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Abstract – The effect of wire delay on circuit timing 
typically increases when an existing layout is migrated to a 
new generation of processing technology, because wire 
resistance and cross capacitances become more important 
with scaling. In this paper, timing optimization of signal 
busses is performed by resizing and spacing individual bus 
wires, while the total area of the whole bus structure is 
regarded as a fixed constraint. Properties of optimal bus 
layouts are proven, and an iterative algorithm to find the 
optimal wire widths and spaces is presented. Examples of 
solutions are shown. Guidelines for design are derived from 
these results. 

I. Introduction
Interconnect delays have become dominant in CMOS VLSI 

digital systems as a result of technology scaling [1] [2]. In 
recent generations, wire resistance and cross-capacitance 
between adjacent wires have become increasingly important in 
their effect on signal delay. For a given metal layer, wire 
resistance and cross-capacitance depend on wire width and 
inter-wire spacing, respectively. In process migration of 
existing mask layouts, allocation of wire widths and spaces for 
bus structures under a total area constraint is an important 
problem. The nature of the problem allows tradeoff between 
the resistance of a wire and the coupling capacitances to 
adjacent wires. Wire resistance affects only the delay of the 
signal carried by the wire, while coupling capacitances affect 
the delays of both the wire and its neighbors. For multiple 
nets, the optimal solution involves simultaneous tradeoffs 
among all wires sharing a given common area. 

The wire sizing problem has been addressed in  [3] for a 
single wire and for a single-net tree structure. The problem of 
sizing and spacing multiple nets with consideration of 
coupling capacitance in global interconnect has been 
addressed in  [4], considering general tree structures for nets 
with fixed terminals, without a total area constraint. The 
authors modeled coupling between nets by converting cross-
capacitance into an effective fringe capacitance, which 
resulted in a decoupled delay model for each net. The routing 
tree for each net was sized independently using an algorithm 
based on dynamic programming  [5]. 

Coupling capacitance has been considered more explicitly 
in the context of physical design algorithms for minimizing 
crosstalk noise  [6] [7] [8] or dynamic power  [9]. The authors of 
 [10] derived layout rules and presented a simultaneous 
multiple-net spacing algorithm for area minimization in 
general layouts under a noise-constraint. The strategy of 

allocating width and spacing to maximize performance in bus 
structures was proposed by  [6] without formal analysis and 
solution. 

This paper addresses the problem of simultaneously 
assigning widths and spaces to n parallel wires, representing a 
bus or several interleaved busses, as illustrated in  Figure 1. 
This geometry is commonly used in practice, and its simplicity 
enables straightforward mathematical analysis. With given 
drivers, load capacitances and timing requirements for the 
individual signals, wire widths and spaces are allocated to 
maximize circuit speed. The total sum of widths and spaces is 
a given constraint. Signal delays are expressed by an Elmore 
model using first-order approximations for capacitances. 
Cross-coupling capacitances between wires are not multiplied 
by a “Miller factor” [11]. Hence, nominal delays are 
considered without crosstalk-induced delay uncertainty. The 
paper focuses on delay of the critical signal as a goal function 
in optimization. The goal function is shown to be convex. 
Properties of the optimum solution are proven, leading to an 
iterative algorithm to find the optimal wire sizes and spaces. 

The rest of this paper is organized as follows: Section  II 
presents the delay model and problem definition, section  III 
analyzes properties of the problem, which provide a basis for 
constructing an iterative optimization algorithm in section  IV. 
Examples of applying the algorithms are shown in section  V, 
and section  VI concludes the paper. 

II. Delay model and problem 
definition

Consider a bus of n  signal nets n,...,1 , residing 
between two side walls (wires at fixed locations, connected to 
Vcc or Vss ) as shown in  Figure 1. 1iS and iS ,
respectively, denote spacings to the right and left neighbors of 
wire

iW . The length of all the wires is L. 
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Figure 1. Structure of the bus wires 
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The delay of signal i  can be calculated from the -model 

equivalent circuit shown in  Figure 2, where
idR is the effective 

output resistance of the driver,
iwR  is the wire resistance, 

iwC

is the wire area and fringe capacitance, 
1icC  and 

icC  are 
coupling capacitances to the right and left neighboring signals, 
and

il
C  is the capacitive load presented by the receiver’s 

input. Using technology parameters these can be expressed as 

iw s iR R W L ,
iw a i fC C L W C L  and 

ic c iC k L S ,

where aC  is area capacitance coefficient, fC is fringe 

capacitance coefficient, ck  is a line-to-line coupling 

coefficient, and sR  is the metal sheet resistance. 

Figure 2. Equivalent circuit for calculating the ith

signal delay 

Under Elmore delay model, the delay i of signal i

from driver’s input to receiver’s input is given as follows:
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(2) 
The coefficients of wire width and spaces in (1) will be 
marked as a,b,c,d,e. The delay expression can be rearranged as 

1

1 1, i
i i i i i

i i i i

c e
W S aW b d

W W S S
 (2) 

Note that in (2) the coefficient e is not indexed since it 
encapsulates only technology parameters, which are common 
to all nets. The other coefficients are indexed since they 
include parameters related to the signal’s driver and receiver. 
The sum of wire widths and spaces between the fixed left and 

right side walls is given in the following constraint, which 
represents the available area for laying out the signal bus. 

1 0
,

n n

i i
j j

g W S W S A  (3) 

Another set of constraints on wire sizing is geometric 
design rules, which are imposed by the manufacturing 
technology. In modern processes of 90 nanometers and below, 
the width and the space of wires are bounded in some range as 
follows: 

,0iS S S i n  (4) 

,1iW W W i n  (5) 
We are looking for width and space allocation yielding 

“best timing”. The definition of “best timing” depends on the 
design scenario. In the following we’ll define two commonly 
used timing objectives.  

First objective aims at minimizing the delay of the slowest 
signal in the bus. It is used in design of a block whose 
environmental timing constraints are not known yet. There, 
only the delays of signals are of interest. The corresponding 
objective function is the following: 

1
1

, ,max i
i n

f W S W S  (6) 

A second objective is used when environmental timing 
requirements are known. When clock frequency is a primary 
consideration, main focus is meeting timing goal by each 
signal. Frequency is then dictated by the signal that doesn’t 
meet its timing target to the largest extent. Formally, 
let iT denote the delay target for signal i , the goal is to 
maximize the worst negative slack among all signals. For the 
sake of dealing with convex functions only, the inner term in 
(7) is taken with a minus sign, and the goal is to minimize 2f .

2
1

, min 0, ,max
i n

f W S i iT W S  (7) 

III. Properties of delays and slacks in 
min max delay problems 

Optimization problems whose objective and constraints are 
convex functions have nice properties, such as a unique, 
global minimum. There are many techniques to solve such 
problems, so we may benefit from proving that the problems 
of interest are convex.  

Proposition 1: The problems of minimizing
1f and

2f  , 
subject to area and design rule constraints are both convex, 
therefore possessing a unique global minimum. 

Proof: The function SWi ,  in (2) is a sum of terms 

depending on the variables iW , iS and 1iS . In order to 
prove the convexity it is sufficient to see the convexity for 
each term, since a sum of convex functions is convex too. 
Convexity exists if the second order derivatives are non-
negative. It is not difficult to see that the 
terms: WW 2 , WW 21 , WWS 21 , SWWS1  and  
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SWS 21 are all non negative, thus implying the convexity 
of (2). 

Objective function SWf ,1
 is convex since maximum of 

convex functions is convex too. The objective SWf ,2
 is 

convex too. The inner negative min term is convex as it is a 
maximum of two convex functions. The outer max is also 
convex as claimed before. 

Finally, the area and design rules constraints given in (3), 
(4) and (5) are all linear equalities or inequalities. Altogether 
they define a convex feasible region on which the above 
objective functions are defined. 

In the subsequent discussion we’ll expose more useful 
properties of the underlying optimization problem. Such 
properties will suggest efficient solutions. 

Lemma 1: Let us ignore design rules (4) and (5), namely, 
any width and space of wires are allowed. Then, in the 
solution of minimizing the maximal delay in (6) subject to the 
area constraint (3), all the delays are equal. 

Proof: Assume in contrary that the above assertion doesn’t 
hold. Namely, in the optimal solution, there exists a wire 
i whose associated delay is maximal.  

There exist therefore signals 1i , i and 1i , such that 
their corresponding delays,

1i
,

i
 and

1i
, respectively, 

satisfy ii 1 and ii 1 , and ij , nj1 .

Therefore, we may narrow wires 1i and 1i slightly, thus 
increasing their delay, say by a magnitude that doesn’t exceed 
the minimum among 15.0 ii  and 15.0 ii . This further 

reduces i since the width of wire i  didn’t change, but its 

spacing from neighbors was increased. But i  was the 

maximal delay in the optimal solution. Thus a contradiction 
follows. 

In a similar manner, the worst slack minimization problem 
defined in (7) satisfies the following: 

Lemma 2: Let us ignore design rules (4) and (5). Then, in 
the solution of minimizing

2f   subject to the area constraint 
(3), all the slacks are equal. 

Proof: By definition of (7) all terms are either positive or 
zero. If all terms are zero we are done. If all terms are positive, 
same arguments as in lemma 1 show that all slacks must be 
the same, as otherwise we could decrease the maximal slack 
by narrowing slightly its neighbor wires. Let us show that the 
case where some terms are zero while some are positive is 
impossible. 

Let minD be the smallest positive term in (7). We assume 

that there exists at least one signal i  whose associated term 
in (7) is zero. We may narrow its wire slightly say by W ,
without changing its left and right spacing, such that the value 
of its term in (7) doesn’t exceed min5.0 D . We may now 
increase the spacing between all the other wires 
by 1nW . This will reduce slightly all the terms, in 

particular the one that was the maximal in the optimal 
solution. This is a contradiction to the optimality of the 
solution, which concludes the proof.

Note that the above lemmas impose necessary but not 
sufficient conditions on optimal solutions. It is not true to state 
that a solution whose delays (or slacks) are all equal is 
optimal. 

The convex objective function of minimizing the maximal 
delay and slack, possess a unique, global minimum and are 
continuous and piecewise differentiable functions. If they 
were differentiable everywhere we could state that a sufficient 
condition for minimum is that all first order partial derivatives 
are zero. The following lemma is analogous for the piecewise 
differentiable case. 

Lemma 3: Let all the delays (slack, respectively) in (6) ((7), 
respectively) be equal. Then, (6) ((7), respectively) is minimal 
if and only if no single wire width can be decreased such that 
the delay (slack, respectively) of the associated signal is 
decreased. 

Proof: Recall that the objective functions (6) and (7) are 
convex, thus possessing a global minimum (no local minima). 
Therefore, among all the solutions having equal delays 
(slacks) for all signals, the characteristic of the optimal one is 
that no further reduction of individual signal’s delay is 
possible without increasing the delays of others. Considering 
delay reduction of an individual signal, only its wire 
narrowing is in order, as this will not increase the delay of its 
neighbors. Widening necessarily decreases the spacing to at 
least one of its neighbor signals, thus increasing neighbor’s 
delay. 

IV. Iterative algorithm 
Lemmas 1 through 3, and the convexity properties 

discussed earlier suggest an iterative algorithm to obtain a 
minimum of maximal delay (It can be easily adapted to 
maximize the most critical slack). The algorithm works in two 
main phases which repeat themselves until convergence. 

First phase equates the delay of all signals by iterations. It 
picks the signal whose delay is currently maximal. It then 
reduces the delay by equating it with its two neighbors, a 
technique used in the proof of lemma 1. This is repeated until 
all delays are equal. 

Second phase checks for existence of the sufficient 
condition posted in lemma 3. If the condition is satisfied, the 
algorithm terminates at optimum. Otherwise, a delay reduction 
of some signal is possible by narrowing it without increasing 
the delay of the others as stated in the lemma. This reduction 
is then performed by the algorithm, and phase one is re-
invoked. 

The algorithm for maximal delay minimization is outlined 
below. Some heuristics aiming at speeding up convergence are 
included. 

MinMaxDelay ( ) 
set initial solution; 
do {  
   while ( not all signal delays are equal ) { // first phase 
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       1. Pick signal with maximal delay, in case of tie pick 
                the one whose average delay with neighbors is 
                the smallest; 

       2. Average delay of the selected signal with its 
                 two neighbors; } 

   if ( no single wire delay can be reduced by narrowing)
     terminate; // optimum reached 
   else // second phase
     1. find the signal whose delay can be minimized by 
         narrowing its wire    
    2. narrow the wire found in 1.   };

Convergence of the above algorithm can be proven as 
follows: The inner loop of while (first phase) iterates over 
signals and reduces the maximal delay. Therefore, the 
maximal delay, which is positive, is monotonically decreasing. 
Hence it must reach a limit. In the outer do loop the delay 
(equal for all signals) is also monotonically decreasing, thus it 
must reach a limit as well. 

V. Optimization Examples 
In this section we present 2 examples of applying the 

algorithm on bus layouts in 90nm CMOS technology.  
Example 1: 10 bus wires are driven by identical drivers. All 

receivers are of the same size. The total width of the structure 
is 6.72 m, and the length is 500 m. Initially, all wire widths 
and spaces are 0.32 m  Figure 3(a) shows the cross section of 
the initial bus setting, in which the worst delay is 117.55 psec. 
 0 Figure 3(b) shows the resultant structure after applying the 
algorithm. 
There, the wires got narrower while the spaces increased, and 
the corresponding delay of all signals was reduced to 101.64 
psec.

Example 2 illustrates the case of non-homogeneous bus, 
where the fifth wire from the left is driven by a weaker driver.  
Initial wire widths and spaces are illustrated in  Figure 4, and 
the signal delays are depicted on each wire in the figure. 
Notice that the delay of the fifth wire is much worse than the 
others. After applying the algorithm, all the delays were 
equalized to the value depicted on the fifth wire. 

 (b) 

 (a) 

Figure 3. Uniform  bus wire sizing:  

(a)Initial Setting (b) Optimal Setting 

(b)

(a)

Figure 4. Non-uniform  bus wire sizing: 

(a) Initial Setting (b) Optimal Setting 

VI. Conclusion
This paper studied the optimal allocation of widths and 

spaces to wires of n-signal bus in the context of layout 
migration, where area is a major design constraint. A unified 
combinatorial approach to deal with various timing 
optimization objectives was presented. Properties of the 
optimal solution were presented. In particular, all signal delays 
(or slacks) must necessarily be equal in the optimal solution. A 
sufficient condition for optimality states that no single wire  
width can be further reduced in order to obtain delay or slack 
improvement. A practical algorithm based on the necessary 
and sufficient conditions has been presented, along with 
examples. 
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