
Abstract— Efficient module integration in Systems on Chip
(SoC) is a great challenge. We present a novel automated
Network on Chip (NoC) centric integration method for large
and complex SoCs. A Quality of Service NoC (QNoC)
architecture and its design considerations are presented. Then
we describe a chain of design automation tools that allows fast
and hardware-efficient SoC integration using the QNoC
paradigm. The tool-chain receives a list of system modules and
their inter-module communication requirements and results in
a complete system hardware and verification models for faster
SoC fabrication and easier verification.

1. INTRODUCTION

The complexity of VLSI Systems on Chip (SoCs) is constantly
growing. In current technologies a typical SoC comprises tens of
system modules and according to technology projections [5][18]
this number will grow to several hundreds in the near future. In
order to shorten SoC design time and to overcome the growing
design productivity gap, most of the SoC modules are purchased
or reused from previous in-house projects. Therefore, the main
SoC design challenge shifts to adaptation and fast and efficient
integration of these Intellectual Property (IP) modules [18]. The
main difficulty of integration is the need to cope with severe
physical constraints of on-chip interconnect of the future
technologies and to provide low cost and efficient communication
among system modules. On the other hand, the integration process
has to be easily realized to provide short time-to-market of an
operational product.

On-chip global communication and module integration has
traditionally been addressed by shared-bus structures [15][16][17]
and direct inter-module connections. The non-scalability and
hardware inefficiencies of these approaches are discussed in
[1][2][3][11]. New generations of higher level abstraction
methods and design automation tools are required to allow rapid
and hardware- efficient SoC integration and consequently a
shorter time-to-market [9][18]. To that end, a novel on chip
interconnection approach, termed Network on Chip (NoC) was
proposed in [1]-[14]. NoCs are shown to be very attractive
solutions for the problem of global interconnect in deep sub-
micron technologies, and for assuring Quality of Service (QoS) on
chip communication [1][13]. In [1], we proposed a generic QoS
based NoC architecture and design process termed QNoC which
provides an efficient quality of service communication between
SoC modules.

In this paper we describe an automated QNoC-centric SoC

This research has been partially supported by Intel Corp. and the
Semiconductor Research Corp (SRC)

integration design flow, which allows faster and hardware-
efficient system integration. We present a chain of Computer
Aided Design (CAD) tools that provide an automatic SoC
assembly, integration and verification. The QNoC centric tool-
chain presents an attractive solution for the deep-submicron
integration problems. Its major steps are: communication based
module placement, QNoC topology generation, hardware efficient
packet routing, QNoC cost minimization based on link load
analysis and network simulations, and finally automatic hardware
and verification models generation of the complete system.

The rest of this paper is organized as follows: Section 2
presents the basic QNoC architecture, Section 3 presents our
vision of system integration with QNoC and elaborates about the
set of design automation tools and their functionality. And finally
Section 4 summarizes and discusses future work.

2. QNOC ARCHITECTURE

The QNoC architecture is based on a grid topology and
wormhole packet routing. Links are assumed reliable (or made
reliable using error correction) and credit based backpressure is
applied between stages resulting in a loss-less data forwarding.
Packets traverse the network along the shortest route, thus
minimizing power dissipation and maximizing network resource
utilization.

2.1. QNoC Topology
QNoC comprises routers interconnected by point-to-point links.

Network topology can vary depending on system needs and
module sizes and placement. Each system module is connected to
a router (Figure 1) via a standard interface, whose bandwidth is
adapted to the communication needs of that module. In addition, a
module may be connected to the network through more than one
interface.

Module

Module Module

Module Module

Module Module

Module

Module

Module

Module

Module

Figure 1. SoC example with QNoC custom topology -
irregular customized mesh

 The bandwidth of each inter-router link is similarly adjusted to
accommodate the expected traffic at the specific link and fulfill

Automatic Hardware-Efficient SoC Integration
by QoS Network on Chip

Evgeny Bolotin, Arkadiy Morgenshtein, Israel Cidon, Ran Ginosar and Avinoam Kolodny

Electrical Engineering Department, Technion - Israel Institute of Technology, Haifa 32000, Israel1

4790-7803-8715-5/04/$20.00 ©2004 IEEE.

overall system QoS requirements (in terms of bandwidth and end-
to-end delay) for each class of traffic. Link and interface
bandwidth are adjustable by changing the number of wires and the
data frequency to achieve uniform utilization at each network link.
Finally, unneeded resources such as ports, links, and buffers are
trimmed where possible resulting in low cost, QoS based network.

2.2. QNoC Service Levels
One of the main goals of NoC is the support of different QoS

requirements. We identify four different types of communication
requirements and define appropriate service levels (SL) to support
them:

Signaling covers urgent messages and very short packets that
are given the highest priority in the network to assure shortest
latency. This service level represents interrupts and control signals
and alleviates the need for dedicated wires.

Real-Time service level guarantees bandwidth and latency to
real-time applications, such as streamed audio and video
processing. This service is packet based; a maximal level of
guaranteed bandwidth is allocated to each real-time link and
should not be violated.

Read/Write (RD/WR) service level provides bus semantics and
is designed to support short memory and register accesses.

Block-Transfer service level is used for the transfer of long
messages and blocks of data, such as cache refill and DMA
transfers.

A priority ranking is established among these service levels,
where Signaling is given the highest priority and Block-Transfer
the lowest. QNoC employs preemptive communication scheduling
where data of a higher priority packet is always transmitted before
that of a lower service level (a round-robin is employed within
service levels). Additional service levels may be defined if
desired. For instance, the RD/WR service level may be split into
normal and urgent RD/WR sub-levels.

2.3. QNoC Communication
Packets carry routing information, command and payload. The

command field identifies the payload, specifying the type of
operation. The packet is divided into multiple flits following [22].
Flit transfer over the inter-router link is controlled by handshake.

2.4. QNoC Routers
Routers connect to up to five links, designed for planar

interconnect to four mesh neighbors and to one SoC module. The
router forwards packets from input to output ports. Every arriving
flit is first stored in an input buffer. On the first flit of a packet, the
router invokes a routing algorithm (see Section 2.5)to determine
to which output port that packet is destined. The router then
schedules the transmission for each flit on the appropriate output
port. Each output port of a router is connected to an input port of a
next router via a communication link. The output port maintains
the number of available flit slots per each service level in the
buffer of the next input port. The number is decremented upon
transmitting a flit and incremented upon receiving a buffer-credit
from the next router. When a space is available, the output port
schedules transmission of flits that are buffered at the input ports
and waiting for transmission through that output port (Figure 2).
There are separate input buffers for each of the four service levels
(“direct buffer mapping”). Relatively small buffers are allocated
to each service level, capable of storing only a few flits, since
buffers are relatively expensive in VLSI (see [2] for buffer-links

area tradeoff study). Once a higher priority packet appears on one
of the input ports, transmission of the current packet is preempted
and the higher priority packet gets through. Transmission of the
lower priority packet is resumed only after all higher priority
packets have been serviced.

C
R

O
SS

-B
A

R

Input ports

SIGNAL

RT

RD/WR

BLOCK

Output ports

Scheduler
Control
Routing

CREDIT

SIGNAL

RT

RD/WR

BLOCK

Buffers

CREDIT

Figure 2. QNoC Router Architecture

2.5. QNoC Maze Routing
In full mesh routing is performed over fixed shortest paths,

employing a simple X-Y routing discipline whereby each packet
is routed first in an “X” direction and then along the perpendicular
dimension or vice versa. However routing in irregular mesh (see
Figure 1) recalls routing in a labyrinth. Some links are missing or
might lead to a dead end. Therefore simple X-Y scheme cannot
always be performed and QNoC maze-routing algorithm is
applied. Maze routing algorithm employs simple “around the
block” modification where needed. Around the block turns are
performed by analyzing the second dimension target index or by
small, predefined routing tables. These small routing tables are
prepared in QNoC design time by a routing analyzer that is a part
of a QNoC automatic generation tool chain (see next section). It
analyzes all possible source destination pairs in the system and
calculates deadlock-free, shortest path routing with minimal
deviation from the X-Y based path. Thus only turns that contradict
with the X-Y regime are hard-coded in the routing tables,
resulting in area efficient implementation. As a result network
traffic is distributed non-uniformly over the mesh links, but each
link’s bandwidth is adjusted to its expected load, achieving an
approximately equal level of link utilization across the chip (see
next section).

3. SYSTEM INTEGRATION BY QNOC
SoC development flow can be divided into two major phases:

system architecture definition and system integration and
verification. In the system architecture phase, system requirements
are analyzed and main system building blocks are defined. In the
integration phase, blocks are designed and adapted and the whole
system is assembled and verified. In practice, in order to reduce
SoC design time only a few system modules are redesigned or
developed from scratch, and the rest of the modules are purchased
or reused from previous in-house projects. Therefore, the main
SoC design effort is the adaptation and efficient integration of
these IPs (see Figure 3). Integration includes placing the
functional modules, planning and designing an interconnection
architecture that will provide system communication needs and
finally a complete verification of the resulting SoC at all levels

480

(hardware and software). The main difficulty of integration is the
need to cope with severe physical constraints of future
technologies and to provide a low cost and efficient
communication infrastructure between system modules.
Nevertheless, the integration process has to be simple enough to
provide a short time-to-market.

Sy
st

em
 A

rc
hi

te
ct

ur
e

Map traffic to grid
using given QNoC
architecture and

placement

QNoC
Architecture

Perform optimization
to balance utilization,

minimize cost and
meet QoS

Estimate cost

Place modules
Sy

st
em

 In
te

gr
at

io
n

Optimized
QNoC

Hardware

SoC
Fabrication

QNoC
Verifiation

Model

System
Verification

Define inter module
traffic

Define modules and
connect them with
an ideal network

Validate or measure
traffic assumptions

using high-level
system simulations

Figure 3. System development flow with QNoC

In [1] we proposed a generic QNoC design process in which a
generic network architecture is customized and specific QNoC
architecture is synthesized using a-priori known information such
as a set of system modules and the given pre-characterized traffic
patterns among them. This design process results in a cost-
effective inter-module communication infrastructure.

In this section we describe more specifically how this design
process is implemented by a chain of CAD tools.

The QNoC based SoC design flow is illustrated in Figure 3. In
the system architecture phase we characterize and verify the inter-
module traffic and system QoS requirements. The traffic
assumptions and QoS requirements can be calculated and verified
by high-level system simulations. In the Integration phase the
effort shifts to designing and adapting the interconnection network
to given traffic flows and QoS requirements and optimizing it for
low cost in terms of area and power. Below we describe the main
functionality of the future integration automation tools set that
was partially implemented at the Technion:

QNoC Placement and Topology generator analyzes the system
communication traffic among the modules and the module
geometric constraints (shapes and sizes) and derives network
topology and placement so as to minimize the overall area and the
spatial traffic density that consequently optimize the power and
area costs of the system. It also takes into consideration the
physical layout constraints and pin-out limitations of the chip.

Figure 4. Example of Custom QNoC after module
placement, interconnecting 48 SoC modules – a

snapshot of a QNoC Customizer Tool user interface

Figure 5. QNoC links relative load (Upper view) for the
mesh illustrated in Figure 4 - Link Load Calculator

output

QNoC Customizer comprises the Maze-Router, Link Load
Calculator and QNoC Network Simulator. The Customizer
receives a module placement and network topology from the
placement tool (see example of placement in Figure 4) and inter-
module traffic load and QoS requirements from system
architecture phase. Routing paths between sources and destination
are derived using the QNoC Maze-Router (see section 2.5 for
details). Then QNoC architecture for the given SoC is finalized
and customized. Architectural parameters, such as location of
interconnecting links, each link capacity, number of ports at each
router, buffer size, etc. are set according to the number of
modules, their spatial placement and the QoS service levels to be
supported. Once the routing algorithm is selected, communication
paths between all pairs of modules can be determined and link
bandwidth optimization can be performed. The required traffic is
mapped onto the given topology according to the calculated
routing. As parts of the grid are not fully utilized, some vertices
and links can be eliminated as shown in Figure 1.Average traffic
load at each link is simply calculated by the Link Load Calculator
since routing is fixed and traffic patterns are known in advance.
Relative traffic loads at all the links of the QNoC from Figure 4
are shown in Figure 5, where row and column coordinates
represent x-y indices of the network routers. Link bandwidth is
assigned proportionally to the calculated load (see Figure 5) at
that link by varying the number of wires in a link or its frequency.
In that way the tool calibrates the system resources so that average
utilization of all links in the network is approximately equal. At

481

this point, the Load Calculator provides only relative link
bandwidths. To finalize the design, the QNoC can be simulated
and analyzed more precisely by a QNoC Network Simulator (see
[1] for an example) statistically assuring that a given percentage
of packets at each service-level arrive to destination with end-to-
end delay less or equal to the delay requirement (see Figure 6).
Actual bandwidth is assigned to the links according to QoS
requirements and the supporting simulation results. Further
optimizations are performed: buffers and routers and links are
trimmed where possible while maintaining the required QoS and
minimize the overall cost function. The described steps are
iterated if hardware cost of the resulting QNoC is too high, or if
other QNoC architectures or topologies need to be investigated.

Figure 6. QNoC Simulation results: distribution off end-
to-end (ETE) delay for each SL –used for links
capacity allocation and statistically ensures that
99.9% of the packets are provided the required QoS.

Hardware Generator creates synthesizable VHDL description
of the complete interconnection network based on the topology
and QNoC parameters derived by QNoC Customizer. It includes
appropriate parallelizer/serializer or high frequency
transmitters/receiver circuitry at QNoC routers ports that is used
for various link bandwidth support, routing tables etc. It also
generates interface wrappers for easier connection of the system
modules to the network. The tool is based on Perl software that
creates the complete hardware description of the system using
generic VHDL templates of QNoC components.

System Verification Tool provides QNoC verification models
to enable complete system verification platform. It creates
reference designs for QNoC modeling for hardware verification
simulations such as [19][20]. In addition it can provide higher
level models of the derived QNoC for higher level system
hardware-software co-verification[21].

4. SUMMARY

In this paper we presented an automated and hardware efficient
QNoC centric SoC integration. We describe the basic QNoC
architecture and its design considerations. Then we showed how
by a chain of CAD tools we can hide the complexity and allow
quick and efficient SoC integration and verification. Several
components of the tool-chain (such as QNoC Simulator, Link
Load Calculator, parts of the Hardware Generator and Maze
Router) are already developed and the rest are being researched
and constitute a part of our future work.

REFERENCES

[1] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, “QNoC: QoS
Architectrure and Design Process for Networks on Chip”, Journal of
Systems Architecture, special issue on Network on Chip, vol. 50,
February, pp. 105-128, 2004.

[2] E.Bolotin, I.Cidon, R. Ginosar and A. Kolodny, ”Cost Considerations
in Network on Chip”, Integration - the VLSI Journal, special issue on
Network on Chip, 2004.

[3] William J. Dally and Brian Towles, ” Route Packets, Not Wires: On-
Chip Interconnection Networks”, DAC 2001, Las Vegas, Nevada,
USA, June, 2001.

[4] John Dielissen, Andrei Radulescu, Kees Goossens, and Edwin
Rijpkema, "Concepts and Implementation of the Philips Network-on-
Chip". IP-Based SOC Design, Grenoble, November, 2003.

[5] Jian Liu , Li-Rong Zheng and Hannu Tenhunen, “Interconnect
intellectual property for Network-on-Chip (NoC)”, Journal of
Systems Architecture special issue on Network on Chip, vol. 50,
February 2004.

[6] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A.
Sangiovanni-Vincentelli, ”Addressing the System-on-a-Chip
Interconnect Woes Through Communication-Based Design”, Design
Automation Conference, June, 2001.

[7] Luca Benini, Giovanni De Micheli, “Networks on Chips: A New
SoC Paradigm”, IEEE Computer, no. 35, vol. 1, pp. 70-78, 2002.

[8] Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell,
Mikael Millberg, Johny Oberg, Kari Tiensyrja and Ahmed Hemani,
“A Network on Chip Architecture and Design Methodology”,
Proceedings of the IEEE Computer Society Annual Symposium on
VLSI, 2002.

[9] J. Soinen, H. Heusala, “A design Methodology for NoC based
Systems”, Networks on Chip, Kluwer Academic Publishers, Boston,
pp. 19-38, 2003.

[10] Ahmed Hemani, Axel Jantsch, Shashi Kumar, Adam Postula, Johnny
Oberg, Mikael Millberg, Dan Lindqvist, ”Network on a Chip: An
architecture for billion transistor era”, In Proceeding of the IEEE
NorChip Conference, November, 2000.

[11] Pierre Guerrier , Alain Greiner,”A generic architecture for on-chip
packet-switched interconnections”, Proceedings of Design,
Automation and Test in Europe Conference and Exhibition., pp. 250
–256, 2000.

[12] E.Rijpkema, K. Goosens and P.Wielage, “ A Router Architecture for
Networks on Silicon”, Proceedings of Progress, 2nd workshop on
embedded systems, 2001.

[13] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage,
"Networks on Silicon: Combining Best-Effort And Guaranteed
Services", DATE 2002, Design automation and test conference,
March, 2002.

[14] Paul Wielage and Kees Goossens, "Networks on Silicon: Blessing or
Nightmare?", Euromicro Symposium On Digital System Design
(DSD 2002), Dortmund, Germany, September, 2002.

[15] “AMBA Specification”, Arm Inc, May, 1999.
[16] “The CoreConnect Bus Architecture”, IBM, 1999.
[17] Drew Wingard, ” MicroNetwork-based integration of SOCs”, In

Proceedings of the 38th Design Automation Conference, June, 2001.
[18] The International Technology Roadmap for Semiconductors (ITRS)

2003 edition. Design Chapter.
[19] Specman Elite by Verisity (www.verisity.com)
[20] OpenVera by Synopsis (www.synopsis.com)
[21] SystemC (www.systemc.org)
[22] W. J. Dally, “A VLSI Architecture for Concurrent Data Structures”,

Kluwer Academic Publishers, 1987.

482

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

