
Can Hot Traces Improve Value Prediction? 

Assad Khamaisee(1), Avinoam Kolodny(1) and Avi Mendelson(2)  
(1)  EE department, Technion, (2) Intel Corporation, Israel 

 

Abstract 
This paper focuses on the interrelations between two well-known techniques for 
processor performance acceleration: trace cache (in particular "hot traces") and 
value prediction. Value prediction was proven to have potential for performance 
improvement, but it suffers from the need to use relatively large tables and it needs an 
accurate classification mechanism to indicate which instructions are most likely to be 
predicted correctly in order to minimize the amount of mispredictions. Trace cache 
was proposed as a mechanism to improve the effective fetch bandwidth. Recently, 
several papers proposed to use “hot traces” (traces that have been used repeatedly), 
as a basis for different trace cache optimizations such as reducing the power 
consumption of the core and gaining better performance given a limited-size cache.   
This paper proposes to use hot traces as a filter to the value prediction, so that the 
value prediction will be done only for instructions belonging to hot traces. We will 
show that the new proposed technique improves the prediction accuracy for most of 
the applications, and reduces the miss ratio of value prediction. 

1. Introduction 
In order to extract more performance out of single threaded applications, various 

techniques were proposed, including the use of trace cache and value prediction. Trace cache 
was introduced as a mechanism for increasing the fetch bandwidth of out-of-order machines 
[rot96], while Value prediction was proposed for overcoming the memory wall problem 
[lip96a] (by predicting LOAD instructions), or for increasing the effective parallelism of the 
machine [lip96b,gab98] (by predicting arithmetic operations). Different investigations 
showed [gab98] that the benefit of using value prediction is heavily dependent on the size of 
prediction tables and the quality of the filtering being used.  

Different methods have been proposed for value prediction. In this work we will refer 
to three of them: last value, stride predictor and 2-level value predictor. Last value predictor, 
proposed in [lip96b], predicts that the value produced by an instruction will be the same as 
the value it produced last time. The implementation of the last value predictor includes two 
tables, one (VPT) that keeps the last produced value and another used as a classification table 
(CT) to decide whether the predicted value should be considered or not. 

      The stride predictor, presented in [Gab98], uses a similar structure as the last 
value predictor, but instead of predicting based on last value, it tries to identify a pattern of 
stride (can be 0) and to predict the next outcome based of the stride values. The stride method 
also keeps a VPT table that keeps the last value and the stride value, and a classification 
table. One can replace the classification table with a decision that only strides which are in 
some range are acceptable and all the rest are ignored.  

The 2-level value predictor was presented in [wan97]. Here, the method is based on 
the observation that a substantial percentage of the dynamic instructions have 4 or fewer 
unique values in their recent history, by storing their appearance count the predictor chooses 
1-out-of-4 predictions based on 2 levels prediction technique similar to the method used for 



branch prediction. Note that each entry of the table needs to keep 4 different values, and so is 
much larger (in bytes) than the size of the entry in last value or in stride predictor. 

In order to improve the predictability of value prediction and in order to reduce the 
size of the tables it uses, different filtering mechanisms were proposed: [cald99] looked at 
techniques to reduce the size of the different tables with minimal performance loss, while 
[tune01] [fiel02] suggest different heuristics of finding the critical path of the program and 
selectively predicting the values of instructions on the predicted critical path. These 
techniques require extra hardware that needs to be added to the processor for getting 
information from various subsystems which are timing sensitive. This paper examines a 
different approach: we would like to take advantage of trace cache techniques, which exist in 
high performance processors such as Pentium®-4. 

Trace cache is a mechanism proposed for increasing the fetch bandwidth of the 
processor by storing and retrieving blocks of dynamically-adjacent instructions, which may 
contain one or more taken branches. These sequences of instructions are stored in contiguous 
cache-memory locations. In this paper we are using a trace cache which is similar to the one 
described in [rot96]; i.e., the trace cache mechanism has two stages: (1) if a trace is not found 
in the trace cache we gather instructions until it reaches some termination conditions and then 
stores it in the trace cache (2) if a trace is found in the trace cache we use it and while 
executing, branch conditions are checked. In case of “departure” from the predicted trace, we 
terminate the execution of the current trace and look for a new trace in the trace cache (or 
build a new one).  

 Recently, it was suggested to use a subset of all traces in a program, termed “hot 
traces”, as a vehicle for various optimizations. A “hot trace” is defined as a trace which is 
used more than some threshold number of times during its life time in the cache, and [Kos02] 
shows that a relatively small number of hot traces are responsible for the majority of the 
instructions being executed by the processor. In [Ros01] hot traces are used as an 
optimization parameter for reducing the power of high performance computers and in 
[Ros03] it was suggested to use hot traces as “building block” for further optimizations in 
order to improve the performance of the machine.  

This paper proposes to use hot traces as a filter to indicate for which instructions 
value-prediction should be applied. The motivation here is two-fold: in many cases hot traces 
represent the “regular” portion of the execution; i.e., inner loops, which may have higher 
probability for correct prediction of the values associated with instructions. Furthermore, the 
number of instructions predicted within the hot traces is relatively small, but yet a vast 
portion of the execution originates from them. Thus, value caches of modest size may be 
sufficient to serve a lot of the required predictions. 

The rest of the paper will be organized as follows: Section 2 describes the 
characterization criteria we will use later on in the our comparison, Section 3 gives a brief 
description of our simulation environment, Section 4 presents the main results and we 
conclude with Section 5. 

2. The Characterization Criteria 
In order to characterize the new proposed technique, we look at the following parameters: 
• N: The total instructions count in the program. 
• P: The total predictable instruction count in the program. This set of instructions 

includes all the instructions which will be forwarded to the value prediction 
mechanism. In the “traditional” techniques, it will include all the instructions that 
“pass” the type criteria; e.g., load instructions if we predict only loads (In this work 
LOAD and Arithmatic Instruction are the type criteria). In the new proposed technique 
it will include all instructions which belong to hot traces and pass the type criteria. 



• V: (valid) Instructions that pass the CT filter; i.e., the predictor decides to “take a bet” 
and predict their data values. Note that V is always a subset of  P. 

• S: (success) Instructions that were predicted correctly. Note that S is always a subset of  
V. 

In order to characterize the different mechanisms, we will use the following ratios: 
• PR: The total predictable instructions rate (P/N). 
• SQ: Success quality (S/P) – how many predictions were found to be correct out of the 

total candidate. 
• MR: The total value prediction miss rate  ((V-S)/N). 
 

Note that when using the new proposed technique; i.e., using the hot traces to gate 
access to the value predictor, the above stated instruction groups (P,V) will be numerically 
smaller (for the same N) due to the filtering, but we hope that the successfully predicted 
values (SQ) will increase and the overall miss ratio will be reduced.  

3. The Simulation Framework 
The simulation model environment is based on sim_outorder version of the simple 

scalar 3.0 simulation tool set, using PISA instruction set. The simulator was enhanced to 
include trace cache management, trace selection and hot trace identification algorithms. We 
also implement different value prediction mechanisms, three of them are presented in this 
paper. 

In order to evaluate the different techniques, we use ten integer and floating point 
applications out of the CPU SPEC200 performance suite: gzip, vpr, gcc,  twolf, art,equake, 
ammp, mesa , perl and mcf. 

The simulated trace cache model consists of 8k trace entries, each trace includes up to 
16 instructions and up to 4 basic blocks (maximum 4 branch instructions may be included in 
the same trace). The LRU (last recently used) replacement policy is used for cache space 
conflict. The simulated trace utilization threshold (tuthr); i.e., how many times we use the 
trace before declaring it as a hot trace, ranges from 2 to 100.  

 

4. Experimental Results 
The new proposed technique suggests to use the hot trace indicator as a filter for 

deciding “which instructions are important for the program”; i.e., execution paths which are 
executed repeatedly many times. Since the question of building efficient traces is out of the 
scope of this paper, and we are using the basic trace construction mechanism as was 
described in [rot96], we distinguish between the group of programs for which the current 
tracing mechanism works efficiently, and the rest of the benchmarks. In order to distinguish 
between these groups, we examine the predictability ratio of the program and examine how it 
changes with the value of the trace utilization threshold (tuthr) that indicates after how many 
uses of a trace, we treat it as a hot trace. For each of these groups we examine different 
characteristics of the proposed mechanism.  

4.1. PR Characterization 
The PR (total predictable instructions P/N) characterization indicates how many 

instructions, out of all instruction being executed are candidates for value prediction. When 
no hot trace selection is available, P is determined by the type of the instructions(Load and 
Arithmetic instructions). When hot trace selection is used, P is determined by the type of the 
instructions within hot traces only.  



Figure 1 shows how the PR characterization that indicates how many instructions will 
be used as candidates for value prediction changes in respect to the threshold (tuthr) of the 
“hot trace indicator”. 

Figure 1. The PR characterization in respect to tuthr 
 
We can observe that the hot trace indicator reduces the PR for all programs. But for 

many of them, (1) the percentage of the instructions being eliminated is relatively small and 
(2) the slopeof the change after tuthr=10 is very flat. The first  effect could be either because 
the programs use a very small number of traces all the time, or because of a very inefficient 
way of building the traces, so hot traces have only modest impact. Since the analysis of the 
hot trace build is out of the scope of this paper, we decided to focus the discussion on those 
applications where the current trace build procedure seems to be effective; i.e., GCC, Twolf 
and VPR. We will examine the behavior of the rest of the applications separately. 

4.2. Success Quality (SQ) – S/P 
The success quality indicates how many correct predictions the value predictor made out of 
all the accesses to the value predictor mechanism. Let’s start looking at the characterization 
of the SQ qualifier. Figure 2 shows how the SQ changes for the three selected programs in 
respect to the tuthr threshold, when a table with 1K entries is used. Please note that the left-
most bar in each group is for tuthr=0; i.e., no hot trace filter was used.  

0%
10%
20%
30%
40%
50%
60%
70%

gcc tw olf vpr gcc tw olf vpr gcc tw olf vpr

last stride 2lev

%
S/

P

0 5 10 25 50

 
Figure 2: SQ characterization of well-filtered applications. 

 
Figure 2 shows that for most of the cases, the SQ improves when we increase the 

tuthr parameter. It indicates that using the hot trace indicator improves the quality of the 

0%
10%

20%
30%
40%

50%
60%

70%
80%

0 5 10 15 20 25 30 35 40 45 50

%
PR

ammp art equake gcc gzip
mcf mesa perl twolf vpr

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ammp art equake gcc gzip mcf mesa perl tw olf vpr

%
 P
R

 e
lim

in
at

ed
 

%reduced



prediction we are making. (but we also need to remember that it reduces the overall number 
of instructions it attempts to predict, so the total number of “correctly predicted” instructions 
can be reduced, but the confidence we have that an instruction we try to predict will be 
predicted correctly, increases). Figure 3 provides the same characterization for the rest of the 
program list we use. 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

am
m

p

ar
t

eq
ua

ke

gz
ip

m
cf

m
es

a

pe
rl

am
m

p

ar
t

eq
ua

ke

gz
ip

m
cf

m
es

a

pe
rl

am
m

p

ar
t

eq
ua

ke

gz
ip

m
cf

m
es

a

pe
rl

last stride 2lev

%
S/

P
0 5 10 25 50

 
Figure 3: SQ characterization for other programs 

We can observe that the trends and the observations are not coherent here. Two 
programs; ammp and gzip are getting less favorable prediction when using hot trace filter, 
ART and MCF are having relatively good predictions, but they are not affected by the hot 
trace selection. One may assume that the number of different traces in these program is small 
enough so any filter can only reduce the accuracy rather than improve it. Other programs 
show similar behavior as in figure 2.  

4.3. Miss Ratio (MR) 
A very important factor for a good value predictor mechanism is the amount of miss-

prediction it causes. Please note that the number of misses is not equal to P-S (the amount of 
accesses to the predictor minus the number of success predictions), since many of the access 
to the value predictor will not be considered if they will be “rejected” by the CT mechanism. 
In this section we will focus on the MR characterization; i.e., the number of misses out of the 
total instructions the program executed. As before, we will separate the discussion to the 
“well filtered” applications and the rest. 

Figure 4 indicates that the new proposed technique is very efficient for reducing the 
performance penalty caused by value miss predictions. The leftmost bar in each group 
indicates the miss prediction when no hot trace filter is used, the rest of the bars show the 
miss prediction for different values of the hot-trace threshold (tuthr). We can observe that as 
we increase the threshold, the miss ratio (MR) decreases. This trend is important in particular 
for 2lev predictor that suffers from very high level of misses, but it is also important for last 
and stride predictors where the miss-prediction is reduced from about 2% to about 0.5%. 

 



0%

2%

4%

6%

8%

10%

12%

gcc tw olf vpr gcc tw olf vpr gcc tw olf vpr

last stride 2lev

%
M

/N

0 5 10 25 50

 
Figure 4: MR for well-filtered applications 

 
Figure 5 presents the same view for the rest of the applications. As before, the picture 

here is more complicated. For most of the applications, and in particular for the 2lev 
implementation, the miss ratio improves significantly as we increase the tuthr parameter. 
Some applications such as perl and mcf, although their miss ratio is quite small in the first 
place, do not reduce it any more as we increase the threshold level. For some other 
applications, such as mesa for stride and last value the improvement is less significant than 
we could expect. 

 

0%

1%

2%

3%

4%

5%

6%

7%

am
m

p

ar
t

eq
ua

ke

gz
ip

m
cf

m
es

a

pe
rl

am
m

p

ar
t

eq
ua

ke

gz
ip

m
cf

m
es

a

pe
rl

am
m

p

ar
t

eq
ua

ke

gz
ip

m
cf

m
es

a

pe
rl

last stride 2lev

%
m

is
s 

ra
tio

0 5 10 25 50

 
Figure 5: MR for other applications 

4.4. The Impact of Different Table Sizes 

So far we were focused on characterizing the new method using prediction tables of 
1K entries. This section examines the impact of using different table sizes on these  



characterizations. Due to the page limit, we will provide only the graphs for the well filtered 
applications, but the trend of  all the other applications is the same as this group. 

Figure 6: Impact of different table sizes 
 

As Figure 6 indicates, when small prediction tables are used, the benefit of using 
value prediction is limited, but the miss rate (MR) is small as well. As the tables grow, the 
success quality(SQ) of the different predictors increases, with the cost of increasing the miss 
ratio. Luckily enough, the new proposed technique limits the growth of the miss ratio, while 
taking advantage of the opportunity for improving the success quality. 

5. Conclusions and Future Work 
This paper suggests to use hot traces as an indication for identifying “useful” 

candidates for value prediction, by integrating two existing mechanisms: trace cache and 
value prediction. The objective of this work was to answer the question “Can hot traces 
indicator help value prediction”, or in other words, it aims to explore the new filtering 
mechanism, to characterize it, and to understand if an indication that a trace is hot can 
contribute to improving the existing value prediction mechanisms. The results presented in 
this paper indicate that we can define a subgroup of applications in which the use of the new 
technique can significantly improve the success quality of value prediction, and also to 
significantly reduce their miss ratio. For the applications that do not belong to this group, we 
observed that for most of them the current mechanisms are good enough and so no significant 
improvement could be achieved. But for very few applications, using the new proposed 
technique reduces success quality. So far, the only application that showed such “bad” 
behavior is GZIP which has poor success quality in the first place, but we are still working on 
understanding how it can be prevented and if other applications significantly suffer from that 
phenomenon.  

Our proposed technique also has an important implication for reducing the prediction 
power consumption since all other techniques access the value prediction mechanism every 
instruction cycle (or at least for instructions of a proper type) and only if the CT table rejects 
their prediction, the value will not be used. In our technique, the indication that an instruction 
was not produced from a hot trace, will prevent it from being sent to the value prediction at 
all. 

The work we are presenting here is the first step of an on-going research we are 
conducting on value prediction and trace caches. So far we have not started to examine the 
impact of the proposed techniques on the overall IPC of the system. In general, one can 
observe that any filtering technique, since it reduces the number of candidates for value 
prediction, may reduce the absolute number of correct value predictions, thus for a machine 
with infinite resources and perfect CT mechanism, there is no sense to limit the number of 
candidates. But, when we model “real machines”, it is very important to limit the number of 

Miss ratio (M/N)

0%

2%

4%

6%

8%

10%

12%

14%

12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k

GCC tw olf vpr GCC tw olf vpr GCC tw olf vpr

last stride 2lev

base tuthr=10Successful quality (S/P)

0%

10%

20%

30%
40%

50%

60%

70%

80%

12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k 12
8

51
2 1k 4k 8k

GCC tw olf vpr GCC tw olf vpr GCC tw olf vpr

last stride 2lev

base tuthr=10



speculating instructions to those that  have the best chance to significantly improve the 
overall performance of the system, without overloading the resources with speculative 
instructions that have only minor impact on performance, even if predicted correctly. 
Although this paper does not deal with direct performance measurement issues,  related 
research we did on characterization of hot traces, indicated that most of the instructions being 
executed from the hot traces do have an important contribution to the overall performance. 
Thus, we believe that the proposed mechanism will have an important contribution to the IPC 
of the machine. It will be considered as part of our future work. 

6. Reference 
[cald99] B. Calder, G, Reinmann and Dean Tullsen “ Selective Value Prediction” ISCA 

1999. 
[Kos02] Oleg Kosyakovsky, Avi Mendelson and Avinoam Kolodny :  The use of profile-

based trace classification for improving the power and performance of  trace cache 
systems, In workshop on feedback directed optimization, 2002. 

[fiel01]  B. Fields and S Rubin and R. Boodik Focusing Processor Policies via Critical-path 
Predictor. In ISCA 2001. 

[gab97] F. Gabbay and A. Mendelson “Can Program Proofiling Support Value Prediction'', 
IEEE MICRO 30 conference,  North Carolina, 1-3 Dec, 1997 

[gab98] F. Gabbay and A. Mendelson: “Using Value Prediction to increase the Power of 
Speculative Execution Hardware'' in ACM Transactions on Computer Systems 
Vol. 16, No. 3 (Aug. 1998), Pages 234-270. 

[lip96a] M.H. Lipasti C.B. Wilkerson and .J.P  Shen Value locality and load value 
prediction in ASPLOS 96 

[lip96b] M.H. Lipasti and .J.P  Shen, Exceeding the dataflow limit via value prediction, in 
MICRO-29. pp 226-237 Dec 1996 

[Ros01] Rosner, R.; Mendelson, A.; Ronen, R.; “Filtering techniques to improve trace-cache 
efficiency” in International Conference on Parallel Architectures and Compilation 
Techniques (PACT), Page(s): 37 -48, 2001 

[Ros03] R. Rosner, M. Moffie, Y.  Sazeides R. Ronen “Selecting Long Atomic Traces for 
High Coverage" to be presented in ISC03. 

[rot96]   E. Rotenberg, S. Bennett and J.E. Smith, “Trace Cache: a Low Latency Approach 
to High Bandwidth Instruction Fetching”, in Proceedings of the 29th International 
Symposium on Microarchitecture, Dec. 1996 

 [wan97] K. Wang and M. Franklin. Highly accurate data value prediction using hybrid 
predictors. In 30th Annual International Symposium on Microarchitecture, pages 
281–290, Dec. 1997. 

[tune01] E. tune D. Liang, D.M. Tullsen and B. Calder. Dynamic Prediction of critical path 
Instructions in HPCA 2001 

 


