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Abstract 

 
An asynchronous router for QNoC (Quality-of service NoC) is presented. It combines multiple service levels (SL) with 

multiple equal-priority virtual channels (VC) within each service level. VCs are assigned dynamically per packet in each 

router. The router employs fast arbitration schemes to minimize latency. Analytical expressions for a generic NoC router 

performance, area and power are derived, showing linear dependence on the number of buffers and flit width. The 

analytical results agree with QNoC router simulation results. The QNoC router architecture and specific asynchronous 

circuits are presented. When simulated on a 0.18µm process, the router throughput ranges from 1.8 to 20 Gbps for flits 

8—128 bits wide. 

 

1. Introduction 
Large systems on chip (SoC) are interconnect limited due to high area, power and delays of the internal interconnect 

 [1]. Requirements for high-bandwidth inter-modular communications exacerbate the problem, incurring larger area and 

power costs of the interconnects. In addition, data synchronization problems arise in multi-clock domain SoCs, and 

operating clocked interconnects becomes increasingly more difficult. Large SoCs are treated as Globally Asynchronous 

Locally Synchronous (GALS) systems, calling for suitable interconnects beyond conventional synchronous buses. 

Networks on Chip (NoC) were proposed as a solution for the SoC interconnect problem  [2]– [5]. To support varying 

communication requirements, a Quality-of-Service NoC (QNoC) that performs preemptive scheduling according to packet 

priority was introduced in  [6]. To enable GALS systems with multiple clock domains, including dynamic voltage and 

frequencies scaling per each synchronous module, the network should be implemented as an asynchronous circuit  [42] [7]–

 [14]. Hierarchical QNoC  [10] (HQNoC) utilizes GALS properties and provides several solutions, suitable for different 

communication range. In HQNoC simple GALS interfaces  [16]– [21] are employed for short range communication, fast 

serial point-to-point links  [22] [23] are employed for long range communication and regular QNoC is employed for all 

other communications. 

A 2D mesh architecture of QNoC is shown in Figure 1  [6]. The SoC is comprised of modules and a QNoC, consisting 

of links and routers. All inter-module communications are carried out in packets; legacy modules (capable only of bus-

oriented read/write operations) require wrappers that handle packet based communications  [24]. Packets are partitioned 

into small flits, each carrying a Service-Level (SL) priority tag. The flits are sent through the NoC using wormhole routing 

 [25]. 
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Figure 1: QNoC 2D Mesh Architecture and the Impact of Service Level Preemption  
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In QNoC a packet transfer can be preempted by a higher priority (higher SL) packet. Preemption may stall not only the 

router where different service-level flits contend, but also other routers on the preempted packet route. In the latter routers, 

the output ports are stalled, waiting for data, even though there might be flits of the same service level from other input 

ports that are ready for sending. This situation is shown in the example in Figure 1. The packet transfer from module G to 

module C is preempted by higher service level packet transfer from module H to module I (East port of router #10 is 

preempted). The preemption causes stalls at all output ports along the G�C route, (north ports of router #11 and #7 and 

the module port of router #3). Thus, despite the fact that the north port of router #11 is idle, the flits sent by module I to 

module F are stalled. Employing virtual channels  [26] for each service level allows better utilization of the output ports 

and links. It has been shown  [26] that adding VCs help to significantly reduce the average source-to-destination packet 

delays. In this paper, virtual channels (VC) imply no priority information but rather provide best-effort communication 

within a given service level (Figure 2). A single VC is allocated for each new packet that is granted access to the shared 

output. The number of VCs may differ for each SL. 

 

Figure 2: Service Level and Virtual Channels 
K Service Levels, M Virtual Channels (M can be different for each SL and port) 

Static virtual channel assignment  [7] for each router (e.g. according to the information in the packet header) acts 

similarly to SL assignment that changes from router to router. We employ dynamic virtual channel allocation within each 

SL  [27]. The virtual channel information is shared only by the sending output port and the receiving input port of the next 

router on the packet route. The number of VCs of a given SL must be the same for an output port and the next input port 

that is connected to it. However, the number of VCs can change among the output and input ports of the same router and 

among different SLs. 

In a previous paper  [10] we introduced QNoC routers with no virtual channels. In this paper we explore QNoC routers 

that support four service levels  [6], each having a configurable number of virtual channels. The main contributions of this 

paper are as follows. First, the paper presents a completely asynchronous solution for a NoC router which employs a two 

dimensional arrangement of virtual channels and service (priority) levels. Second, a novel asynchronous router 

architecture that achieves dynamic virtual channel allocation is presented in detail, enabling complete analysis and 

comparison to other architectures. Third, this work provides an analytical investigation of the cost of buffering in generic 

NoC routers. Empirical results obtained from simulations of this router agree with the results predicted by analysis.  

The rest of the paper is organized as follows. In Section  2 we review previously published routers. In Section  3 we 

analyze the impact of buffering on router performance. In Section  4 we discuss in detail the proposed QNoC router 

architecture and the arbitration issues, based on a design example. Performance results are presented in section  5. 

 

2. Previous Work on NoC Routers 
NoCs have been studied intensively recently  [7]– [15], [29]– [33]. Several NoC implementations have been published 

and fabricated. The implementations can be divided into either synchronous or asynchronous, and either providing quality 

of service and guaranteed service or not (single service level, best effort only). Most implementations employ 2D planar 

geometry with five-port routers (Figure 1) and wormhole routing  [25]. Packet addressing is usually performed using 

source routing, and the address header is shifted by each router to reveal the number of the output port. In some 

implementations, credit-based communication is considered for better network utilization  [6]. Speculative switching was 

proposed in  [49] for router latency reduction down to a single clock cycle in the best case. Various signaling protocols are 

used by asynchronous implementations. A major challenge in asynchronous routers is fair and fast arbitration that 

supports QoS and maximizes output port utilization. Most routers utilize static-priority arbiters (SPA)  [34].   

While synchronous and asynchronous routers exhibit similar performance, it should be noted that when the NoC spans 

multiple clock domains, a multi-link data transfer may incur the additional penalty of multiple synchronization latencies. 
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In addition, clock gating is required for clock power reduction in synchronous implementations  [47] [48]. An 

asynchronous NoC helps eliminate en-route resynchronizations and complex clock distribution. Thanks to these 

advantages ITRS  [1] predicts that by the year 2020, 40% of SoC global signaling will be performed asynchronously. 

Therefore, in our research we mostly focus on the asynchronous implementations rather than on synchronous ones.  

Synchronous routers using round-robin arbitration and supporting asynchronous interconnect are presented in  [28] [29], 

though synchronization issues are ignored. Synchronous NoC routers supporting virtual channels, which could be used to 

provide multiple service levels, are described in  [30] and  [31]. Other synchronous routers are discussed in  [32]. A 

synchronous five-port router that supports two service levels (best effort and guaranteed throughput) is described in 

 [33] [35] [36]. In DSPIN  [45], a GALS approach is considered and the distributed network router utilizes bi-synchronous 

FIFOs for data synchronization. DSPIN has a mesh structure as opposed to the fat-tree structure of its previous SPIN 

version, and provides separated BE and GS networks. ViChaR  [37] performs dynamic allocation of VCs according to 

traffic conditions. 

Asynchronous packet routers for off-chip networks were presented as early as 1994  [38]. CHAIN  [8] [9] is proposed as 

an asynchronous interconnect for NoC that is not a 2D mesh. Its CHAINlink protocol employs 1-of-4 encoding. CHAIN 

provides a flexible framework for NoC, but is limited to a single service level. Another QDI implementation of 

asynchronous crossbar connecting module clock domain converters, also restricted to a single service level, was presented 

in  [12]. 

An asynchronous router architecture with QoS support was recently presented in  [7], employing a five-port router with 

two service levels (guaranteed service (GS) and best-effort (BE)). In addition, the proposed router uses credit-based 

communication for each SL (called VC in the paper). 

The FAUST asynchronous router  [11] [24] also employs two service levels (one called "real-rime" and the other BE). 

Arbitration is performed according to First-in First-Serve priority while contending cases are managed by "Fixed 

Topology Arbiter," which differs slightly from SPA. FAUST is implemented using QDI asynchronous logic, with 1-of-4 

encoding for power reduction. The authors present an implementation using the TAST language. 

The MANGO  [13]— [15] router explores VC usage for hard service guarantee routing in combination with BE routing. 

The MANGO router comprises two sub-modules, a non-blocking switch for hard guarantee service (GS) packets and 

another for BE packets. Output ports are shared between the two modules using a link arbiter. The GS level is partitioned 

into different priority sub-levels. At the GS level the router employs Asynchronous Latency Guarantee (ALG) algorithm 

that improves fairness of link admission among the different priority sub-levels. The design uses four-phase bundled data 

inside the router and 1-of-4 encoding at the external interfaces. In addition, the proposed router employs a credit 

mechanism ("VC control"), based on two-phase signaling. The hard guaranteed services are advocated to provide better 

performance than a statistical approach used in a regular QoS network. However, since service time contains both network 

admission time and the time of propagation through the network, when the sources are constrained, both approaches 

provide a guaranteed service that can meet performance targets (latency and throughput). Hard link allocation, however, 

limits resource sharing and therefore seems less attractive.  

A multiple service levels QNoC asynchronous router with credit based communication was presented and compared to 

similar-functionality synchronous implementations in  [10]. In the following sections we discuss a new architecture that 

supports output port sharing within each service level using dynamic VC allocation, thus achieving improved network 

utilization. 

We summarize the various asynchronous router architectures in Table 1. 

 

Table 1: Asynchronous Router Architectures 

NoC Type Number of Service 

Levels 

(Prioritized VCs) 

Type of Service Credit-Based 

Communication 

Support 

VC dimensions 

CHAIN  [7] [9] 1 N/A N/A 1 

QoS router  [7] 2 Statistical V 1 

FAUST  [11] [24]  2 Statistical V 1 

MANGO  [13] [14] Unlimited Hard V 1 

QNoC without VCs  [10]  Unlimited Statistical V 1 

QNoC with VCs 

(this paper) 

Unlimited Statistical V 2 

resource sharing 

within each SL 
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3. NoC router cost analysis 
In this section we analyze the cost of a generic NoC router in terms of latency, throughput, area and energy. An overall 

NoC cost can be directly estimated based on the single router cost and traffic patterns. The discussion below refers to 

wormhole routing. In the latter sections (Sect.  5) we discuss a specific design example performance, comparing it to the 

analytical analysis presented in this section. 

A generic NoC router acts as a switch and can be modeled as a pipeline of N stages. Thus, a flit, passing through the 

NoC, traverses a pipeline, where in certain stages it is switched into one of alternative routes (Figure 3). Route switching 

is either performed dynamically or statically.  

  

Figure 3: NoC data path as pipeline 

The pipeline can be either synchronous or asynchronous. Both implementations should support a "back pressure" 

mechanism, stopping the packet when its head is stuck (due to loss in arbitration for a shared output or to lack of buffer 

space in the destination module). In asynchronous implementation, back pressure is an inherent part of the asynchronous 

communication protocol between pipeline stages, while in synchronous implementation that mechanism should be 

explicitly implemented (usually by FIFOs with full/empty indications). 

Flit size differs for different NoC implementations. The size may also vary inside a given NoC, requiring inter-router 

data decompositions  [50]. For example, signaling packets are small, while large data transfers call for large flits. In this 

work we present results for flits in which the data part varies from 8 to 128 bits. In addition to the data part, the flit 

consists of several (one-ten) control bits, which also traverse the NoC through the data path. Thus, most memory cells per 

pipeline stage belong to the data path, while the control (either synchronous or asynchronous) has a small impact in terms 

of area and power. The control can still affect latency, if it takes more time than data switching between pipeline stages. In 

this case, deeper pipelining can be employed to speed up the design. We assume that any NoC router architecture can be 

pipelined in an optimized way, so that all stages have a similar latency.  

We define LDP to be total latency of the data path excluding the buffers (latency from the router input to output through 

all the switches). LDP depends on router functionality. Define SL – the number of service levels, VCI--the number of VCs 

in the input port, K – the number of ports, VCO – the number of VCs in the output port, and LMUX2 – the latency of a two-

input multiplexer. Then: 

 [ ]2 2 2 2log ( ) log ( ) log ( )DP MUX I O OL L SL VC K VC SL VC= ⋅ × + × + ×  (1) 

Each logarithmic expression computes the number of MUX levels needed to switch the given number of inputs. The 

total latency of the N stage pipeline consists of LDP plus the latencies of the memory units: 

 ROUTER DP BUFL L N L= + ×  (2) 

The router throughput is then computed by: 

 
1

( )
ROUTER

F N
L

= ×  (3) 

Note that both throughput and latency depend linearly on pipeline depth N.  

The router area depends on pipeline depth and width and on flit width, ⋅M. The buffer area of the router can be 

expressed as follows (assuming for simplicity the same number of VCs in the input and output ports).  

 [ ]( )ROUTER

BUFFER BUF I O O SL I O SLI
A K A SL VC N SL VC N SL N N N N N= × × × × + × × + × + − − −  (4) 
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where ABUF=M×ALATCH, and NI, NO and NSL are pipeline depths inside input and output VCs and inside the output port 

SL arbitration stages. The last element in the expression accounts for possible added pipeline stages at the output port for 

balancing performance. In addition to buffers, the router also includes MUXes and wires. The area of MUXes can be 

expressed similarly to Eq. (1) by: 

 [ ]2

ROUTER

MUXes MUX I O I OA M K A SL VC SL VC K VC SL VC= × × ⋅ × + × × × + ×  (5) 

The most significant component of router interconnect area is the crossbar switch. Its area is proportional to the 

switching matrix size, which is SL×(VCI×VCO). Note that the router proposed in this paper has SL crossbar switches since 

the communications of different SLs do not share the crossbar switch. Custom implementation of the interconnect 

switching fabric may lead to certain savings in area and power  [46].  

As mentioned above, the energy required by the control circuit per flit transfer is negligible relative to the energy for 

data path switching. Therefore the total energy required to move bits through the router can be approximated by the data 

path energy:  

 
2

FLIT BUFFERE N C V N= × × ∝  (6) 

where CBUFFER = M× CLATCH . The total energy required for a single flit to traverse the net is EFLIT (Eq. (6)) multiplied 

by the number of hops H. NoC dynamic power depends on application parameters (e.g. utilization, topology) and can be 

approximated as follows. If the average number of hops is H and average flit injection rate into the net is FFLIT then the 

NoC dynamic power is: 

 
NOC FLIT FLITP E H F= × ×  (7) 

The NoC static power is proportional to the active area of the routers, which consists mostly of the buffer area (Eq. (4)) 

and MUXes area (Eq. (5)). 

In Figure 4 we plot router throughput, energy and area as functions of the number of buffers in the router. Plots (a) and 

(b) show that energy grows linearly with the number of buffers, resulting in linear gain of throughput. Chart (c) is 

constructed as follows. First, buffers are inserted in each VC (as represented on the left of the dashed line). Next, buffers 

are added into the shared data-path of the router (shown to the right of the dashed line). Note that flit size may also affect 

performance due to changing loads and area (cf. Sect.  5).  

 

Figure 4: Number of buffers impact on router performance 

   

4. QNoC Asynchronous Router Architecture 
 

This section presents the QNoC router architecture, starting with top level architecture and then describing the input and 

output ports in detail. This asynchronous QNOC router efficiently supports multiple equal-priority virtual channels, as 

well as multiple service (priority) levels. The next section present simulations for performance evaluation.  

 

4.1. Top Architecture and Data Flow 
Routers are the main functional blocks of QNoC. They route flits from an input port (IP) to one of the output ports 

(OP), according to the routing address and packet priority. As already mentioned in Section  1, previously published 

asynchronous routers, including our own  [10], explore only one dimension of output port sharing, namely the service level 

or priority NoC utilization may be improved by exploring a second dimension, providing sharing within each SL. In this 

section we describe the architecture of a QNoC router that supports the two dimensions. 
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QNoC employs X-Y routing for a 2D mesh  [6] [39], where the packet is first routed along the X dimension and then 

along the Y dimension towards its destination. Using source routing, the packet contains a list of switching indices, 

providing a switching command for each router  [8]. 
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Figure 5: Routing Address from Source to Sink

In this work we refer to a K-port QNoC router (e.g. 5-port router in Figure 5). The bi-directional router interfaces 

consist of multi-service level input and output ports (MSL-IP and MSL-OP). We assume that a packet entering through an 

IP does not loop back, and thus each IP is connected to four OPs (Figure 5) and only two bits are required to control 

switching. The MSL-OPs emit flits according to their arrival order and their priority, as defined by the packet's Service 

Level (SL). 

The packet consists of three types of flits: a header flit with routing address, body flits and a tail flit, indicating end-of-

packet (EOP), as in Figure 6. Each flit contains bits indicating its type, service level and virtual channel. 

 

Figure 6: Packet Structure and Flit Format 

The MSL-IP and MSL-OP contain multiple input and output virtual channels respectively, each implemented by 

virtual channel input and output ports (VC-IP and VC-OP). The VC-IP and VC-OP resemble the designs presented in our 

previous work  [10], but they are changed in order to support multiple virtual channels and multiple service levels at the 

same time.  

The number of service levels supported by the router can be chosen arbitrarily according to application requirements. 

In this paper we refer to four service levels  [6] (Table 2). In addition, the number of virtual channels per each service level 

over each link can be chosen arbitrarily, according to communication requirements. The number of virtual channels on a 

link affects the number of virtual channels in the output and input ports that are connected to the link. 

Data flow through the router is shown in Figure 7. A flit entering the router through one of the MSL-IPs goes first 

through virtual channel and service level identification (Figure 6) and is sent to the appropriate virtual channel inside the 

MSL-IP (steps 1 and 2 in Figure 7). At this point input VC and SL information are peeled off the flit. In step 3 the input 

port computes the output port address and applies to the Virtual Channel Admission Control (VCAC) for output VC 

assignment. The communication between the input port and the VCAC is performed through a non-blocking switch. There 

is one such switch per each service level. In step 4, the VCAC assigns one of the output VCs to the requesting packet. 

This assignment occurs only once per packet, for the header flits. The flits are then fed into the corresponding virtual 

channel in the output port. Once there, the flit competes with other flits from other VCs of the same SL, all trying to be 



 7 

sent out to the link. The VC arbiter selects a flit from one of the output VCs (Step 5). The flit subsequently gets into the 

last stage (Step 6), where it is arbitrated according to priority (SL). 

The two router dimensions (VC and SL) should be arbitrated. In general, the flits coming out of the VC-OPs can be 

arbitrated together by a wide SPA (as proposed in  [10] and in the NOCs of Table 1). However, such arbitration is unfair 

for flits with equal priority, causing starvation. In addition, such an arbiter would incur higher latency due to larger 

decision tables. Therefore, we distinguish two types of arbitration: priority arbitration (Step 6 in Figure 7), which always 

grants access to the highest priority flit, and  single service level (SSL) arbitration (Steps 4 and 5) among packets and flits 

having the same priority. A SSL arbiter must be fair to avoid starvation. Note that the latency of SSL arbitration is low (a 

few gate delays for non-conflicting cases) and is negligible relative to total packet delay, which is affected by packet 

congestion in the NoC  [26]. We discuss these arbitration issues in the following sections. 

In this paper we show a four service-level router example. In Sections  4.2 and  4.3 we present the detailed structure of 

the input and output ports. The VC-IP of the next router generates a ‘credit’ token once it has room for a new flit, and the 

VC Arbiter emits a flit only after receiving a credit token. The VC-IP and the VC-OP may include multiple buffers, 

arranged in an asynchronous FIFO. Details of credit implementation and buffering are omitted here  [10] [15]. 

Table 2: Service Levels Example  [6] 

Service-Level Description Priority 

Signaling Urgent Messages, Short Packets, 

Interrupts, Control signals requiring 

low transport latency 

Highest 

Real-Time Real-time and streaming packets  

RD/WR Short memory and register access  

Block Transfer Long messages and blocks of data Lowest 

 

  

Figure 7: QNoC Router Data Flow 

 

4.2. Multi-Service Level Input Port (MSL-IP) 
A. Top Architecture 

The QNoC router input port (MSL-IP) comprises 
k

K

M∑ VC-IPs, where K is the number of service levels and Mk is 

the number of virtual channels within the k
th

 service level). Figure 8 shows a K=4 example with the same number of 

virtual channels for all service levels. Each flit contains bits that identify the service level and VC (Figure 6). For each 

incoming flit, the request is applied to only one of the VC-IPs, according to the service level and virtual channel 

indications. The selected VC-IP conducts handshake with the input channel asking for data transmission. After the flit is 

latched inside the VC-IP, a request is sent to the appropriate MSL-OP, according to the latched flit’s routing address. Note 
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that the data inside the router is transferred without SL and VC indicators since SL connections are mutually exclusive 

and VC is allocated dynamically at each OP. 
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Figure 8: QNoC Multi-Service Levels Router Input Port 

B. Virtual Channel Input Port (VC-IP) Architecture 

The VC-IP manages incoming flits that belong to an input virtual channel. The incoming flits are first saved in a buffer 

L (Figure 9), decoupling the external (input) interface and internal processing, and enabling additional flit transmissions. 

Next, the port decodes the flit type (header, body or tail). 

 

 

Figure 9: Virtual Channel Input Port (VC-IP) Architecture

On a header flit, the first two data bits contain the target OP index i for the present router. This index controls the MUX 

that selects one of four OPs for OP-VC admission. In addition, a shifted version of the header flit is sent out, so that the 

first two data bits now contain the OP index for the next router. Last, the header is sent out by signaling Rhii. No 
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processing is required for body and tail flits—they are sent out by signaling the common request Rbt, which is broadcast 

to all MSL-OPs. 

 

Figure 10: Latch-Control Circuit and STG 

The Latch-Control STG and its circuit implementation are shown in Figure 10. The controller is based on Muller-

Pipeline stages  [40] and is much faster than the one used in  [10]. The controller was verified using Petrify  [41] for speed 

independence. Note that the controller employs asymmetric delay lines to match latch propagation delays. This latch 

controller is re-used throughout the router architecture – both in VC-OP and in MSL-OP. 

 

4.3. Multi-Service Level Output Port (MSL-OP) 
A. Top Architecture 

The QNoC multi-service level output port structure is shown in Figure 11. It consists of four stages. At the first stage 

the incoming packets are grouped according to their SL and are dynamically assigned to output VCs by the VCAC 

module of that SL. VCAC manages all requests of the same SL coming from all MSL-IPs connected to the given MSL-

OP (the VCAC and output VC structure and operation are detailed in sub-sections  B and  C respectively). At the second 

stage, packet flits are arbitrated inside each service level using M-Way VC arbiters (detailed in sub-section  D). The Static 

Priority Arbiter (SPA) at the third stage arbitrates flits from different SLs according to priority. The data is also latched at 

the third stage allowing immediate release of the second stage right after the end of arbitration. The fourth stage switches 

the correct data to the external interface, controlled by the Latch Controller (Figure 10). 

 Header requests from the MSL-IPs are grouped according to their service level, and conflicts within each service level 

are resolved by VCAC. VCAC monitors BUSY lines of the managed output VCs (VC-OP) and assigns one of the free 

output VCs to an incoming packet. If no free output VCs are available, the header requests are stalled, waiting for at least 

one free output VC.   

The arbitrated header requests are directed to the assigned output VCs, and then the corresponding VC-OP modules 

conduct direct communication with the relevant input VCs of the relevant MSL-IP. Other than the header flits, all other 

flits are transferred directly between VC-IP and VC-OP, without any involvement of VCAC.  

VC arbitration is performed at the second stage of MSL-OP. Only one output VC of each SL is allowed to 

communicate with the third stage at a time. The VC Arbiter is responsible for flit arbitration inside each SL, providing 

bounded blockage time  [10] for each output VC inside the SL group. The VC Arbiter operation is explained in sub-section 

 D below. 

At the third stage, flit requests from all service level channels enter the static priority arbiter (SPA)  [34]. The SPA 

decides according to service level priority which flit is sent at the next output data cycle. When a service level is granted 

(G_SLi), the corresponding address is latches in the C-elements (one-hot encoding), switching the data MUX. The flit 

from the MUX is latched into the output latch by the Latch Controller, which subsequently sends the flit through the 

shared output interface to the link.  

After sending one flit to the Latch Controller (fourth stage), control is returned to the SPA, since there could be higher 

service level flits pending. Next priority decision is performed only when the data is latched inside the fourth stage, 

regulated by the Gate input to the SPA. The SPA module is also employed inside VCAC as described below. 

A modified SPA [34] consists of a Request Lock Register (containing the MUTEX elements) and priority logic (Figure 

12). When at least one request is sensed, the set of pending input requests are locked in the register, and eventually the 

highest priority request is granted at the output (Gi+). As a result, the Request Lock Register is reset. The C-element 

holding the grant is released only after the corresponding request goes low. The SPA's locked requests (AND-gate 

outputs) are used to latch data at the third MSL-OP stage (LOAD outputs). In this way only flits that have attached request 

signal are sampled. 
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Although fairness of the priority arbiter has been improved  [42], we employ a modified version of the simpler 

approach  [34], since in our case fairness among service levels is less of an issue, thanks to additional MUTEX-arbitration 

within each service level (inside VCAC and VC Arbiter). 

 

Figure 11: QNoC Multi-Service Level Router Output Port (M-Way VC arbiters are used in VC Arbitration stage, 

K-Way SPA is used in SL arbitration Stage). In this figure K=4, M=3 

 

Figure 12: N-Way Static Priority Arbiter 

 

B. Virtual Channel Admission Control (VCAC) 

Since the router is asynchronous, arrival time of the request signals is unknown, and requests may conflict. Therefore, 

the requests from IPs should be arbitrated. Note that only header-type requests are arbitrated, since once an IP-OP 

connection is established the body and tail requests are directly communicated between an input port VC and an assigned 

output port VC. 

The arbitration and output VC assignment are performed by the VCAC architecture shown in Figure 13. The incoming 

header requests are first arbitrated by MUTEX-NET, which structure is discussed below. Thanks to the MUTEX-NET 

only one request is granted. The granted request enables the SPA, which in turn decides on output VC assignment. SPA 
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picks one of the free output VCs according to BUSY signals coming from the VCs. When an output VC is free, its BUSY 

signal is low, enabling the SPA lock operation. However, the lock operation also depends on the existence of enable (see 

Figure 12), therefore only when both request and at least one free VC exist, the SPA decides on the VC assignment. Note 

that since there is no priority in between the VCs, the SPA is programmed to select any free VC. 

When SPA issues a decision, the input VC address is sent to the output VC that was picked by the SPA (using the 

MUX). Once the address is latched inside the output VC, GATE signal is returned to the SPA (and BUSY of the assigned 

output VC becomes high). GATE signal is released only after the corresponding header request is de-asserted, therefore 

an input request is associated only with single output VC. When GATE is de-asserted, subsequent header requests, 

arbitrated by the MUTEX-NET, are processed.  

 

Figure 13: Virtual Channel Admission Control (VCAC) Module 

The header request arbitration is performed by a MUTEX-NET, which is faster than the tree-arbiter while still 

incurring similar latency and area  [10]. 

In an arbiter, one of the main concerns is fairness, which guarantees that a request will be granted after a bounded 

number of other requests  [34]. Fairness and correctness  [43] of arbitration can be improved by using ordered arbiters  [44], 

preserving the closest possible granting order to input arrival, by storing the incoming requests in an internal FIFO. In  [10] 

we proved that the MUTEX-NET is fair, having a bounded blocking time. 
In  [10] four-way MUTEX-NET was implemented (Figure 14). Four requests are mutually excluded by means of a 

network of six two-input MUTEX elements, arranged in three stages. The latency of the MUTEX-NET is expected to be 

very low for non-conflicting cases, making this solution fast and effective for the majority of packet transmissions. Note 

that arbitration is performed only once per packet and therefore most bits are unaffected by the arbitration latency. In this 

work we extend the four-way arbiter to N-Way MUTEX-NET arbiter, when N is a power of 2. This extension allows 

construction of a generic router with any number of VCs. We refer to the connections inside the MUTEX-NET as "group-

connections," each consisting of N/4 wires, and construct a N-way MUTEX-NET using the same topology as a four-way 

MUTTEX-NET, where the 2-input MUTEXes are replaced by N/2-way MUTEX-NETs. Examples of 8-Way and 16-Way 

MUTEX-NETs are shown in Figure 15. 

In each MUTEX-NET junction, an in-group arbitration is performed first. That operation is required only during the 

first MUTEX-NET stage. At the second and third stages of the MUTEX-NET, "star" units are employed, omitting in-

group arbitration and reducing arbitration latency. The structure of "star" MUTEX-NET arbiter is shown in Figure 16.  

R1

R2

R3

R4

G2

G3

G1

G4

group connections

1 1

 

Figure 14: MUTEX-NET 
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Figure 16: STAR MUTEX-NET 

 

C. Virtual Channel Output Port (VC-OP) Architecture 

VC-OP (Figure 17) interfaces the four IPs of the same SL. Admission to the port is managed by the Virtual Channel 

Admission Control (VCAC) module (described in sub-section  B).  The port receives an IP index from VCAC module, 

establishing IP-OP connection and maintaining the connection for the duration of the packet, until receiving a tail-type 

flit. 

Upon reception of a header flit (Hi high), the port sends out "GATE_TO_VCAC" signal that resets the arbiter of 

VCAC, allowing a new output VC allocation. In addition, the port produces a BUSY signal that indicates to VCAC that 

the output VC is taken and no new packet can be applied to it. After header flit handling, body and tail requests arrive in a 

mutually exclusive manner. Body and tail flits are immediately sent out to the output interface, through latch L.  

Upon a tail-flit, the IP-Index latch becomes transparent, latching "all zero" value from VCAC. Consequently, the 

BUSY signal goes low, indicating to VCAC the port readiness to accept a new packet. The latch becomes transparent only 

after the port completes the (Ri, Ai) handshake for the tail-flit. This is assured by the NOR gate, keeping the c-element 

input low during the tail-flit data cycle.  

The Latch-Control unit latches the selected data in data latch L. Subsequently, it conducts the handshake with the next 

MSL-OP module (VC arbiter). The unit is identical to the one used in VC-IP (Figure 10). 
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Figure 17: Virtual Channel Output Port (VC-OP) Architecture

 

D. Virtual Channel Arbiter 

The VC Arbiter employs another MUTEX-NET arbiter (similar to the described in Sect.  B) and is responsible for flit 

arbitration inside each SL, providing bounded blockage time  [10] for each output VC inside the SL group. The VC Arbiter 

operates as follows. First, incoming requests from output VCs are arbitrated by M-way MUTEX-NET that grants one of 

them. The granted request is latched in the corresponding c-element and serves as address for connection between the 

granted output VC and SPA. After arbitrating the common request Ro, SPA issues grant signal (Figure 11) that 

acknowledges the VC arbiter. The acknowledgement signal is passed directly to the correct output VC thanks to the 

address latched in c-elements. Finally, the output VC de-asserts its requests allowing processing of other VC requests. 

Note that the new output VC request arbitration is performed immediately. However, the c-elements will remain locked 

until the last handshake with SPA is over (Ao is low). 

 

 

Figure 18: M-way VC Arbiter 
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5. Performance Analysis  
The proposed asynchronous QNoC router was designed using 0.18µm CMOS standard cell library of Tower 

Semiconductor Ltd.  [51] and standard synthesis and physical design tools. The router examined in this section consists of 

five ports, four service levels and two virtual channels for each service level, resulting in the same number of VCs for all 

ports. Minimal buffering was employed: one buffer for each VC, a single buffer at each VC and SL arbitration stage and 

at each output stage (Figure 11). We studied flit size impact on router performance: the flit data ranged between 8 and 128 

bits. As expected, flit size affects both performance and area, as shown in Figure 19 and Figure 20. Each additional flit bit 

degrades the performance by ~0.2% and each doubling of the flit size results in linear area growth, due to additional 

latches and switches in the data path. The throughput results were collected using gate-level simulations. The minimal 

router data cycle, for flit size of 8 data bits, was 4.5ns yielding 220Mflits/s. The flit size also affects the relative area 

distribution in the router (Figure 21), where the switch area dominates the latches as the flit size grows. These results 

agree with the analysis of Section 3, where the area coefficient of the cross-bar (SL×VCO×K×VCI) in Eq. (5) dominates 

the VC components as the flit size grows. Note that this factor is absent in Eq. (4) that expresses the latch area; 

consequently, the portion of latch area in Figure 21 is reduced as flit size increases. Indeed, the total number of latches 

increases, but the cross-bar area increases even faster. In addition, we have measured the latency of the router: The latency 

of header and body flits was found to be 13.5 and 10 ns respectively for two VC routers, and 11.5 and 8.4 ns respectively 

for a single VC router. The flit latencies are higher than those reported in  [10] due to deeper pipelining. Note, however, 

that although the individual flit takes longer to traverse a router with VCs, the total end-to-end delay of the packet in a 

network that supports VCs is expected to decrease  [26]. 

Additional latches may be employed for enhancing the performance by pipelining, as predicted by the analytical 

expressions. In addition, stronger drivers may mitigate the throughput degradation of Figure 19, by providing for the 

increased load presented to the asynchronous controllers when the flit size grows. Custom crossbar implementations  [46] 

may also contain the growth of the interconnect and gate area shown in Figure 21. 

Assuming an area-saving custom crossbar, the NoC router area would be dominated by buffers. Synchronous 

implementations, designed using standard EDA flows, require about twice more area due to buffer implementation using 

flip-flops instead of latches  [10]. On the other hand, higher data rates are easier to achieve in synchronous designs thanks 

to the maturity of CAD tools. For example, a standard implementation of a pipelined synchronous router can directly lead 

to a data cycle of 20 FO4 gate delays  [10], while the design example presented in this work has 60 FO4 gate delays data 

cycle. The 60 FO4 cycle should be applicable to most SoC applications, having IP-cores operating at 100-400 FO4 clock 

cycles  [1]. For SoCs with higher data rate requirements, a more customized asynchronous design should be employed, 

which will lead to performance equal or even faster than synchronous implementations. As the first step, the slowest and 

simplest four-phase bundled data asynchronous protocol employed in the design presented here can be replaced by a twice 

faster two-phase protocol or by other methods  [8]. The smaller area requirement of the asynchronous router makes it more 

efficient in terms of leakage power. In addition, the absence of clock reduces the dynamic and standby power relative to a 

synchronous design since asynchronous control toggling is expected to be lower than that of the clock tree, especially for 

large flit sizes. The main bottleneck of the asynchronous router is the need for arbitration. The novel arbitration presented 

in this paper, which enables dynamic VC allocation, has low latency and can be further pipelined.  
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Figure 19: Router throughput dependence on flit size (a) Flit rate   (b) Bit rate   
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Figure 20: Router cell area dependence on flit size 
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Figure 21: Area distribution. Switching gates and wires dominate the area as flit size grows 

 

6. Conclusions 
We presented a detailed architecture of an asynchronous router for Quality-of-Service NoC (QNoC). The router 

supports multiple service levels as well as multiple equal-priority virtual channels within each service level. This two-

dimensional virtualization provides higher NoC link utilization relative to one-dimensional structures, consisting of a set 

of either prioritized or non-prioritized virtual channels. Virtual channel allocation is performed dynamically by a Virtual 

Channel Admission Control unit. New arbitration schemes were presented and analyzed. 

We have presented a study of router cost dependence on buffering depth and flit width. An analytical model was 

developed for assessing latency, throughput, area and energy. It shows linear dependence of the parameters on both 

buffering depth and flit width. In simulation using standard library on a 0.18µm process, the router achieves throughput of 

220Mflits/s when configured to work with eight-bit wide flits. Simulation results agree with the analytical model. 

The presented router is highly configurable in terms of the number of service levels and the number of virtual channels 

for each port and service level. This allows tuning the NoC architecture for each application. 
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