
616 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

A Clock-Tuning Circuit for System-on-Chip
Yaron Elboim, Avinoam Kolodny, Member, IEEE, and Ran Ginosar, Member, IEEE

Abstract—System-on-chip (SoC) design depends heavily on ef-
fective reuse of semiconductor intellectual property (IP). Clock dis-
tribution has become a problem for integrating IP cores into a
single synchronous SoC, because of different clock delays in the IP
cores. We propose an onchip clock-tuning circuit, which enhances
design flexibility. Programmable delays are inserted in the clock
distribution network, such that clock alignment and synchroniza-
tion are achieved. Design iterations are eliminated with the use of
the tuning circuit, saving design effort, and cost. The method is
also applicable to compensating for unbalanced clock trees. Hier-
archical clock tuning can be implemented and can take advantage
of the hierarchical structure of the SoC. Skew analysis has shown
that the added programming unit outperforms other clock design
options. The method was implemented in a commercial chip, and
demonstrated good functionality with high productivity of the de-
sign flow.

Index Terms—Circuit tuning, clock distribution, inserted delay,
intellectual property (IP) core, system-on-chip (SoC).

I. INTRODUCTION

I N system-on-chip (SoC) design, a buffered clock distribu-
tion network is typically used to drive the large clock load.

Chip design involves a clock alignment step, which equalizes
the delay from the clock source to each and every clock target
(flip flops, latches, or other memory elements) [7], [15]. Accu-
rate clock alignment is important, because unwanted differences
or uncertainties in clock network delays may degrade perfor-
mance or cause functional errors [3], [4]. Clock distribution and
alignment has become an increasingly challenging problem in
very large scale integration (VLSI) design, consuming an in-
creasing portion of resources such as wiring area, power, and
design time [21].

Ideally, intellectual property (IP) cores (“IPs”) should be
treated as “black-boxes” to support “plug-and-play” [5], such
that IPs can be inserted or removed without affecting other
blocks. However, the clock distribution network does not sup-
port this concept because each change influences the complete
network [7]. Redesign and verification of the global clock
distribution network may be required after each change. Such
iterations are undesirable and should be minimized. For hard
IP cores, clock routing is carried out during the design of the
IP core. The timing interface between the hard IP core and the
rest of the SoC (signal setup and hold times, input capacitance)
must be carefully considered [6]. A change of a hard IP core

Manuscript received July 27, 2001; revised May 1, 2002.
Y. Elboim was with Oren Semiconductor, Ltd., Yoqneam, Israel. He is now

with Intel Corporation, Haifa 31015, Israel (e-mail: yaron.elboim@intel.com).
A. Kolodny is with the Electrical Engineering Department, Technion–Israel

Institute of Technology, Haifa 32000, Israel (e-mail: kolodny@ee.technion.
ac.il).

R. Ginosar is with the Very Large Scale Integration (VLSI) Systems Research
Center, Electrical Engineering Department, Technion–Israel Institute of Tech-
nology, Haifa 32000, Israel (e-mail: ran@ee.technion.ac.il).

Digital Object Identifier 10.1109/TVLSI.2003.812371

might necessitate a complete redesign of the clock network. For
soft IP cores, clock tree routing is performed during chip-level
integration. Clock distribution and alignment within soft IP
cores become the responsibility of the system integrator, but a
similar problem exists with soft macros which had been already
placed and routed, so that engineers are reluctant to redesign
them.

In a competitive commercial environment, IC design is typ-
ically optimized for shortest time to market. To shorten design
times, physical design is often performed in parallel with logic
design, although in theory the former should follow the comple-
tion of latter. In such cases, global physical features of the IC,
such as the global clock distribution network, may have to be re-
designed multiple times, where each change in the logic incurs
painful and expensive redo of the global nets.

Clock tuningcan be used to eliminate repetitive redesign of
the clock network. High-speed systems with multiple boards
often require clock tuning after assembly [2]. A tuning circuit
can be used statically or dynamically to perform clock align-
ment according to the uncertainty of the system [1]. Multiple
phase-locked loops (PLLs) may be employed to align the clock
dynamically [13], but are expensive and difficult to design.

We propose an efficient method for clock alignment in SoC
design, using a programmable circuit for static-delay tuning.
The main goals of the static delay tuning are to enable quick
and easy integration of IP cores into SoC and to ease the design
of the clock distribution network of the SoC. In Section II, we
demonstrate the problem of IP core integration due to different
clock delays. Next, the common solution of signal delay inser-
tion is described and its inefficiency is discussed. The preferred
method of clock-delay insertion is presented in Section III, using
either global clock redesign or tuning. Sections IV–VII describe
variants of clock tuning and analysis of clock skew. Sections
VIII–XI present circuits, experimental results, and conclusions.

II. SOC TIMING EXAMPLE

Data sheets and texts on logic design describe timing in terms
of setup and hold times for input ports, and contamination and
propagation delays for output ports.Contamination delay is
the period following an input transition during which the output
still retains its old value or the earliest time for the output to
make its first transition. The contamination delay is closely re-
lated to the fastest logic path in the circuit.Propagation delay

is the latest time for the output transition. This delay is re-
lated to the slowest path in the circuit [1], [7], [14]. “Black-box”
models provide similar block boundary timing information for
hard IP cores [9].

Consider the example IP cores in Figs. 1 and 2. The graph-
ical timing diagrams specify the timing characteristics of the IP
cores. The parameter describes the internal clock delay in
the IP core from its clock input port to all the IP core state ele-
ments. This delay resides in the tree structure of the clock dis-

1063-8210/03$17.00 © 2003 IEEE

ELBOIM et al.: A CLOCK-TUNING CIRCUIT FOR SYSTEM-ON-CHIP 617

Fig. 1. IP1 and its timing diagram. The clock arrives at the flip-flops immediately (t = 0). t andt are required in order to guarantee correct
capture of inputs. Module outputs may start changing aftert and are guaranteed to settle byt .

Fig. 2. IP2 and its timing diagram. The clock arrives at the flip-flopst after it rises at the clock port of IP2, but all parameters are still measured with respect
to the external clock port. Hencet is negative andt is quite long.

Fig. 3. Internal clock-delay IP2. The deep clock distribution tree causes a larget .

Fig. 4. Connecting IP1 and IP2 to single SoC.

tribution network inside the IP core itself (Fig. 3). Typically, the
internal clock delay shown in Figs. 2 and 3 is not described by IP
core timing specifications. Note that all timing parameters are
measured with respect to the external clock port of the IP core,
rather than the clock pin of flip-flops. In IP1, the internal clock
delay is assumed zero for simplicity. In IP2, the internal clock
delay is 0.9 ns. The negative setup time in Fig. 2 results from
this large internal clock delay (deep clock tree, as presented in
Fig. 3). A nonnegligible internal clock delay is typical in deep
submicron processes [10], [11]. Note, that if there were suffi-
cient logic delay between the inputs and the flip-flops in IP2,
the required setup time would not be negative, but this is not a
common practice in design of IP cores.

In Fig. 4, we illustrate how the two IP cores may be connected
in a single SoC. The data_bus (100 bits) connects out1 of IP1 to
in2 of IP2. The clk wire feeds both IP cores. For simplicity, we
assume no delays at the system level, on the external clock dis-
tribution network and on data_bus. The combined SoC timing
diagram is shown in Fig. 5. By convention, IP2 needs to sample
data value input A rather than B. The diagram reveals a hold
time violation for in2. The delay on out1 is insufficient for the
needed hold time constraint on in2 input

(1)

From Fig. 5 it can easily be seen that IP1 is the faster IP core.
Its signals are available before IP2 is ready to receive them. The

618 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

Fig. 5. Combined timing diagram of IP1 and IP2. Value A should be captured, but a hold time violation is caused because the outputs of IP1 change too early.

Fig. 6. Solution for IP1 and IP2 timing connectivity problem by data delay insertion method.

Fig. 7. Solution for IP1 and IP2 timing connectivity problem by clock-delay insertion method.

Fig. 8. New timing diagram for IP1. The hold time violation between out1 of IP1 and in2 of IP2 is removed.

delay of the clock to IP2 flip-flops cannot be sped up since the
clock tree in IP2 cannot be redesigned. Common solutions to
this situation are based on delaying these early signals of IP1.
This is known asdata delay insertion. Synthesis tools typically
use the data delay insertion method. Delays are inserted on the
interconnecting bus in order to remove any setup or hold time
violations. In the example, a 0.5-ns delay would be added to
each of the 100 lines of data bus, resulting in e.g., 400 added

inverters, as demonstrated in Fig. 6. Obviously, the data delay
insertion method may be expensive in terms of area and power.

The preferred solution as shown in Fig. 7, is to align the clock
and to turn the SoC into a zero clock skew, or clock aligned
system. This method is referred to as theclock-delay insertion
method. As described above, the internal clock delay of IP2 is
0.9 ns. An external delay of 0.9 ns is prepended to the clock
signal of IP1, affecting a new timing relationship between the

ELBOIM et al.: A CLOCK-TUNING CIRCUIT FOR SYSTEM-ON-CHIP 619

Fig. 9. New combined timing diagram of IP1 and IP2 (cf. Fig. 5.).

IP cores. Now the clock reference point is not the clock port of
IP1, but rather the clock signal preceding the additional clock
delay. The new timing diagram of IP1 with the new clock refer-
ence point is demonstrated in Fig. 8. The new combined timing
diagram of IP1 and IP2 is presented in Fig. 9.

In typical SoC designs, the clock delays are added manually
between the clock distribution network and the clock port of
each IP core. This paper proposes a programmable method for
inserting clock delays.

III. CLOCK-DELAY INSERTIONMETHODOLOGY

A. Delay Insertion Algorithm

A typical clock distribution network is shown schematically
in Fig. 10(a). The network consists of a balanced clock tree
where the delay from the root to each leaf is the same. Thus,
the clock inputs of all IP cores receive the same clock phase.
The approach presented in Fig. 10(a) is easy to design and im-
plement, but as shown in Section II, it may require data delay
insertion for correct operation of the complete SoC. Alterna-
tively, the clock-delay insertion method enables a different total
clock delay to each IP core, as demonstrated in Fig. 10(b). These
delays compensate for the different internal clock delays of the
various IP cores. The complete SoC is thus clock aligned with
zero skew among all state elements in all IP cores.

The clock insertion method is based on the following
algorithm:

for each IP core
Add clock delay ;

where is the internal clock delay of IP core. Optionally,
may be employed instead of, with some .

The added delay leaves margin for future changes, in case the
largest internal clock delay exceeds.

Fig. 10(b) demonstrates the result of applying this algorithm
to the network of Fig. 10(a), given the set of IP cores of the SoC.
Note that knowing the internal clock delays () of all IP cores
is essential for the clock-delay insertion algorithm. For soft IP
cores, the designer can compute these delays. If the internal
clock delay is not supplied for hard IP cores, the clock-delay in-
sertion method may be inapplicable. Unfortunately, the internal
clock-delay information is not a standard part of IP core delivery
(the “black box” representation includes no such data) [9]. De-
signers who wish to apply the algorithm should require their

Fig. 10. (a) An aligned clock distribution network driving IP cores having
different internal clock delays; the SoC is not clock aligned. (b) Clock-delay
insertion compensates for the different internal clock delays, leading to a clock
aligned SoC.

hard IP core providers to supply the internal clock-delay infor-
mation with the IP core delivery [6]. In some cases, it may be
possible to estimate that internal clock delay from the provided
I/O timing specifications.

Some circuits employ nonzero clock skew intentionally [22].
Such “useful skew” methods can also be applied to SoCs. Our
clock-tuning algorithm can be modified to generate useful skew
by means of clock-delay insertion. That method and its applica-
tion are not discussed in this paper.

B. Global Clock Redesign

The implementation of clock distribution networks is not
straightforward. Ideally, when designing a global clock distri-
bution network, changes in one IP core should not affect other
parts of the system. In practice, however, changing an IP core

620 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

Fig. 11. SoC with static clock-tuning unit.

might change its layout, wire capacitances, resistances, etc.
Such changes may affect the entire clock distribution network
and may require its redesign. We call this phenomenon “back
propagation.” Some typical clock distribution architectures,
such as delay-matched serpentines, and symmetric trees [3],
[12], complicate the application of clock insertion. Global
redesign of such clock networks incurs significant changes of
the network at the cost of a heavy engineering effort even for
small changes.

The clock-delay insertion method involves the following
stages.

1) Adding delay elements to the relevant paths according to
the algorithm.

2) Delay extraction of the clock distribution network inside
each block, as well as that of the global clock distribution
network.

3) Timing verification of all clock delays and design itera-
tion if required.

The process is repeated whenever any of the system parts
is changed. Therefore, proposed changes to the system are
not easily accepted. This global clock redesign is far from the
desirable “plug-and-play” concept of true modular design [5].
We propose an alternative implementation, which eliminates
the need for repetitive global clock redesign.

C. Clock Tuning

We propose a novel and efficient implementation of clock-
delay insertion. The implementation is based on programmable
clock-delay lines [1]. The delay units are inserted at the clock
input of each IP core (Fig. 11). Delay values are computed at the
very last stage of the design, once the rest of the SoC design is
finalized. The delay units are programmed by hardwiring their
control bits.

The most important advantage of the programmable clock
delay is the elimination of repeated clock network redesign
every time any IP core is changed. Another benefit of this
method is the ability to employ an unbalanced global clock
distribution network, as explained in the next section.

IV. UNBALANCED GLOBAL CLOCK DISTRIBUTION NETWORK

As described in Section III, the global clock distribution
network of Fig. 10(b) is balanced. This balance is typically
achieved at a high cost in terms of design time and effort, as well

Fig. 12. An unbalanced clock distribution network. Clock-delay insertion
compensates for the unbalanced clock distribution network as well as the
different internal clock delays. The result is a clock aligned SoC. Gray
rectangles represent inserted clock delays (either programmable or regular).

as chip area and power. In many cases, the clock distribution
network must be predesigned before the other parts of the SoC
(because it demands placement and routing resources, which
might not be available at a later phase of the design, and due
to time-to-market considerations). These complex demands are
major obstacles to modular design and are also heavy time and
effort consumers.

Unbalanced clock distribution networks may save a lot of
time and effort in modular design. The clock skew of the unbal-
anced network is compensated for by the same inserted clock
delays that also compensate for different internal clock delays
inside the IP cores, as in Fig. 12. Notice again that the clock-
tuning process is carried out only once at the end of the design
process.

V. HIERARCHICAL CLOCK TUNING

In hierarchical SoC design, some IP cores may be nested in-
side others. Higher-level IP cores supply the clock signal to the
lower-level IP cores. This concept is useful for large modular
design with many IP cores and modules, as well as for IP core
vendors who integrate and resell multiple small IP cores in one
bigger core.

Hierarchical clock tuning is carried out bottom up. First, the
clock is tuned separately for each of the lower IP cores, using the
shortest possible delays. As the algorithm ascends the hierarchy,
the different branches of the tree are aligned with each other,
until a fully aligned SoC is achieved. Fig. 13 exemplifies the
method for a three levels hierarchy. The algorithm traverses the
hierarchy recursively, as follows:

1. Generate a tree of clock distribution
networks according to the SoC hierar-
chical structure

2. Call H-tune(root).
/* The recursive routine H-tune is invoked
for each “cell.”

* It assigns tuning delays to the sub-
cells and returns the cumulative clock
delay

ELBOIM et al.: A CLOCK-TUNING CIRCUIT FOR SYSTEM-ON-CHIP 621

Fig. 13. Numeric example of hierarchical clock tuning. Numbers in parentheses represent cumulative clock delay from the leaves. Each subtree is independently
clock aligned.

* from the cell’s clock input pin to the
FF’s at the lowest level of the hier-
archy.

*/
H-tune(Cell) {

set of sub-cells contained in Cell ;
Foreach (sub-cell) {
if (sub-cell is a leaf IP core)

sub-cell 's internal clock delay ;
else

-tune sub-cell ; /* proceed recur-
sively */
}

;
Foreach (sub-cell)
add tuning delay ; /* Tuning

at the clock entry to sub-cell */
/*

Delay of clock distribution network at
this level */
Return ();

}

Assuming that most data communication is local, the static
and random skews introduced by the tuning circuits in Fig. 13
are minimal. This issue is discussed further in Section VII.

VI. COMBINED DYNAMIC AND STATIC CLOCK TUNING

Typical clock distribution networks employ either
delay-locked loops (DLLs) or phased-locked loops (PLLs). The
former aligns the internal clock with the external one, while the

Fig. 14. Combined dynamic and static clock tuning employing DLLs at the IP
cores. The DLLs align all clocks inside the IP cores with those entering the IP
cores, and static tuning by means of programmable inserted delays compensate
for any lack of balance in the clock distribution network.

latter can also provide frequency synthesis, clock conditioning,
duty cycle correction and phase shifting. In either case, the
clock distribution network can still benefit substantially from
delay insertion.

Consider Fig. 14. Each IP core employs a DLL to align each
internal clock with the clock entering the IP core. It is assumed
that the delays to all memory elements inside the IP core are
equal. Any imbalance on the global clock distribution network,
however, is not accounted for, and different IP cores may be
misaligned with each other. The inserted delays can compensate
for an unbalanced network, as in Section IV.

In Fig. 15, a DLL is employed for the global clock distribu-
tion network as well as for each of the IP cores. This scheme is
designed to align all flip-flops with the external clock. As above,
it may be more effective to apply inserted delays to compensate
for an unbalanced clock distribution network than to invest the
resources required to balance it.

622 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

Fig. 15. Combined dynamic and static clock tuning employing two levels of DLLs. The DLL on the left aligns the clocks at the input of the IP cores with
the external clock. The remaining DLLs align each IP core. Any lack of balance in the global clock distribution network is compensated for statically by the
programmable delays. The clock signal arrives at the flip-flops two whole clock cycles after entering the SoC.

VII. I NCREMENTAL SKEW ANALYSIS

Inserting delays into the clock distribution network incurs a
certain increase in skew. In the following, we analyze the in-
cremental skew added to the clock by the clock-tuning circuits.
Clock skew can be categorized into three basic types: determin-
istic, static, and random [18]. Deterministic skew results from
delay mismatch among the various branches of the distribution
network, e.g., a different number of gates or a different wire
length. Static skew results from process, voltage, and tempera-
ture (PVT) variations. Random skew results from various types
of dynamic noise. Clearly, deterministic skew can be extracted
at the design time while static and random skews can only be
statistically characterized.

The clock distribution network in our SoC consists of three
levels (Fig. 16): a global distribution network, programmable
clock-delay units, and the IP core internal clock distribution
network. While each level makes its own contribution to the
total clock skew, we are interested here only in that of the pro-
grammable delay unit.

As explained above, the clock-delay unit attached to IP core
(which has an internal clock delay) is programmed to the

value (), where is the largest internal clock delay
over all IP cores in the subtree. For the sake of implementa-
tion simplicity we opt to implement the programmable clock
delay as a series of identical digital buffers (pairs of balanced
inverters), and thus, the nominal delay of a single buffer,, de-
fines the delay resolution. Each clock-delay unit is programmed
to engage of its buffers, creating a (quantized) delay of

. Thus, we may be unable to generate exactly the desired
delay value. However, this mismatch is bounded; given that pro-
grammable clock-delay unitengages delay stages (buffers),
the mismatch, as demonstrated in Fig. 17

(2)

Therefore, the maximal deterministic skew between any two IP
cores is .

All PVT-related static skew variations (from the mean value
of deterministic) can be lumped within . We also assume
that all clock-delay buffers on the SoC track PVT variations in

Fig. 16. Basic SoC clock distribution network.

the same direction (ignoring in-die variations as a worst case).
Therefore, the worst scenario between any two IP cores is

(3)

The added static skew due to such PVT variations is .
Thus, the maximal static skew is .

In the case of random skew, noise-related delay variations do
not all happen in the same direction. Hence, assuming that the
dynamic delay variation of a single clock-delay buffer is
(around the mean value) the combined contribution of 2
independent random variables is . Adding all three
skew sources together we get

total additional skew due to

clock-delay insertion (4)

In conclusion, we observe that to minimize skew,should be
designed as small as possible and the delay lines should be kept
as short as possible. In particular, it is advisable to minimize
delay chains at the lower levels of the clock distribution hier-
archy, in order to minimize skew among nearby components
where intercommunication is more likely than among more dis-
tant parts.

VIII. C LOCK-DELAY TUNING CIRCUITS

A. Circuit Parameters

Three parameters should be controlled for the programmable
clock-delay unit: minimum delay (), maximum delay
(), and delay resolution (). They should be chosen
carefully in order to enable maximal future flexibility and
correct operation of the circuit. While typically we optimize

ELBOIM et al.: A CLOCK-TUNING CIRCUIT FOR SYSTEM-ON-CHIP 623

Fig. 17. Delay gap between two successive buffers in a buffer chain.

Fig. 18. Tapped delay line block, providing 0, 1, 2, or 3 minimum delays. The delays may consist of a pair of inverters. Multiple blocks can be concatenated to
obtain longer delays.

Fig. 19. Mirror delay line.

Fig. 20. Chip micrograph.

for the smallest minimum delay, a certain margin may provide
flexibility for accommodating future SoC changes. Since
accurate internal clock delays of all IP cores are unknown at
the beginning of the design process, a certain margin should be
planned into .

As discussed above, affects the clock skew of the circuit.
High resolution calls for many stages in the unit decoder and

TABLE I
SOC PARAMETERS

might be an overkill for the circuit, while low resolution might
cause clock skew and degrade performance.

B. Delay Circuit

Two delay circuits are considered, a tapped delay line and a
mirror delay line. The former (Fig. 18) comprises two blocks
in series, where the first contains three buffers and can be pro-
grammed for a delay of 0, 1, 2, or 3 minimum delays, and the
second block comprises three stages of four delay buffers each,
providing delays of 0, 4, 8, or 12 minimum delays. The two
blocks can thus be programmed for zero through fifteen buffer
delays. Note that even with zero delay buffers the total delay is
nonzero due to the taps.

The mirror delay line (Fig. 19) employs three-state inverters
and eliminates the taps [20]. While the circuit is simpler, the
delay resolution is slightly larger than in the former case since

624 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

TABLE II
UNITS PROGRAMMING IN THE SOC

the propagation delay of a three-state inverter is somewhat
longer than that of a simple inverter.

IX. EXPERIMENTAL RESULTS

The SoC that incorporates the programmable clock-delay cir-
cuits is a multistandard demodulator and decoder for terrestrial
and cable DTV and analog TV reception (Fig. 20 and Table I). It
is designed to support 2 K/8 K-OFDM, 4–256 QAM, and QPSK
in full compliance with DVB-T, DVB-C, and DVB-S digital
television standards. Its basic function is to recover the digital
data encoded into the broadcast signal, which includes video
and audio program information and auxiliary data. The device
outputs the demodulated data as a standard MPEG-2 transport
stream in either parallel or serial format.

Table II describes the final programming of the clock-delay
units in the ten IP cores of the SoC. The programmable clock-
delay units were placed in each one of the modules marked in
Fig. 20.

As explained in Section IV, an important advantage of the
programmable clock-delay circuits is the ability to use an un-
balanced global clock distribution network. The programmable
clock-delay units compensate for the unbalanced distribution
network and enable easy clock balancing at the IP level. Fig. 21
schematically shows the layout of the unbalanced clock tree of
the chip of Fig. 20.

Productivity of the proposed clock-tuning method was proven
very high. Weeks of iterative clock distribution network design
were reduced to several days in which the complete network
was designed, tuned and tested. The implementation demanded
several design flow changes with standard computer-aided de-
sign (CAD) tools (such as synthesis, scan generation, and static
timing analysis).

X. PERFORMANCEANALYSIS

A. Delays of the Programmable Tapped Delay Line

We have simulated the tapped delay line under PVT condi-
tions of typicalnandp transistors, C and V.
As can be deduced from Table III and Fig. 22, ps, and
the average inverter delay is 47 ps. Note that our buffers are not
perfectly symmetric, resulting in a small mismatch between the
high and low delays. As clearly shown by Table III, the deter-
ministic skew is only 100 ps.

Fig. 21. Global clock distribution network. The PLL sends the clock signal to
the center of the chip. All IP cores receive the clock signal from the buffer in the
center. The connections are unbalanced and no delay matching effort had to be
invested. The delays are balanced merely by means of the programmable delay
units.

Fig. 22. Rise/fall delay from simulations of the programmable delay unit.

B. Corner Variation Analysis

To investigate the effect of the choice of circuit and the
number of buffers on skew, we have performed PVT corner
simulations of four different delay circuits—a programmable
tapped delay line at maximum delay of 15 buffers, a simple
delay line without taps having 22 buffers (Fig. 23), a delay
line with longer channel transistors (0.36m) and only eight

ELBOIM et al.: A CLOCK-TUNING CIRCUIT FOR SYSTEM-ON-CHIP 625

TABLE III
DELAYS FOR EACH STATE IN SIMULATIONS OF THE PROGRAMMABLE DELAY LINE

Fig. 23. Alternative design – simple delay line of 22 buffers.

Fig. 24. Alternative design – capacitive load delay line.

TABLE IV
MINIMUM /MAXIMUM DELAYS AND DELAY SPAN AS SIMULATED FOR VARIOUS DELAYSTRUCTURES

delay stages, and a capacitive load delay line of eight buffers
(Fig. 24). All were designed to achieve similar delay under
nominal conditions. The results are presented in Table IV.

As can be seen in Table IV, the proposed programmable
delay line outperforms all other designs as it slightly less
sensitive to process corner variations. The simple delay line
has higher delay span due to increased number of stages. The
other two designs, although having significantly fewer stages,
exhibit higher delay span due to the longer channel and the
higher capacitive load.

XI. CONCLUSION

Two methods for timing integration of IP cores in SoC were
discussed: data delay insertion and clock-delay insertion. Data
delay insertion was shown inefficient in terms of power and area.
Clock-delay insertion requires frequent redesign of the clock
distribution network every time any of the IP cores is changed.
Such redesign varies in different application scenarios; greater
flexibility is possible in SOFT IP cores as compared to hard IP
cores. In any case, this clock network redesign carries a high
price in design time and engineering resources.

626 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

Clock tuning, employing programmable clock-delay units,
alleviates the need for global clock redesign. In addition, it can
deal with unbalanced clock distribution networks [21], by pro-
viding programmable delay compensation. With this method-
ology, geared particularly toward SoC design, electrical param-
eter extraction needs to be carried out only once. Programming
the inserted delays and simulating the circuit for clock timing
verification is the only required effort. If any of the clock de-
lays need to be changed, the clock tuning is reprogrammed and
timing verification is repeated. Changes are possible at any stage
of the design, and a quick verification is always possible. The
complete design flow becomes more flexible and the burden of
timing verification is reduced.

These advantages do not come without a price; a fault in
the programmable clock-delay unit may leave it stuck at a
certain delay value. This fault may lead to complete circuit
failure. Short of such complete functional failures, which are
easily testable, a timing fault may not be functionally testable
but rather require testing at full high frequency to be detected.
Similar limitations exist in traditional clock distribution sys-
tems in case of a delay-fault in a clock buffer, but the added
circuitry in the tuning units might increase the likelihood of
such a problem.

In summary, a clock distribution strategy for integrating IP
cores in SoCs has been proposed, analyzed, and demonstrated
in a commercial chip. It improves ease of IP cores reuse by
enabling simple clock tuning. Using clock-tuning circuits with
programming options enables easy integration of many IP cores
into a complete SoC, and eliminates design iterations in the en-
gineering flow. Thus, design effort is reduced, design modu-
larity is improved, and “last minute changes” are enabled.

REFERENCES

[1] W. J. Dally and J. W. Poulton, Digital Systems Engi-
neering. Cambridge, U.K.: Cambridge Univ. Press, 1998.

[2] K. D. Wagner, “Clock system design,”IEEE Des. Test Comput., pp.
9–27, Oct. 1988.

[3] P. J. Restle and A. Deutsch, “Designing the best clock distribution net-
work,” in Proc. 1998 Symp. Very Large Scale Integration (VLSI) Cir-
cuits, 1998, pp. 1–5.

[4] R. Ginosar and R. Kol, “Adaptive synchronization,” in Proc. 2000
Workshop Asynchronous Interfaces (AINT), Delft, The Netherlands,
July 2000.

[5] C. K. Lennard and E. Granata, “The meta-methods: Managing design
risk during IP selection and integration,” inProc. IP 1999 Europe, pp.
285–299.

[6] M. Keating and P. Bricaud,Reuse Methodology Manual for
System-on-a-Chip Designs. Norwell, MA: Kluwer, 1999.

[7] J. M. Rabaey, Digital Integrated Circuits a Design Perspec-
tive. Englewood, NJ: Prentice-Hall, 1996, Prentice-Hall Electronics
and VLSI series.

[8] D. G. Messerschmitt, “Synchronization in digital system design,”IEEE
J. Selected Areas Commun., vol. 8, pp. 1404–1419, Oct. 1990.

[9] VSI Alliance Architecture Document. VSI Alliance, Los Gatos, CA.
[Online]. Available: http://www.vsi.org/library/specs/summary.htm

[10] D. Sylvester and K. Keutzer, “Rethinking deep-submicron circuit de-
sign,” IEEE Computer, pp. 25–33, Nov. 1999.

[11] R. Ho, K. W. Mai, and M. Horowitz, “The future of wires,”Proc. IEEE,
vol. 89, pp. 490–504, Apr. 2001.

[12] D. W. Baily and B. J. Benschneider, “Clocking design and analysis for a
600-MHz alpha, microprocessor,”IEEE J. Solid-State Circuits, vol. 33,
pp. 1627–1633, Nov. 1998.

[13] H. Mizuno and K. Ishibashi, “A noise-immune GHz-clock distribution
scheme using synchronous oscillators,” inProc. IEEE Int. Solid-State
Circuits Conf., 1988, pp. 404–405.

[14] S. A. Ward and R. H. Halsted,Computation Structures. Cambridge,
MA: MIT Press, 1990.

[15] E. G. Friedman,Clock Distribution Networks in VLSI Circuits and Sys-
tems. Piscataway, NJ: IEEE Press, 1995.

[16] S. Rusu and G. Singer, “The first IA-64 microprocessor,”IEEE J. Solid-
State Circuits, vol. 35, pp. 1539–1544, Nov. 2000.

[17] S. Tam, S. Rusu, U. N. Desai, R. Kim, J. Zhang, and I. Young, “Clock
generation and distribution for the first IA-64 microprocessor,”IEEE J.
Solid-State Circuits, vol. 35, pp. 1545–1552, Nov. 2000.

[18] C. -S. Li, K. N. Sivarajan, and D. Messerschmitt, “Statistical analysis of
timing rules for high speed synchronous VLSI systems,”IEEE Trans.
VLSI Syst., vol. 7, pp. 477–482, Dec. 1999.

[19] V. Gutnik and A. P. Chandrakasan, “Active GHz clock network using
distributed PLL’s,”IEEE J. Solid-State Circuits, vol. 35, pp. 1553–1560,
Nov. 2000.

[20] T. Saeki, “A 2.5-ns clock access, 250 MHz, 256-Mb SDRAM with
synchronous mirror delay,”IEEE J. Solid-State Circuits, vol. 30, pp.
1656–1668, Nov. 1996.

[21] P. J. Restleet al., “A clock distribution network for microprocessors,”
IEEE J. Solid-State Circuits, vol. 36, pp. 792–797, May 2001.

[22] I. S. Kourtev and E. G. Friedman,Timing Optimization through Clock
Skew Scheduling. Norwell, MA: Kluwer, 2000.

Yaron Elboim received the B.Sc. degree in electrical
engineering from the Technion—Israel Institute of
Technology, Haifa, in 1998.

He was with Oren Semiconductor, Yoqneam, Is-
rael, where he performed logic design and system in-
tegration of IP core-based SoC. Since 2001, he has
been with Intel Corporation, Israel, where he works
on communication products.

Avinoam Kolodny (M’81) received the D.Sc. degree
in electrical engineering from the Technion—Israel
Institute of Technology, Haifa, in 1980.

He has worked on silicon technology development
and design automation at Intel Corporation in Israel
and in California. His research interests include VLSI
design and CAD.

Ran Ginosar (S’79–M’82) received the B.Sc. de-
gree (summa cum laude) in electrical and computer
engineering from the Technion—Israel Institute of
Technology, Haifa, in 1978, and the Ph.D. degree
in electrical engineering and computer science from
Princeton University, Princeton, NJ, in 1982.

After working with AT&T Bell Laboratories for
one year, he joined the Technion faculty in 1983. He
was a Visiting Associate Professor with the Univer-
sity of Utah, Salt Lake City, from 1989 to 1990 and
a Visiting Faculty Member with the Strategic CAD

Laboratory, Intel Corporation, from 1997 to 1999. He is currently the Head of
the VLSI Systems Research Center at the Technion. His research interests in-
clude asynchronous systems and electronic imaging.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

