
Fast Asynchronous Shift Register for Bit-Serial Communication  
 

Rostislav (Reuven) Dobkin, Ran Ginosar, Avinoam Kolodny 
VLSI Systems Research Center, Technion—Israel Institute of Technology, Haifa 32000, Israel  

rostikd@tx.technion.ac.il 
 

Abstract 
 

A fast asynchronous shift register is used as the 
serializer and de-serializer in a novel bit-serial on-chip 
communication link. The link employs two-phase 
transition-based LEDR encoding. Acknowledgement is 
generated only at the word level, rather than bit by bit. 
The shift register is designed to achieve bit time of a 
single gate delay. It is based on a wave-pipelined control 
path and on transition latches. The circuit achieved 67 
Gbps data rate when simulated on 65nm CMOS 
technology and was immune to in-die process variations 
of up to 10σ. 
 

1. Introduction 
 

Delays over global wires in large systems on chip 
(SoC) do not scale with technology. This problem 
challenges on-chip data communications in terms of 
latency, throughput and power. Large SoCs typically 
require multiple long data channels that interconnect far-
away modules. Bit parallel data links provide high data 
rates at the cost of large chip area, routing difficulty, and 
high power. In addition, such links are often utilized only 
a small portion of the time, but dissipate leakage power at 
all times. Leakage is incurred at the line drivers and also 
at the repeaters, which are often necessary for long 
interconnects. 

Bit-serial communication offers an alternative to bit-
parallel interconnects, mitigating the issues of area, 
routability, and leakage power, since there are fewer 
wires, fewer line drivers, and fewer repeaters. However, in 
order to provide the same throughput as an N-bit parallel 
interconnect, the serial link must operate N times faster. 

Point-to-point communications over long data links in 
large SoCs may cross multiple clock domains, requiring 
synchronization, whether the link is bit-parallel or serial. 
A common timing mechanism for serial interconnects 
injects a clock into the data stream at the transmitting side 
and recovers the clock at the receiver. Such clock-data 
recovery (CDR) circuits often require a power-hungry 
PLL, which may also take a long while to converge on the 
proper clock frequency and phase at the beginning of each 

transmission. If the receiver and transmitter operate in 
different clock domains, the transaction must also be 
synchronized at the target, incurring additional time delay 
and power. Alternatively, an asynchronous data link 
employs handshake instead of clocks. Traditional 
asynchronous protocols are relatively slow due to return-
to-zero (RTZ) requirement and the need to acknowledge 
transitions  [1] [1] [2] [2]. Recently proposed improvements 
of conventional asynchronous protocols share data lines, 
but their performance depends on wire delays  [3] [3]. We 
investigate a faster serial communication protocol which 
is designed to overcome the wire delay limitation. 

A non-return-to-zero (NRZ) asynchronous protocol is 
investigated. Each bit is encoded by a single transition. 
The protocol avoids the usual per-bit acknowledgment, 
providing only per-word acknowledgement instead. The 
minimal inter-bit separation time is a single gate delay 
(FO4 inverter delay of the technology, e.g. 15 ps for high 
performance 65 nm process). The throughput is not 
bounded by wire delay any more, but rather by gate delay. 
Simulations of our circuits show correct operation at the 
maximal required data rate (67 Gbps on 65 nm CMOS). 

The one gate delay data cycle requirement is 
challenging the transmitter (serializer, line drivers), the 
channel wires, and the receiver. In this paper we focus on 
the shift-register in the serializer and de-serializer of the 
transmitter and receiver, respectively.  

Section  2 2 reviews previously published high speed 
asynchronous shift registers and pipelines. Section  3 3 
presents the architecture of the bit-serial data link. The 
fast serializer and de-serializer are described in Section 
 4 4, and the asynchronous shift-register design is detailed 
in Section  5 5. The circuit is studied in Section  6 6, and 
simulation results are discussed in Section  7 7. 

 
2. Previous Work 
 

Numerous high-speed asynchronous shift registers, 
FIFOs and related pipelining techniques have been 
published. The fastest designs employ QDI 
 [2] [2] [4] [4] [5] [5], GasP  [6] [6]— [9] [9], and Wave-
Pipelining  [10] [10]— [13] [13]. Other fast circuits have 
also been proposed  [14] [14]— [17] [17]. 
 



Table 1: Data Cycle Mapping For Bit-Serial Versions of Several Pipelines 

Name Data Cycle 
(# of FO4 Inv. Delays) 

Data Cycle 
(# of Transitions) 

Family Reference 

PCHB 18.6* (0.8   Gbps at 250nm) 14 QDI  [4] [4] 
PCFB 21.3* (0.7   Gbps at 250nm) 12 QDI  [4] [4] 
RSPCHB 16.6* (0.9   Gbps at 250nm) 14 QDI  [4] [4] 
WCHB 14.9* (1.0   Gbps at 250nm) 10 QDI  [4] [4] [5] [5] 
RSPCFB 14.9* (1.0   Gbps at 250nm) 10 QDI  [4] [4] 
1-of-4  10.0 (0.6   Gbps at 

350nm)* 
6** QDI  [2] [2] 

STFB 9.3* (1.6   Gbps at 250nm) 6 QDI  [5] [5] 
RSDL 5.1* (4.2   Gbps at 180nm) 6 Dual Rail  [14] [14] 
asP* FIFO 3.6* (1.7   Gbps at 600nm) 6** GasP  [6] [6] 
GasP FIFO 7.0* (1.5   Gbps at 350nm) 6 GasP  [7] [7] [8] [8] [9] [9]
Wave-Pipelined Shift-
Register 

7.1* (3.0   Gbps at 180nm)  Wave-
Pipe 

 [12] [12] [13] [13] 

Surfing 5.0 (2.1   Gbps at 
350nm)* 

6  Wave-
Pipe 

 [10] [10] [11] [11] 

MCML 3* (6.7   Gbps at 180nm)    [16] [16] 
Analog Pipeline 2-3 (4.8   Gbps at 

180nm)* 
   [14] [14] 

This Work 1 or 
less 

(67    Gbps at   65nm) 1   

*Estimated data cycle/rate according to reported maximal throughput/minimal data cycle and values listed in Table 
2Table 2. 

**Estimated. 
 

Table 2: Examples of One-Gate Delay Values 
Scaled with Technology 

Technology FO4 Inverter 
Delay* 

Rate Upper 
Bound  

600 nm 165 ps   6.1 Gbps 
350 nm 95 ps 10.5 Gbps 
250 nm 67 ps 14.9 Gbps 
180 nm 47 ps 21.3 Gbps 
130 nm 33 ps 30.3 Gbps 
90 nm 22 ps 45.5 Gbps 
65 nm 15 ps    67 Gbps 

*Delays are based on High Performance processes 
 [18] [18] 

 
Table 1Table 1 lists different pipeline techniques 

according to their minimal data cycle. Some of the 
techniques, e.g. wave-pipelining, are not applicable to 
SR/FIFO implementations, since they cannot be stopped 
by the input control signal and cannot store all internal 
states (some waves disappear). Wave-pipelining is latch-
less technique that supports very high throughput, where 
only the final result at the pipeline output is sampled. The 

techniques that provide storage capability require data 
cycles longer than a single gate delay. Table 2Table 2 
provides reference gate-delay values for the high-
performance variant of several technology nodes. These 
numbers are scaled for FO4 inverter delays, based on the 
FO3 NAND delay model provided by the ITRS  [18] [18]. 
They are used to compute data cycle in terms of the 
number of FO4 inverter delays in Table 1Table 1. Next, 
we introduce single gate-delay shift-register that meets the 
high-rate requirements. 
 
3. A High-Rate Serial Communication 
 

Throughput of a communication line may be enhanced 
by pipelining. Synchronous pipelines require clock 
distribution and incur flip-flop latencies. Asynchronous 
pipelines eliminate the clock and replace flip-flops by 
lower latency latches, but incur handshake overhead due 
to having to acknowledge each data transfer 
 [2] [2] [4] [4] [5] [5]. Non-pipelined methods include source-
synchronous signaling, typically used for chip-to-chip 
interconnects  [19] [19]— [23] [23]. The principal 
disadvantage is the need to embed a very fast clock in the 



data at the transmitter and to extract it using a PLL-based 
CDR circuit at the receiver. These circuits dissipate high 
power, require large area, are sensitive to jitter and are 

therefore less attractive for fast on-chip interconnects. 
Wave pipelining may help speeding up the pipeline thanks 
to eliminating some latches and clocks  [24] [24] [25] [25]. 

 

Figure 1: Fast Bit-Serial Communication Scheme  

We propose a novel serial communication scheme 
(Figure 1Figure 1) that employs low-latency 
synchronizers at the source and sink  [26] [26], two-phase 
NRZ Level Encoded Dual Rail (LEDR) asynchronous 
protocol (allowing non-uniform delay intervals between 
successive bits)  [27] [27] [28] [28], serializer and 
deserializer, line drivers and receivers, and differential 
channel encoding. Acknowledgment is returned only once 
per word, rather than bit by bit, enabling multiple bits in a 
wave-pipelined manner over the serial channel. The wires 
should be designed as wave-guides, enabling multiple 
traveling signals. At signal propagation velocity of at least 
c/10 on a well-designed wave-guide, and at a desired data 
rate of one bit per 15ps (the expected FO4 inverter delay 
at 65nm), a 1mm wire may carry at least two successive 
bits simultaneously. 

Relative to LEDR, other asynchronous data encodings 
are slower. Four phase dual rail requires four successive 
transitions per data bit. Bundled data encoding is sensitive 
to the relative skew of the request and data lines, and 
requires about 1.5 transitions per bit (one on request and 
one half bit on average on the data line). The 1-of-4 
protocol requires four successive transitions per two bits 
 [2] [2]. Differential LEDR requires only two simultaneous 
transitions per bit. It can also achieve higher reliability 
 [29] [29]. The drawbacks of the LEDR code include a 
possible asymmetric transition count over the two lines 
(causing channel saturation and thus limiting the maximal 
speed), the need for an encoder and a decoder, and the risk 
of interline skew which may limit data rate. 
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Figure 2: Serializer. A Similar Circuit Drives the S 
Lines 

The LEDR code is defined as follows. A serialized 
sequence B(i) of bits is encoded into a sequence S(i), P(i) 
of State and Phase bits, respectively. S(i)=B(i) for all i. 
Given P(0), if S(i+1)=S(i) then P(i+1) is the inverse of 
P(i), otherwise P(i+1)=P(i). Since we employ differential 
signaling, the serial channel comprises four wires (S, S', P, 
P'). 

This paper focuses on fast asynchronous serializer and 
de-serializer. Both are based on a very fast shift-register. 
The architecture and circuit design of the modules are 
discussed in the following sections. 

 



4. Serializer and DeSerializer 
Architecture 

  
The Serializer Module is shown in Figure 2Figure 2. 

Encoded parallel word bits (P and S) and their inverted 
values (P' and S') are first loaded in parallel into four shift-
registers. Subsequently, for each incoming transition on T 
and TN control lines, each shift-register shifts one bit out. 
Note that the data is shifted both on rising and on falling 
edges of T. The control signals T and TN are generated 
using multi-phase clock generator similar to the one 
described in  [30] [30]. 

The de-serializer (Figure 3Figure 3) consists of a dual-
rail XOR gate for transition detection  [31] [31], a shift-
register for data sampling and storage, another shift-
register for completion detection, and a parallel-load 
output register. In LEDR encoding only one of the 
differential pairs at the input (S, S', P, P') makes a 
transition per bit. Each transition on either of the two 
differential pairs is translated into a transition on the C, 
CN control lines. Each transition causes a single shift at 
the two shift-registers. Thus, the dual rail XOR retimes the 
input data.  

The Data Shift-Register (Data-SR) is constructed of 
transition latches (XL). Bits propagate in the SR driven by 
transitions. For the sake of achieving the fastest possible 
shift-register operation, full handshake and 
acknowledgement are avoided. Control transitions 
propagate in a wave-pipelined manner, and are sensitive to 
skew and delay variations. All delays along the pipe are 
carefully balanced. Once all bits of a transmitted word 
have been stored, bit-parallel decoding can take place at a 
slower rate. 
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Figure 3: DeSerializer & Decoder Module 
The upper shift-register in Figure 3Figure 3 detects the 

completion of a full word reception. The Completion 
Detection SR is reset at the beginning of each word and 
has a fixed ‘1’ at its input. 

LEDR decoding is combined with de-serialization 
(S(i)=B(i) ∀i; see Section  3 3). Once a transmission is 
completed, the Data-SR contains a decoded word that is 
sampled into the output register by a signal from 
Completion Detection SR. If a second (parallel) data SR is 
added too, P bits may also be recorded, enabling codes 

other than LEDR. 
This The proposed asynchronous SR is designed to 

provide a very high throughput, while storing the data and 
accommodating varying delays between successive bits. 
Below we compare this SR to other high-rate pipelines 
and describe the shift-register structure and its operation 
in detail. 

 



5. High Data Rate Asynchronous Shift 
Register 
 

In order to obtain the desired speed we implement the 
SR as shown in Figure 4Figure 4. The SR comprises 
transition latches (XL). Each XL has a differential control 
signal C, CN, a dual-rail inverting buffer for the controls, 
and two separate data paths with internal latches. Each 
latch consists of an inverter and a (weak) keeper. The 
differential control lines C, CN are connected to the 
transmission-gates (TG) of each XL, such that when one 
TG is open, the other one in the same XL is closed, and 
the situation is reversed in the next XL. The input data D 
is forked into two parallel pipes before the first XL, so 
that even bits are written into the bottom data-path and 
odd bits are directed to the upper one. The control 
transitions on C, CN propagate without stopping through 
the control wave-pipeline shifting data in the pipe. Note 
that the data is sampled and shifted both for the rising and 
the falling edges of C/CN. 

Figure 4Figure 4 shows the shift-register of the de-
serializer. The shift register in the serializer is very 
similar: Its two outputs are combined (through 

transmission gates) rather than the inputs. Data is loaded 
in parallel into the latches via additional tri-state buffers. 

On the arrival of a new data item, and the 
corresponding transitions on C, CN, the data item is 
written into either the top or the bottom latch of the first 
XL. The control transitions continue to propagate, shifting 
the data items that are already stored in the SR. To enable 
this, the control transitions should propagate through the 
XL at least as fast as the data. While data propagation 
through the XL takes approximately one gate delay, the 
propagation of the control transitions can be made 
significantly faster. Our SPICE simulations of 65nm 
CMOS show that the control transition delay through XL 
is about twice shorter than the gate-delay, over all corners 
and all simulated in-die variations. This is achieved thanks 
to the fact that buffer fanout is much smaller than four, 
especially when the buffer size is large relative to the TGs. 
Therefore, during one data cycle of one FO4 gate delay, 
the control transitions manage to propagate over two pipe 
stages.  

 

Figure 4: One Gate-Delay De-Serializer Shift-Register (Receiver) 



 

Figure 5: SR Operation – One Bit Received. The red double arrow shows the moving control transition. 
(a) Initial state. (b) Arrival of bit D1 and control transition. (c) D1 latches at first stage,  

control transition moves to second stage. (d), (e) control transition keeps moving. 

We demonstrate the operation of the SR by means of 
Figure 5Figure 5 through Figure 7Figure 7. First, one bit 
D1 is sent to the SR (Figure 5Figure 5). The bit 
propagates into the bottom data path and is stored in the 
first XL. By the time D1 appears at the XL output, the 
subsequent TG is already open, preventing data 
propagation into the next stage. The transition wave 
(double-arrow) propagates without stopping through the 
SR control wave-pipeline, alternating switch connections 
at each stage. If there are no further transitions, D1 is 
stored in the first SR stage and the upper first latch is 
ready to receive new datum. 

In Figure 6Figure 6 we demonstrate what happens when 
another bit arrives after a long time. The SR initial state 
here is the final state of Figure 5Figure 5. The new 
transition copies D2 into the first stage of the upper data 
path, opening the path to the second stage. In addition, it 
closes the TG between the first and second stages of the 

bottom path, enabling D1 propagation into the second 
stage. Then, operation is stopped again. 

In Figure 7Figure 7, inputs arrive at maximal rate, with 
one gate delay separation between successive bits. This 
demonstrates the maximal operating speed of the SR. Note 
that control transitions move twice faster than the data. 
Three bits, D3, D4, D5 are received at the highest rate. 
When working at the highest rate and observing any single 
datum, every other transition causes the datum to move 
one stage forward. Thanks to the split at the input of the 
SR, the data rate in each data path is twice as slow as the 
input data rate. Data sampling operation, however, lasts 
only one gate delay at each stage.  When the SR is stopped 
in Figure 7Figure 7, the bits are spread along the SR. All 
bits are stored in two consecutive latches, except for the 
first and last bits, which are stored in a single latch each. 
In order to store a word of length W, the SR requires W-1 
XLs. 

 
 
 



 

Figure 6: SR Operation – Second Bit Received. 
(a) Last state. (b) Arrival of bit D2 and second control transition. (c) D2 latches at first stage,  

control transition moves to second stage, D1 transfers to second stage.  
(d) Control moves on, D1 latched in both first and second stages (e) Final state 
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Figure 7: SR Highest Rate Operation. The colored double arrows show successive control transitions. 
(a) Arrival of bit D3 (b) D3 overwrites first latch of D1. (c) Arrival of D4; D2 and D1 are shifted forward. 

(d) D4 sampled by first stage, D1 finishes right shift, D3 starts right shift. (e) D5 arrives, D3 fully copied, 
D2 starts the right shift. (f) D5 sampled in first stage. D4 starts shifting, D2 fully copied, D1 starts 
shifting. (g)-(h) continued shifts. (i) First and last bits occupy single latches. Other bits span two 

latches each. 



6. SR Circuit Design 
 

The control transitions are buffered in each XL. It is 
desirable to retime the two transitions, in order to 
eliminate relative skew accumulation. Such retiming can 
be achieved with a differential inverter. Alternatively, two 
simple inverters may be used (Figure 8Figure 8b), as long 
as the resulting skew is acceptable. Another risk facing the 
use of inverter chains is the disappearance of extremely 
short pulses. These two factors could restrict the maximal 
SR length. 

In the rest of this section we provide computational 
analysis for correct sizing of the SR transistors. The TG 
circuit (Figure 4Figure 4) suffers of some ringing due to 
charge sharing and feed-through effects, and hence we 
employ tri-state inverters instead of the TG and the 
keeper, as in Figure 8Figure 8a. Data is sampled at the 
input of each XL. Correct data sampling during the 
allocated time (one gate delay) depends on the drive 
capability of the tri-state inverter I and the size of the load. 
Control and data lines in Figure 8Figure 8b (CTL[i-1], 
CTLN[i-1], D) are matched in terms of delay. The goal is 
to find the minimal tri-state inverter I size that allows 
correct data sampling. 

C and RI values are identified as follows. Node A 
capacitance comprises the input gate capacitance of the 
forward inverter and the output diffusion capacitances of 
inverter I and the keeper. RI is the resistance of the pull-up 
stack of the tri-state inverter I: 

pmos nmos k pmos k nmos I pmos I nmos
g g diff diff diff diff

pullup
I I

C C C C C C C

R R

− − − −= + + + + +

=
 

Assume a voltage step function at the input of the RC 
stage. The voltage at node A is (V0 is the initial voltage): 

0( ) ( ) I
T

R C
A DD DDV t V V V e

− ⋅= + − ⋅  (1) 
We approximate an ideal rectangular pulse width T at 

the input of the RC stage as 10 ps, having in mind a real 
pulse width of 15 ps (one gate-delay as specified for 65nm 
technology). The ideal rectangular pulse is estimated to be 
less than one gate-delay due to the facts that rise and fall 
times are finite, and that the data (D) is usually somewhat 
delayed relative to the control (C, CN). Upon a rising 
edge, the voltage on node A must reach the following 
value for correct operation: 

MIN
A DD TV V V> −  (2) 

Then, RI⋅C can be expressed as follows: 
RI⋅C  < −T/ln(VT/VDD) = 7.2 ps  

While RI depends only on the tri-state inverter 
transistors, C depends also on the latch inverters. Since we 
use pre-determined sizes for the two latch inverters, the 
given constraint on RI⋅C affects only the tri-state inverter 
transistors. Given R and C dependence on transistor sizes, 
and selecting minimal L for speed, we can determine the 
desired W for the four transistors of inverter I. In order to 
assure that the tri-state inverters (I and the keeper) do not 
slow down the wave-pipelined control, we use dual-rail 
buffers that are four times larger than the driven load. This 
simple approach allowed us to obtain a first working 
point, which can be optimized later. 



 

Figure 8: XL Data Sampling 

 

Figure 9: 15 ps Data Cycle Operation (Node names are defined in Figure 8Figure 8).  
Input D is sampled during the high phase of CTL 

 

7. Simulation Results 
 

SPICE simulations show correct operation of the shift-
register at the target data cycle of 15 ps and target rate of 

67 Gbps. The circuit was found operational at 24 PVT 
corners, ranging over 0.7—1.35 Volt and -10—110°C. At 
the slowest corner (slow N and P transistors, low voltage 
and high temperature) the data cycle slowed down to 1.6 



times the corresponding gate delay. In all other corners the 
data cycle ranged between 0.6 and 1.6 times the 
corresponding gate delay. Monte-Carlo simulations for in-
die variations demonstrated correct operation over a very 
wide range of variation; the circuit failed only at 
variations above 10σ (ten times the standard deviation).   

Figure 9Figure 9 shows an example of simulated signal 
waveforms at typical operating conditions. Several data 
patterns were used during the simulation, causing worst 
case operation at different SR stages. The SR ceased to 
operate at a data cycle of 13ps.  

The SR circuit demonstrates high immunity to delay 
variations, including those caused by in-die process 
variations, thanks to its asynchronous structure. The 
asynchronous wave-pipelined control line is not subject to 
delay uncertainty, unlike more complex wave-pipelined 
logic. This is because the control consists merely of a 
differential line, and the two complementary signal wires 
are retimed at each stage by the dual-rail buffer (when 
non-differential inverters are used, this immunity may be 
limited by the inter-line skew). The data path is also quite 
resilient to delay variations: The data are switched and 
sampled at each stage, timed by control transitions. Thus, 
delay matching is limited to within a single XL stage.  

 

8. Conclusions 
 

We have shown a very fast asynchronous shift register, 
designed for high speed bit-serial on-chip interconnection 
channel. The channel employs two-phase transition based 
LEDR encoding and differential signaling. The channel 
operates like a fast wave-pipeline, with multiple bits 
traveling on the wires simultaneously. Acknowledgement 
is provided only at the word level, in order not to slow 
down the transmission. This scheme requires very fast 
serializers and de-serializers, consisting of the fast shift 
register described in this paper. 

The asynchronous shift register can send or receive a 
new bit at a data cycle of a single FO4 inverter delay 
(15ps on 65nm process). Thus, it can shift data at the fast 
rate of 67Gbps. The shit-register is based on novel 
Transition Latches, which employ a wave-pipelined 
control structure and two parallel latches. On each control 
transition at its input, the shift register shifts all stored data 
items by one stage.  

The shift register is robust in terms of in-die variations. 
It has been simulated successfully on 65nm process with 
up to 10σ process variations, and over 24 PVT corners.  
The fast SERDES, made possible by this shift-register, is 
useful for high-bandwidth long on-chip interconnects, 
where bit serial communication is preferred thanks to 
reduced area, easier routing and reduced leakage. 
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