
Abstract— Efficient module integration in Systems on Chip 
(SoC) is a great challenge. We present a novel automated 
Network on Chip (NoC) centric integration method for large 
and complex SoCs. A Quality of Service NoC (QNoC) 
architecture and its design considerations are presented. Then 
we describe a chain of design automation tools that allows fast 
and hardware-efficient SoC integration using the QNoC 
paradigm. The tool-chain receives a list of system modules and 
their inter-module communication requirements and results in 
a complete system hardware and verification models for faster 
SoC fabrication and easier verification. 

1. INTRODUCTION

The complexity of VLSI Systems on Chip (SoCs) is constantly 
growing. In current technologies a typical SoC comprises tens of 
system modules and according to technology projections [5][18] 
this number will grow to several hundreds in the near future. In 
order to shorten SoC design time and to overcome the growing 
design productivity gap, most of the SoC modules are purchased 
or reused from previous in-house projects. Therefore, the main 
SoC design challenge shifts to adaptation and fast and efficient 
integration of these Intellectual Property (IP) modules [18]. The 
main difficulty of integration is the need to cope with severe 
physical constraints of on-chip interconnect of the future 
technologies and to provide low cost and efficient communication 
among system modules. On the other hand, the integration process 
has to be easily realized to provide short time-to-market of an 
operational product. 

On-chip global communication and module integration has 
traditionally been addressed by shared-bus structures [15][16][17] 
and direct inter-module connections. The non-scalability and 
hardware inefficiencies of these approaches are discussed in 
[1][2][3][11]. New generations of higher level abstraction 
methods and design automation tools are required to allow rapid 
and hardware- efficient SoC integration and consequently a 
shorter time-to-market [9][18]. To that end, a novel on chip 
interconnection approach, termed Network on Chip (NoC) was 
proposed in [1]-[14]. NoCs are shown to be very attractive 
solutions for the problem of global interconnect in deep sub-
micron technologies, and for assuring Quality of Service (QoS) on 
chip communication [1][13]. In [1], we proposed a generic QoS 
based NoC architecture and design process termed QNoC which 
provides an efficient quality of service communication  between 
SoC modules.  

In this paper we describe an automated QNoC-centric SoC 
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integration design flow, which allows faster and hardware-
efficient system integration. We present a chain of Computer 
Aided Design (CAD) tools that provide an automatic SoC 
assembly, integration and verification. The QNoC centric tool-
chain presents an attractive solution for the deep-submicron 
integration problems. Its major steps are: communication based 
module placement, QNoC topology generation, hardware efficient 
packet routing, QNoC cost minimization based on link load 
analysis and network simulations, and finally automatic hardware 
and verification models generation of the complete system. 

The rest of this paper is organized as follows: Section 2
presents the basic QNoC architecture, Section 3 presents our 
vision of system integration with QNoC and elaborates about the 
set of design automation tools and their functionality. And finally 
Section 4 summarizes and discusses future work.  

2. QNOC ARCHITECTURE 

The QNoC architecture is based on a grid topology and 
wormhole packet routing. Links are assumed reliable (or made 
reliable using error correction) and credit based backpressure is 
applied between stages resulting in a loss-less data forwarding. 
Packets traverse the network along the shortest route, thus 
minimizing power dissipation and maximizing network resource 
utilization.  

2.1. QNoC Topology 
QNoC comprises routers interconnected by point-to-point links. 

Network topology can vary depending on system needs and 
module sizes and placement. Each system module is connected to 
a router (Figure 1) via a standard interface, whose bandwidth is 
adapted to the communication needs of that module. In addition, a 
module may be connected to the network through more than one 
interface. 
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Figure 1. SoC example with QNoC custom topology - 
irregular customized mesh 

 The bandwidth of each inter-router link is similarly adjusted to 
accommodate the expected traffic at the specific link and fulfill 
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overall system QoS requirements (in terms of bandwidth and end-
to-end delay) for each class of traffic. Link and interface 
bandwidth are adjustable by changing the number of wires and the 
data frequency to achieve uniform utilization at each network link. 
Finally, unneeded resources such as ports, links, and buffers are 
trimmed where possible resulting in low cost, QoS based network.  

2.2. QNoC Service Levels 
One of the main goals of NoC is the support of different QoS 

requirements. We identify four different types of communication 
requirements and define appropriate service levels (SL) to support 
them: 

Signaling covers urgent messages and very short packets that 
are given the highest priority in the network to assure shortest 
latency. This service level represents interrupts and control signals 
and alleviates the need for dedicated wires. 

Real-Time service level guarantees bandwidth and latency to 
real-time applications, such as streamed audio and video 
processing. This service is packet based; a maximal level of 
guaranteed bandwidth is allocated to each real-time link and 
should not be violated. 

Read/Write (RD/WR) service level provides bus semantics and 
is designed to support short memory and register accesses.

Block-Transfer service level is used for the transfer of long 
messages and blocks of data, such as cache refill and DMA 
transfers.  

A priority ranking is established among these service levels, 
where Signaling is given the highest priority and Block-Transfer 
the lowest. QNoC employs preemptive communication scheduling 
where data of a higher priority packet is always transmitted before 
that of a lower service level (a round-robin is employed within 
service levels). Additional service levels may be defined if 
desired. For instance, the RD/WR service level may be split into 
normal and urgent RD/WR sub-levels. 

2.3. QNoC Communication 
Packets carry routing information, command and payload. The 

command field identifies the payload, specifying the type of 
operation. The packet is divided into multiple flits following [22]. 
Flit transfer over the inter-router link is controlled by handshake. 

2.4. QNoC Routers  
Routers connect to up to five links, designed for planar 

interconnect to four mesh neighbors and to one SoC module. The 
router forwards packets from input to output ports. Every arriving 
flit is first stored in an input buffer. On the first flit of a packet, the 
router invokes a routing algorithm (see Section 2.5 )to determine 
to which output port that packet is destined. The router then 
schedules the transmission for each flit on the appropriate output 
port. Each output port of a router is connected to an input port of a 
next router via a communication link. The output port maintains 
the number of available flit slots per each service level in the 
buffer of the next input port. The number is decremented upon 
transmitting a flit and incremented upon receiving a buffer-credit 
from the next router. When a space is available, the output port 
schedules transmission of flits that are buffered at the input ports 
and waiting for transmission through that output port (Figure 2). 
There are separate input buffers for each of the four service levels 
(“direct buffer mapping”). Relatively small buffers are allocated 
to each service level, capable of storing only a few flits, since 
buffers are relatively expensive in VLSI (see [2] for buffer-links 

area tradeoff study). Once a higher priority packet appears on one 
of the input ports, transmission of the current packet is preempted 
and the higher priority packet gets through. Transmission of the 
lower priority packet is resumed only after all higher priority 
packets have been serviced. 
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Figure 2. QNoC Router Architecture 

2.5. QNoC Maze Routing 
In full mesh routing is performed over fixed shortest paths, 

employing a simple X-Y routing discipline whereby each packet 
is routed first in an “X” direction and then along the perpendicular 
dimension or vice versa. However routing in irregular mesh (see 
Figure 1) recalls routing in a labyrinth. Some links are missing or 
might lead to a dead end. Therefore simple X-Y scheme cannot 
always be performed and QNoC maze-routing algorithm is 
applied. Maze routing algorithm employs simple “around the 
block” modification where needed. Around the block turns are 
performed by analyzing the second dimension target index or by 
small, predefined routing tables. These small routing tables are 
prepared in QNoC design time by a routing analyzer that is a part 
of a QNoC automatic generation tool chain (see next section). It 
analyzes all possible source destination pairs in the system and 
calculates deadlock-free, shortest path routing with minimal 
deviation from the X-Y based path. Thus only turns that contradict 
with the X-Y regime are hard-coded in the routing tables, 
resulting in area efficient implementation. As a result network 
traffic is distributed non-uniformly over the mesh links, but each 
link’s bandwidth is adjusted to its expected load, achieving an 
approximately equal level of link utilization across the chip (see 
next section). 

3. SYSTEM INTEGRATION BY QNOC
SoC development flow can be divided into two major phases: 

system architecture definition and system integration and 
verification. In the system architecture phase, system requirements 
are analyzed and main system building blocks are defined. In the 
integration phase, blocks are designed and adapted and the whole 
system is assembled and verified. In practice, in order to reduce 
SoC design time only a few system modules are redesigned or 
developed from scratch, and the rest of the modules are purchased 
or reused from previous in-house projects. Therefore, the main 
SoC design effort is the adaptation and efficient integration of 
these IPs (see Figure 3). Integration includes placing the 
functional modules, planning and designing an interconnection 
architecture that will provide system communication needs and 
finally a complete verification of the resulting SoC at all levels 
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(hardware and software). The main difficulty of integration is the 
need to cope with severe physical constraints of future 
technologies and to provide a low cost and efficient 
communication infrastructure between system modules. 
Nevertheless, the integration process has to be simple enough to 
provide a short time-to-market.  

Sy
st

em
 A

rc
hi

te
ct

ur
e

Map traffic to grid
using given QNoC
architecture and

placement

QNoC
Architecture

Perform optimization
to balance utilization,

minimize cost and
meet QoS

Estimate cost

Place modules
Sy

st
em

 In
te

gr
at

io
n

Optimized
QNoC

Hardware

SoC
Fabrication

QNoC
Verifiation

Model

System
Verification

Define inter module
traffic

Define modules and
connect them with
an ideal network

Validate or measure
traffic assumptions

using high-level
system simulations
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In [1] we proposed a generic QNoC design process in which a 
generic network architecture is customized and specific QNoC 
architecture is synthesized using a-priori known information such 
as a set of system modules and the given pre-characterized traffic 
patterns among them. This design process results in a cost-
effective inter-module communication infrastructure. 

In this section we describe more specifically how this design 
process is implemented by a chain of CAD tools.  

The QNoC based SoC design flow is illustrated in Figure 3. In 
the system architecture phase we characterize and verify the inter-
module traffic and system QoS requirements. The traffic 
assumptions and QoS requirements can be calculated and verified 
by high-level system simulations. In the Integration phase the 
effort shifts to designing and adapting the interconnection network 
to given traffic flows and QoS requirements and optimizing it for 
low cost in terms of area and power. Below we describe the main 
functionality of the future integration automation tools set that 
was partially implemented at the Technion: 

QNoC Placement and Topology generator analyzes the system 
communication traffic among the modules and the module 
geometric constraints (shapes and sizes) and derives network 
topology and placement so as to minimize the overall area and the 
spatial traffic density that consequently optimize the power and 
area costs of the system. It also takes into consideration the 
physical layout constraints and pin-out limitations of the chip. 

Figure 4. Example of Custom QNoC after module 
placement, interconnecting 48 SoC modules – a 

snapshot of a QNoC Customizer Tool user interface 

Figure 5. QNoC links relative load (Upper view)  for the 
mesh illustrated in Figure 4 -  Link Load Calculator 

output

QNoC Customizer comprises the Maze-Router, Link Load 
Calculator and QNoC Network Simulator. The Customizer
receives a module placement and network topology from the 
placement tool (see example of placement in Figure 4) and inter-
module traffic load and QoS requirements from system 
architecture phase. Routing paths between sources and destination 
are derived using the QNoC Maze-Router (see section 2.5 for 
details). Then QNoC architecture for the given SoC is finalized 
and customized. Architectural parameters, such as location of 
interconnecting links, each link capacity, number of ports at each 
router, buffer size, etc. are set according to the number of 
modules, their spatial placement and the QoS service levels to be 
supported. Once the routing algorithm is selected, communication 
paths between all pairs of modules can be determined and link 
bandwidth optimization can be performed. The required traffic is 
mapped onto the given topology according to the calculated 
routing. As parts of the grid are not fully utilized, some vertices 
and links can be eliminated as shown in Figure 1.Average traffic 
load at each link is simply calculated by the Link Load Calculator
since routing is fixed and traffic patterns are known in advance. 
Relative traffic loads at all the links of the QNoC from Figure 4 
are shown in Figure 5, where row and column coordinates 
represent x-y indices of the network routers. Link bandwidth is 
assigned proportionally to the calculated load (see Figure 5) at 
that link by varying the number of wires in a link or its frequency. 
In that way the tool calibrates the system resources so that average 
utilization of all links in the network is approximately equal. At 
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this point, the Load Calculator provides only relative link 
bandwidths. To finalize the design, the QNoC can be simulated 
and analyzed more precisely by a QNoC Network Simulator (see 
[1] for an example) statistically assuring that a given percentage 
of packets at each service-level arrive to destination with end-to-
end delay less or equal to the delay requirement (see Figure 6). 
Actual bandwidth is assigned to the links according to QoS 
requirements and the supporting simulation results. Further 
optimizations are performed: buffers and routers and links are 
trimmed where possible while maintaining the required QoS and 
minimize the overall cost function. The described steps are 
iterated if hardware cost of the resulting QNoC is too high, or if 
other QNoC architectures or topologies need to be investigated.  

Figure 6. QNoC Simulation results: distribution off end-
to-end (ETE) delay for each SL –used for links 
capacity allocation and statistically ensures that 
99.9% of the packets are provided the required QoS. 

Hardware Generator creates synthesizable VHDL description 
of the complete interconnection network based on the topology 
and QNoC parameters derived by QNoC Customizer. It includes 
appropriate parallelizer/serializer or high frequency 
transmitters/receiver circuitry at QNoC routers ports that is used 
for various link bandwidth support, routing tables etc. It also 
generates interface wrappers for easier connection of the system 
modules to the network. The tool is based on Perl software that 
creates the complete hardware description of the system using 
generic VHDL templates of QNoC components. 

System Verification Tool provides QNoC verification models 
to enable complete system verification platform. It creates 
reference designs for QNoC modeling for hardware verification 
simulations such as [19][20]. In addition it can provide higher 
level models of the derived QNoC for higher level system 
hardware-software co-verification[21]. 

4. SUMMARY

In this paper we presented an automated and hardware efficient 
QNoC centric SoC integration. We describe the basic QNoC 
architecture and its design considerations. Then we showed how 
by a chain of CAD tools we can hide the complexity and allow 
quick and efficient SoC integration and verification. Several 
components of the tool-chain (such as QNoC Simulator, Link
Load Calculator, parts of the Hardware Generator and Maze 
Router) are already developed and the rest are being researched 
and constitute a part of our future work. 
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