. (f) D5 sampled in first stage. D4 starts shifting, D2 fully copied, D1 starts
shifting. (g)-(h) continued shifts. (i) First and last bits occupy single latches. Other bits span two

latches each.

6. SR Circuit Design

The control transitions are buffered in each XL. It is
desirable to retime the two transitions, in order to
eliminate relative skew accumulation. Such retiming can
be achieved with a differential inverter. Alternatively, two
simple inverters may be used (Figure 8Figure 8b), as long
as the resulting skew is acceptable. Another risk facing the
use of inverter chains is the disappearance of extremely
short pulses. These two factors could restrict the maximal
SR length.

In the rest of this section we provide computational
analysis for correct sizing of the SR transistors. The TG
circuit (Figure 4Figure 4) suffers of some ringing due to
charge sharing and feed-through effects, and hence we
employ tri-state inverters instead of the TG and the
keeper, as in Figure 8Figure 8a. Data is sampled at the
input of each XL. Correct data sampling during the
allocated time (one gate delay) depends on the drive
capability of the tri-state inverter I and the size of the load.
Control and data lines in Figure 8Figure 8b (CTL[i-1],
CTLN[i-1], D) are matched in terms of delay. The goal is
to find the minimal tri-state inverter I size that allows
correct data sampling.

C and RI values are identified as follows. Node A
capacitance comprises the input gate capacitance of the
forward inverter and the output diffusion capacitances of
inverter I and the keeper. RI is the resistance of the pull-up
stack of the tri-state inverter I:

pmos nmos k pmos k nmos I pmos I nmos
g g diff diff diff diff

pullup
I I

C C C C C C C

R R

− − − −= + + + + +

=

Assume a voltage step function at the input of the RC
stage. The voltage at node A is (V0 is the initial voltage):

0() () I
T

R C
A DD DDV t V V V e

− ⋅= + − ⋅ (1)
We approximate an ideal rectangular pulse width T at

the input of the RC stage as 10 ps, having in mind a real
pulse width of 15 ps (one gate-delay as specified for 65nm
technology). The ideal rectangular pulse is estimated to be
less than one gate-delay due to the facts that rise and fall
times are finite, and that the data (D) is usually somewhat
delayed relative to the control (C, CN). Upon a rising
edge, the voltage on node A must reach the following
value for correct operation:

MIN
A DD TV V V> − (2)

Then, RI⋅C can be expressed as follows:
RI⋅C < −T/ln(VT/VDD) = 7.2 ps

While RI depends only on the tri-state inverter
transistors, C depends also on the latch inverters. Since we
use pre-determined sizes for the two latch inverters, the
given constraint on RI⋅C affects only the tri-state inverter
transistors. Given R and C dependence on transistor sizes,
and selecting minimal L for speed, we can determine the
desired W for the four transistors of inverter I. In order to
assure that the tri-state inverters (I and the keeper) do not
slow down the wave-pipelined control, we use dual-rail
buffers that are four times larger than the driven load. This
simple approach allowed us to obtain a first working
point, which can be optimized later.

Figure 8: XL Data Sampling

Figure 9: 15 ps Data Cycle Operation (Node names are defined in Figure 8Figure 8).
Input D is sampled during the high phase of CTL

7. Simulation Results

SPICE simulations show correct operation of the shift-
register at the target data cycle of 15 ps and target rate of

67 Gbps. The circuit was found operational at 24 PVT
corners, ranging over 0.7—1.35 Volt and -10—110°C. At
the slowest corner (slow N and P transistors, low voltage
and high temperature) the data cycle slowed down to 1.6

times the corresponding gate delay. In all other corners the
data cycle ranged between 0.6 and 1.6 times the
corresponding gate delay. Monte-Carlo simulations for in-
die variations demonstrated correct operation over a very
wide range of variation; the circuit failed only at
variations above 10σ (ten times the standard deviation).

Figure 9Figure 9 shows an example of simulated signal
waveforms at typical operating conditions. Several data
patterns were used during the simulation, causing worst
case operation at different SR stages. The SR ceased to
operate at a data cycle of 13ps.

The SR circuit demonstrates high immunity to delay
variations, including those caused by in-die process
variations, thanks to its asynchronous structure. The
asynchronous wave-pipelined control line is not subject to
delay uncertainty, unlike more complex wave-pipelined
logic. This is because the control consists merely of a
differential line, and the two complementary signal wires
are retimed at each stage by the dual-rail buffer (when
non-differential inverters are used, this immunity may be
limited by the inter-line skew). The data path is also quite
resilient to delay variations: The data are switched and
sampled at each stage, timed by control transitions. Thus,
delay matching is limited to within a single XL stage.

8. Conclusions

We have shown a very fast asynchronous shift register,
designed for high speed bit-serial on-chip interconnection
channel. The channel employs two-phase transition based
LEDR encoding and differential signaling. The channel
operates like a fast wave-pipeline, with multiple bits
traveling on the wires simultaneously. Acknowledgement
is provided only at the word level, in order not to slow
down the transmission. This scheme requires very fast
serializers and de-serializers, consisting of the fast shift
register described in this paper.

The asynchronous shift register can send or receive a
new bit at a data cycle of a single FO4 inverter delay
(15ps on 65nm process). Thus, it can shift data at the fast
rate of 67Gbps. The shit-register is based on novel
Transition Latches, which employ a wave-pipelined
control structure and two parallel latches. On each control
transition at its input, the shift register shifts all stored data
items by one stage.

The shift register is robust in terms of in-die variations.
It has been simulated successfully on 65nm process with
up to 10σ process variations, and over 24 PVT corners.
The fast SERDES, made possible by this shift-register, is
useful for high-bandwidth long on-chip interconnects,
where bit serial communication is preferred thanks to
reduced area, easier routing and reduced leakage.

9. Acknowledgement

We thank Eitan Grau, Doron Gershon, Omer Vikinski,
Alex Lyakhov, Josh Rotshtein and Charles Dike from
Intel for their assistance to this research. Comments of the
anonymous reviewers helped significantly improve this
paper. This research was funded in part by Intel Corp.,
Semiconductor Research Corporation (SRC), and the
iSRC consortium.

References

[1] J. Teifel, R. Manohar, "A High-Speed Clockless Serial

Link Transceiver," Proc. ASYNC, pp. 151-161, 2003.
[2] W. Bainbridge, S. Furber, "Delay Insensitive System-on-

Chip Interconnect using 1-of-4 encoding", Proc. ASYNC,
pp. 118-126, 2001.

[3] R. Ho, J. Gainsley, R. Drost, "Long Wires and
Asynchronous Control," Proc. ASYNC, pp. 240-249,
2004.

[4] R.O. Ozdag, P.A. Beerel, "High-Speed QDI Asynchronous
Pipelines," Proc. ASYNC, pp. 13-22, 2002.

[5] M. Ferreti, P.A. Bereel, "Single-Track, Asynchronous
Pipeline Templates Using 1-of-N Encoding," Conf. of
Design Automation and Test in Europe, pp.1008-1015,
2002.

[6] C.E. Molnar, I.E. Sutherland et al. "Two FIFO Ring
Performance Experiments," Proceedings of the IEEE, pp.
297-307, 1999.

[7] I.E. Sutherland, S.M. Fairbanks, "GasP: A Minimal FIFO
Control," Proc. ASYNC, pp. 46-53, 2001.

[8] J. Ebergen, "Squaring the FIFO in GasP," Proc. ASYNC,
pp. 194-205, 2001.

[9] J. Ebergen, J. Gainsley, J. Lexau, I.E. Sutherland, "GasP
Control for Domino Circuits," Proc. ASYNC, pp. 12-22,
2005.

[10] B.D. Winters, M.R. Greenstreet, "A Negative-Overhead,
Self-Timed Pipeline," Proc. ASYNC, pp. 37-46, 2002.

[11] S. Yang, B.D. Winters, M.R. Greenstreet, "Energy
Efficient Surfing," ASYNC, pp. 2-11, 2005.

[12] G. Lakshminarayanan, B. Venkataramani, "Optimization
Techniques for FPGA-Based Wave-Pipelined DSP
Blocks," IEEE TVLSI Systems, 13(7), 2005.

[13] S.J. Lee, K. Kim, H. Kim, N. Cho, H.J. Yoo, "Adaptive
Network-on-Chip with Wave-front Train Serialization
Scheme," Proc. VLSI Circuits, pp. 104-107, 2005.

[14] N. Saadallah, X. Kong, R. Negulescu, "High-Speed
Reduced Stuck Dual Lock Circuits," Proc. ASYNC, pp.
219-228, 2004.

[15] S. Fairbanks, S. Moore, "Analog Micropipeline Rings for
High Precision Timing," ASYNC, p. 41-50, 2004.

[16] T.W. Kwan, M. Shams, "Design of High-Performance
Power-aware Asynchronous Pipelined Circuits in MOS
Current Mode Logic," Proc. ASYNC, pp. 23-32, 2005.

[17] W.P. Burleson, M. Ciesielski, F. Klass, W. Liu, "Wave-
Pipelining: A Tutorial and Research Survey," IEEE
TVLSI, 6(3), 1998.

[18] International Technology Roadmap for Semiconductors
(ITRS), 2003.

[19] C. Svensson, J. Yuan, "High Speed CMOS Chip to Chip
Communication Circuit," Proc. of ISCAS, pp. 2228-2231,
1991.

[20] S. Sidiropoulos, "High Performance Inter-Chip Signaling,"
Tech. Rep. CSL-TR-98-760, Stanford Univ., 1998.

[21] C.K.K. Yang, "Design of High-Speed Serial Links in
CMOS", PhD Thesis, Stanford University, 1998.

[22] W.F. Ellersick, "Data Converters for High Speed CMOS
Links," PhD Thesis, Stanford Univ., 2001.

[23] H.O. Johansson, J. Yuan, C. Svensson, "A 4 Gsamples/s
Line-Receiver in 0.8 um CMOS," Proc. of Int. Symp.
VLSI Circuits, pp. 116-117, 1996.

[24] J. Xu, W. Wolf, "A Wave-Pipelined On-chip Interconnect
Structure for Networks-on-Chips," Proc. of High
Performance Interconnects Symposium, pp. 10-14, 2003.

[25] J. Xu, W. Wolf, "Wave Pipelining for Application-specific
Networks-on-Chip," International Conference on
Compilers, Architecture, and Synthesis for Embedded
System, Grenoble, pp. 10-14, 2003.

[26] R. Dobkin, R. Ginosar, C.P. Sotiriou, "Data
Synchronization Issues in GALS SoCs," Proc. ASYNC,
pp. 170-179, 2004.

[27] M.T. Dean, T. Williams et al. "Efficient Self-Timing with
Level-Encoded 2-Phase Dual-Rail (LEDR)," Proc.
ARVLSI, pp. 55-70, 1991.

[28] D.H. Linder and J.C. Harden, "Phased Logic: Supporting
the Synchronous Design Paradigm with Delay-Insensitive
Circuitry," IEEE Trans. Computers 45(9), pp. 1031-1044,
1996.

[29] F. Worm, P. Ienne, P. Thiran, "Soft Self-Synchronizing
Codes for Self-Calibrating Communication," Proc.
ICCAD, pp. 440-447, 2004.

[30] M.J.E. Lee, "An Efficient I/O and Clock Recovery for
TERABIT Integrated Circuits Design," PhD Thesis,
Stanford Univ., 2001.

[31] I.E. Sutherland, "Inverse XOR and XNOR Circuits," US
Patent 5,861,762, 1999.

